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Abstract. Large scale real number computation is an essential ingredient in several

modern mathematical proofs. Because such lengthy computations cannot be verified by

hand, some mathematicians want to use software proof assistants to verify the correctness

of these proofs. This paper develops a new implementation of the constructive real num-

bers and elementary functions for such proofs by using the monad properties of the com-

pletion operation on metric spaces. Bishop and Bridges’s [1] notion of regular sequences is

generalized to, what I call, regular functions which form the completion of any metric

space. Using the monad operations, continuous functions on length spaces (a common sub-

class of metric spaces) are created by lifting continuous functions on the original space. A

prototype Haskell implementation has been created. I believe that this approach yields a

real number library that is reasonably efficient for computation, and still simple enough to

easily verify its correctness.

0. Licence

This work is licensed under the Creative Commons Attribution 2.5 Netherlands License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/nl/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

1. Introduction

Several mathematical theorems rely on numerical computation of real number values in their
proofs. One example is the disproof of the Mertens conjecture [15]. The Mertens conjecture
claims that the absolute values of the partial sums of the Möbius function are bounded by the
square root function. The conjecture implies the Riemann hypothesis. Odlyzko and te Riele’s
disproof involves computing the first hundred decimal digits of the first two thousand zeros of
the Riemann zeta function.

Another example is Hales’s famous proof [6] of the Kepler conjecture. This proof involves
verifying thousands of nonlinear inequalities over the real numbers. These inequalities were veri-
fied by special purpose software. Unfortunately, the peer review process has failed to fully
accept the proof as correct. After four years, the twelve referees could only claim to be 99% cer-
tain of the correctness of the proof. In response, Hales has created the Flyspeck project, a pro-
ject to create a software verified proof of the Kepler conjecture. A full software verified proof
will verify both the mathematical and computational parts of the proof together.

Many other proofs rely on real number computation. All of these proofs require a software
verified implementation of real number arithmetic before these proofs can be verified by com-
puter. By implementation, I mean a software verified library of continuous functions on R with
which computations can be done to arbitrary precision. One such library has been created by
Cruz-Filipe as a product of his software verified constructive proof of the fundamental theorem
of calculus [4].

When constructive mathematics is used for reasoning, algorithms are contained inside the
proofs. These algorithms can be executed in a functional language. One can see this as part of
the Bishop’s program to see constructive mathematics as a programming language. Because
Cruz-Filipe’s proof is constructive, the functions in his library can actually be evaluated. How-
ever, Cruz-Filipe’s construction was not designed with efficiency in mind, so, unfortunately, eval-
uation is not practical [5]. Therefore, if one wants to be able to handle the problems encoun-
tered in the aforementioned mathematical proofs, a new library is needed.

∗. This article has been accepted for publication in an upcoming issue of Mathematical Structures in Com-
puter Science published by Cambridge University Press.
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This paper proposes a new constructive implementation of real numbers. An implementation
that attempts to be simple and elegant, and at the same time practical enough to run the com-
putations needed by the proof of the Kepler conjecture and other mathematical theorems. This
work contributes not only to the Flyspeck project, but to any project requiring a verified library
of functions for exact real arithmetic.

Section 2 introduces the notion of a regular function. Regular functions are a generalization
of Bishop and Bridges’s notion of a regular sequence [1]. Section 3 discusses how regular func-
tions, under a suitable equivalence relation, form a completion of any metric space.

Section 4 shows that the completion operation of a metric space forms a monad. A monad is
an abstract structure consisting of a type constructor and three functions: unit, map, and join.
These three functions must satisfy seven monad laws, which are given in section 4.1. Monadic
programming techniques have been shown to be useful for programming tasks such as I/O,
exceptions, non-determinism, and many more [11][17]. The fact that the completion operation
forms a monad is not so exciting, but what is exciting is that these monad functions are very
useful for defining functions over completed metric spaces by lifting uniformly continuous func-
tions on the original metric space. Section 5 shows how this process can be used to define the
real numbers and define the elementary functions over R.

Because one goal of this work is to be able to evaluate expressions to a given precision in a
reasonable amount of time, section 6 gives some minor enhancements to the implementation to
improve performance. Section 7 compares the run-time of a Haskell prototype implementation
to other systems.

A second goal of this work is to eventually verify the proofs presented in this paper using a
software proof assistant. To this end, I have included many theorems with detailed proofs in
order to illustrate that verifying these proofs by software will be relatively easy. Those readers
who are only interested in the data structures and operations may wish to skip over the details
of the proofs.

I use constructive mathematics for all the proofs in this paper; therefore, I remain agnostic
on whether or not functions are assumed to be computable. Of course, the goal is to make an
implementation of the functions defined in this paper so the computational interpretation is
worth keeping in mind; however both the constructive and classical interpretations are sound.

1.1. Notation.

The strictly positive rationals are denoted by Q+, while the non-negative rationals are
denoted by Q0+; similar notation is used for reals and natural numbers. Equivalence relations
are denoted by ≍ , while = is reserved for intensional equality. I will be using sequences and
functions to represent real numbers. It is possible for two different sequences or functions to rep-
resent the same real number, so it is important to distinguish between equality as functions and
equivalence as real numbers.

The type of propositions is denoted by ⋆ , and relations by functions to ⋆ . If reasoning clas-
sically, ⋆ may be considered as a Boolean type.

In functional programming, functions are typically curried. Therefore, for a binary operator
that would normally have the type X × X ⇒ X, I will instead use the type X ⇒ X ⇒ X ; how-
ever, I will sometimes write function application as f(x, y) for clarity.

As is also typical in functional programming, I will write anonymous functions using lambda
expressions. For example, I will write the reciprocal function as λx.x−1.

2. Real Numbers as Regular Functions of Rationals

Abstractly, real numbers can be defined as any complete, Archimedean, ordered field; however,
in order to show that such a structure exists, it is necessary to produce a model of the real num-
bers. One common model of the real numbers consists of equivalence classes of Cauchy
sequences of rational numbers.

Bishop and Bridges [1] define the real numbers to be regular sequences of rational numbers
with an equivalence relation. A sequence xn is regular if

∀nm :N+, |xm − xn| ≤m−1 +n−1,
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and two regular sequences x and y are equivalent (x≍ y) if

∀n :N+, |xn − yn| ≤ 2n−1.

Regular sequences, under this equivalence relation, are isomorphic to Cauchy sequences. Every
regular sequence is a Cauchy sequence, and every Cauchy sequence can be transformed into a
regular sequence by using its modulus of convergence to select a suitable subsequence.

One can think of a regular sequence as a function that approximates a real number by taking
a positive number n to a rational number xn that is within n−1 of the real number the sequence
represents. Instead of using such coarse grained approximations, one can generalize the concept
of regular sequences to regular functions. A function x:Q+⇒Q is regular if

∀ε1 ε2, |x(ε1)− x(ε2)| ≤ ε1 + ε2,

and two regular functions x and y are equivalent if

∀ε, |x(ε)− y(ε)| ≤ 2 ε.

Regular functions are isomorphic to regular sequences. Any regular function can be transformed
into an regular sequence by considering λn: N+.x(n−1), and any regular sequence can be trans-
formed into a regular function, that maps ε to some xn such that n−1≤ ε.

One can think of a regular function as a function that approximates a real number by taking
a positive rational number ε to a rational number that is within ε of the real number the func-
tion represents. Regular functions allow more fine grained approximations than
regular sequences allow. This fine granularity can prevent unnecessary over approximation when
doing calculations. An example of this occurs in the implementation of multiplication in sec-
tion 5.

Regular functions can be used not only to construct the reals, but they can be used to com-
plete any metric space.

3. Metric Spaces

A typical definition of a metric space is space X with a distance function d : X ⇒ X ⇒ R0+ ∪
{∞} satisfying certain properties [3]; however, the purpose of this paper is to define R as the
completion of a metric space. This task requires a definition of metric space that does not pre-
suppose the existence of R. Given a traditional metric space, one can define a distance relation

Bε(x, y)=
d e f

d(x, y)≤ ε where ε :Q+. This distance relation does not depend on R, but it still com-
pletely characterizes the metric space.

A tuple (X,≍ , B) is a metric space, where≍ is an equivalence relation, B :Q+⇒X ⇒X ⇒ ⋆

is a relation respecting the equivalence relation on X , and the following properties hold:

1. For all ε, Bε is reflexive.

2. For all ε, Bε is symmetric.

3. For all ε1, ε2, a, b, and c, if Bε1
(a, b) and Bε2

(b, c) hold, then Bε1+ε2
(a, c) holds.

4. For all ε, a, and b, if ∀δ, Bε+δ(a, b) holds, then Bε(a, b) holds.

5. For all a and b, if ∀ε, Bε(a, b) holds, then a≍ b.

Given a metric space, the traditional metric can be recovered (classically) by defining d(a, b)=
d e f

inf
{ε |Bε(a, b)}—the infimum of the empty set is taken to be ∞. One can easily show that this def-
inition of a metric space is equivalent to the traditional definition.

I use the symbol B for the distance relation because if Bε(a) is considered as a predicate,
then the set of points b satisfying Bε(a) are exactly the points that are within ε of a. Therefore,
Bε(a) can be understood as a ball of radius ε around a.

Property 4 requires that Bε(a) be a closed ball. While the choice between open and closed
balls is not very important from a classical perspective, there are some advantages to using
closed balls when reasoning constructively. Because being closed is a negative statement, it does
not contain any constructive information. One can avoid unnecessary computation and allow
reasoning by contradiction by using negative statements wherever possible [5].
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It is useful to note that if two points are within ε1 of each other, then they are also within ε2

of each other whenever ε1 < ε2.

Lemma 1. For any ε, δ, a, and b, if Bε(a, b) holds, then Bε+δ(a, b) holds.

Proof. Bδ(b, b) holds by reflexivity. Therefore, Bε+δ(a, b) holds. �

3.1. Prelength Spaces.

In a metric space, just because two points a and b are within l of each other does not mean
that there exist curves of length approaching l that connect these points. A metric space that
has such curves is known as a length space [3]. Since the notion of curves presupposes the real
numbers, I introduce the weaker notion of a prelength space. A prelength space is a metric space
such that

∀abεδ1 δ2, ε < δ1 + δ2⇒Bε(a, b)⇒∃c, Bδ1
(a, c)∧Bδ2

(c, b).

This property implies that if two points a and b are within l of each other, then there is a path
of points connecting a to b with consecutive points within ε of each other whose total length is
less than l + ε.

Lemma 2. In a prelength space for any a, b, ε, δ0, � , δn−1 such that Bε(a, b) holds and ε <

δ0 +� + δn−1, there exist c0,� , cn such that c0 = a, cn = b, and ∀i <n, Bδi
(ci, ci+1) holds.

Proof. This is done by induction on n. The case n = 0 is trivial. In the other case, let
γ=

d e f

δ0 +� + δn−1 − ε. There exists some cn−1 such that Bδn−1
(cn−1, b) and Bε−δn−1+

γ

2

(a, cn−1).

By induction, there exists c0, � , cn−2 such that ∀i < n − 1, Bδi
(ci, ci+1) because ε − δn−1 +

γ

2
<

δ0 +� + δn−2. �

Prelength spaces are quite common; all the metric spaces considered in this paper are
prelength spaces.

Theorem 3. (Q, = , BQ) is a prelength space where Bε
Q(a, b) =

d e f |a− b| ≤ ε .

Theorem 4. For any closed rational interval [a, b], ([a, b], = , BQ) is a prelength space.

3.2. Completion of a Metric Space using Regular Functions.

One can define regular functions over any metric space X by using the distance relation. A
function x :Q+⇒X is regular if

∀ε1 ε2, Bε1+ε2
(x(ε1), x(ε2)),

and two regular functions x and y are equivalent (x≍ y) if

∀ε, B2ε(x(ε), y(ε)).

Define the distance relation on regular functions as

Bε
′(x, y)=

d e f∀δ1 δ2, Bε+δ1+δ2
(x(δ1), y(δ2)).

Call the type of regular functions over X the completion of X or C(X). The following theo-
rems show that the completion of a metric space is a metric space.

Theorem 5. If (X,≍ , B) is a metric space, then (C(X),≍ , B ′) is a metric space.

Proof.

1. Consider arbitrary δ1 and δ2. By Lemma 1, Bε+δ1+δ2
(x(δ1), x(δ2)) holds. Therefore, Bε

′ is
reflexive.

2. B ′ is symmetric because B is symmetric.
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3. Suppose Bε1

′ (x, y) and Bε2

′ (y, z) hold. Let γ be arbitrary. Then Bε1 +δ1+
γ

2

(x(δ1), y(
γ

2
))

and Bε2+
γ

2
+δ2

(y(
γ

2
), z(δ2)) hold. Therefore, Bε1+ε2+δ1+δ2+γ(x(δ1), y(δ2)) holds. Since γ

was arbitrary, Bε1+ε2

′ (x, y) holds.

4. Given ε, x, and y, suppose ∀δ0, Bε+δ0

′ (x, y) holds. Therefore, ∀δ0 δ1 δ2, Bε+δ0+δ1+δ2
(x(δ1),

y(δ2)) holds. ∀δ1 δ2, Bε+δ1+δ2
(x(δ1), y(δ2)) holds; therefore, Bε

′(x, y) holds.

5. Given x and y, suppose ∀ε, Bε
′(x, y) holds. For any ε and δ, Bε+2δ(x(δ), y(δ)) holds.

Then B2δ(x(δ), y(δ)) holds. Therefore, x≍ y.

�

The following are useful lemmas about the distance function on regular functions.

Lemma 6. If Bε0
(x(ε1), y(ε2)) holds, then Bε0+ε1+ε2

′ (x, y).

Proof. Let δ1 and δ2 be arbitrary. Bε1+δ1
(x(δ1), x(ε1)) and Bε2+δ2

(y(ε2), y(δ2)) hold. Therefore,
Bε0+ε1 +ε2+δ1+δ2

(x(δ1), y(δ2)) holds. �

Corollary 7. If Bε0
(x(ε1), b) holds, then Bε0+ε1

′ (x, b′) holds where b′ is the regular function

b′=
d e f

λε.b.

Proof. By Lemma 6 Bε0+ε1+ε2

′ (x, b′) holds for every ε2. Therefore, Bε0+ε1

′ (x, b′) holds. �

The following theorem shows that the distance relation is equivalent to ∀δ, Bε+2δ(x(δ), y(δ)).

Theorem 8. For any ε, if ∀δ, Bε+2δ(x(δ), y(δ)) holds, then Bε
′(x, y) holds.

Proof. For any δ, B
ε+

δ

2

(x(
δ

4
), y(

δ

4
)) holds. By Lemma 6, Bε+δ

′ (x, y) holds. Since δ was arbi-

trary, Bε
′(x, y) holds. �

The following theorem shows that the completion of a prelength space is a prelength space.

Theorem 9. If (X,≍ , B) is a prelength space, then is a prelength space.

Proof. By Theorem 5, all that remains is to show that the prelength space property is pre-

served. Suppose ε < δ1 + δ2, and Bε
′(x, y) holds. Let γ =

d e f δ1 + δ2− ε

5
. Bε+2γ(x(γ), y(γ)) holds.

There is some c such that Bδ1−γ(x(γ), c) and Bδ2−γ(c, y(γ)) hold. So Bδ1

′ (x, c′) and Bδ2

′ (c′, y)

holds by Corollary 7 where c′=
d e f

λε.c. �

Typically the completion of a space X is denoted by X̄ . Because I will wish to emphasize
the monadic property of the completion, the Fraktur C is used in this paper.

3.3. Uniform Continuity.
Given two metric spaces (X,≍ , BX) and (Y ,≍ , BY ), a function f : X ⇒ Y is uniformly con-

tinuous with modulus µ :Q+⇒Q+ if

∀εx1 x2: X.Bµ(ε)
X (x1, x2)⇒Bε

Y (f(x1), f(x2)).

A function f : X ⇒ Y is uniformly continuous if there is some µ such that f is uniformly contin-
uous with modulus µ. When a function f is uniformly continuous, I will write f : X → Y using a
single-bar arrow. This indicates that f is not just a function, but it is a pair (f , µf): (X ⇒ Y )×
(Q+ ⇒Q+) consisting of a function and its modulus of continuity. This structure is a morphism
in the category of metric spaces with uniformly continuous functions between them. When f :
X →Y , I will leave the projection function implicit and write f(x) instead of π1(f)(x).

This is the usual definition of uniform continuity where the relation between ε and δ is
explicitly given by µ.

Theorem 10. The identity function id is uniformly continuous with modulus id, and if f :
X →Y and g: Y →Z are both uniformly continuous, then the composition g ◦ f : X →Z is
uniformly continuous with modulus µf ◦ µg.
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Proof. Easy. �

3.4. Remarks.

The definition of a metric space usually requires the distance between two points always to
be finite. Because I want consider the space of all uniformly continuous functions between two
metric spaces as a metric space in section 4.2, I use the more liberal definition. It is worth
noting that it is only the uniform space structure of a metric space that is important for the
purposes of this paper. One can transform a metric space with infinite distances to one with

only finite distances by defining a new metric d′(a, b)=
d e f

min {d(a, b), 1}. The uniform structure of
the space does not change by using this new metric.

A prelength space is a weaker notion than a length space. For example, the rationals are not
a length space because no two points can be connected by a continuous curve; however, the
rationals are a prelength space. The name prelength space is chosen because of an analogy with
precompact spaces. When a precompact space is completed it becomes a compact space; when a
prelength space is completed it becomes a length space.

An alternative definition for a regular function x:Q+⇒X would be

∀ε1 ε2, Bmax(ε1,ε2)(x(ε1), x(ε2)).

This alternative definition would remove the need for restricting ourselves to prelength spaces
(in particular, its use in Theorem 16). However, for efficiency reasons discussed in section 6.1, I
stick with the definition based on Bishop and Bridges’s regular sequences.

4. Completion Is a Monad

Any completion constructor forms a monad in the category of prelength spaces and
uniformly continuous functions between them. The following defines the monad structure for the
definition of completion given in section 3.2. The unit : X →C(X) function is the obvious injec-
tion of X into C(X).

unit(a)=
d e f

λε.a.

Theorem 11. For any a : X, unit(a) is a regular function, and unit is uniformly continuous
with modulus id.

The following two theorems show that the geometry of the space is preserved under this
injection and that it is sound to think of x(ε) as an approximation of x within ε.

Theorem 12. For any a, b, and ε, Bε(a, b) holds if and only if Bε
′(unit(a), unit(b)) holds.

Theorem 13. For any ε, Bε
′(x, unit(x(ε))) holds.

Proof. Let δ be arbitrary. Bε+δ(x(δ), x(ε)) holds because x is regular, but this is the same as
Bε+δ(x(δ), unit(x(ε))(δ)). By Theorem 8, Bε

′(x, unit(x(ε))) holds. �

The function join : C(C(X))→C(X) arises from the proof that completing a space twice is
the same space as completing it only once.

join(x)=
d e f

λε.x(
ε

2
)(

ε

2
).

Theorem 14. For any x : C(C(X)), join(x) is a regular function, and join is
uniformly continuous with modulus id.

Proof. Let ε1 and ε2 be arbitrary. Bε1

2
+

ε2

2

(x(
ε1

2
), x(

ε2

2
)) holds because x is a regular function.

By Theorem 13, Bεi
2

(x(
εi

2
), unit(x(

εi

2
)(

εi

2
))) hold, so all together Bε1+ε2

(unit(join(x)(ε1)),

unit(join(x)(ε2))) holds. By Theorem 12, Bε1+ε2
(join(x)(ε1), join(x)(ε2)) holds, so join(x) is a

regular function.
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Now let ε and δ be arbitrary, and suppose x1 and x2 are such that Bε(x1, x2) holds.
Bδ(xi,unit(unit(xi(

δ

2
)(

δ

2
)))) holds by two applications of Theorem 13. Therefore,

Bε+2δ(unit(unit(join(x1)(δ))), unit(unit(join(x2)(δ)))) holds. By two applications of Theorem 12,
Bε+2δ(join(x1)(δ), join(x2)(δ)) holds. By Theorem 8, Bε(join(x1), join(x2)) holds as required. �

The function map : (X → Y ) ⇒ (C(X) → C(Y )) lifts uniformly continuous functions on the
base spaces to uniformly continuous on the completed spaces.

map(f)=
d e f

λx.f ◦x ◦ µf.

For metric spaces, map(f)(x) is not always a regular function. Let X be the space {−1} ∪
{n−1 |n : N+} and Y be the space {−2} ∪ {n−1 |n : N+} with the induced metrics. The function

f : X →Y sending −1 to −2 and n−1 to n−1 is uniformly continuous with modulus λε.min (ε, 1).

Consider the regular function x that sends ε to −1 when 1 ≤ ε and sends ε to some n−1 ≤ ε

when ε < 1. In this case, map(f)(x) is not a regular function.

Fortunately map(f)(x) is always regular function when X is a prelength space.

Lemma 15. Given f : X →Y where X is a prelength space and Y is a metric space, consider

arbitrary a, b, ε0, � , εn−1. Let δi=
d e f

µf(εi), δ=
d e f

δ0 + � + δn−1, and ε=
d e f

ε0 + � + εn−1. If Bδ(a, b)
holds, then Bε(f(a), f(b)) holds.

Proof. Let εn be arbitrary, and let δn=
d e f

µf(εn). By Lemma 2, there are c0, � , cn+1 such that
Bδi

(ci, ci+1) hold, a = c0, and b = cn+1. By uniform continuity Bεi
(f(ci), f(ci+1)) hold. Thus

Bε+εn
(f(a), f(b)) holds. Since εn was arbitrary Bε(f(a), f(b)) holds as required. �

Theorem 16. If f : X →Y where X is a prelength space and Y is a metric space and x : C(X),
then map(f)(x) is a regular function.

Proof. Let y =
d e f

map(f)(x). Consider arbitrary ε1 and ε2. Let δi =
d e f

µf(εi). Because x is a
regular function, Bδ1+δ2

(x(δ1), x(δ2)) holds. By Lemma 15, Bε1+ε2
(f(x(δ1)), f(x(δ2))) holds,

which is the same as Bε1+ε2
(y(ε1), y(ε2)). Therefore, y is a regular function. �

Theorem 17. The function map(f) is uniformly continuous with modulus µf.

Proof. Consider arbitrary ε0 and ε1. Let δi =
d e f

µf(εi). Suppose Bδ1
(x1, x2) holds. Thus

Bδ0+δ1+δ2
(x1(δ1), x2(δ2)) holds. By Lemma 15, Bε0+ε1+ε2

(f(x1(δ1)), f(x2(δ2))) holds. Therefore,
Bε0

(map(f)(x1),map(f)(x2)) holds. �

The function bind : (X →C(Y )) ⇒ (C(X)→C(Y )) is defined in terms of join and map in the
usual way.

bind(f)=
d e f

join ◦map(f).

4.1. Monad Laws.

To prove that completion forms a monad, one needs to verify that the seven monad laws [17]
hold.

Theorem 18. map(id)≍ id, map(f ◦ g)≍map(f) ◦map(g) and map(f) ◦ unit≍unit ◦ f.

Proof. Trivial. �

Theorem 19. map(f) ◦ join≍ join ◦map(map(f)).

Proof. Let x, ε1, and ε2 be arbitrary. Let δ1=
d e f

µf(ε1), δ2=
d e f

µf(
ε2

2
), a=

d e f

x(
δ1

2
)(

δ1

2
), and b=

d e f

x(δ2)(δ2).

By expanding definitions, map(f)(join(x))(ε1) = f(a) and join(map(map(f))(x))(ε2) = f(b).

Because x is a regular function, Bδ1
2

+δ2
(x(

δ1

2
), x(δ2)) and Bδ1+2δ2

(a, b) hold. By Lemma 15,

Bε1+ε2
(f(a), f(b)) holds as required. �
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Theorem 20. join ◦ unit≍ id.

Proof. Let x, ε1, and ε2, be arbitrary. join(unit(x))(ε1) = x(
ε1

2
) and id(x)(ε2) = x(ε2). Since x is

a regular function, Bε1+ε2
(x(

ε1

2
), x(ε2)) holds as required. �

Theorem 21. join ◦map(unit)≍ id.

Proof. join(map(unit)(x))(ε) = join(unit(x))(ε); therefore, this theorem follows from The-
orem 20. �

Theorem 22. join ◦map(join)≍ join ◦ join.

Proof. By unfolding definitions, join(map(join)(x))(ε1) = x(
ε1

2
)(

ε1

4
)(

ε1

4
) and join(join(x))(ε2) =

x(
ε2

4
)(

ε2

4
)(

ε2

2
). Because x is a regular function, Bε1

2
+

ε2

4

(x(
ε1

2
), x(

ε2

4
)), B 3ε1

4
+

ε2

2

(x(
ε1

2
)(

ε1

4
),

x(
ε2

4
)(

ε2

4
)), and Bε1+ε2

(x(
ε1

2
)(

ε1

4
)(

ε1

4
), x(

ε2

4
)(

ε2

4
)(

ε2

2
)) hold. This last one is what is required. �

4.2. Lifting Binary Functions.
The function map can be used to lift unary functions from X → Y to C(X)→C(Y ); however,

one also wants to lift multi-argument functions such as binary functions. One can lift curried
binary functions on base spaces to curried functions on completed spaces, but one first needs to
consider the space of uniformly continuous functions as a metric space. This is done using the
supremum norm.

Theorem 23. For any two metric spaces (X, ≍ , BX) and (Y , ≍ , BY ), The space of

uniformly continuous functions from X to Y, (X → Y , ≍ , BX→Y ), is a metric space where

Bε
X→Y (f , g)=

d e f∀a, Bε
Y (f(a), g(a)) and with the equivalence relation f ≍ g=

d e f∀a, f(a)≍ g(a).

Proof. All the properties of BX→Y follow directly from the same properties for BY . �

Unfortunately, the space of uniformly continuous functions between two prelength spaces is
not necessarily a prelength space. Consider the space of curves on the unit circle, [0, 1]→S1.
Consider two curves connecting two points where one goes clockwise and the other goes counter-
clockwise. If [0, 1]→S1 were a prelength space, then there would be a curve about halfway
between these two curves; however, there is no such curve.

Fortunately, one can still lift curried functions using map, because the proof that the result
of map is a regular function (see Theorem 16) requires only that the domain be a
prelength space. With curried functions (say X → (X →X)), it is the range that might not be a
prelength space. The domain is still the prelength space X, so Theorem 16 still applies.

One can show that the monad is a strong monad by showing that map is
uniformly continuous.

Lemma 24. Let X be a prelength space and Y a metric space. Then map :
(X →Y )→ (C(X)→C(Y )) is uniformly continuous with modulus id.

Proof. Let ε be arbitrary. Suppose f g : X → Y are such that Bε(f , g). Let ε0 and x : C(X) be

arbitrary. Let δ0=
d e f

min (µf(ε0), µg(ε0)) and a0=
d e f

x(δ0). Bε0
(map(f)(x), map(f)(unit(a0))) and

Bε0
(map(g)(x), map(g)(unit(a0))) both hold by uniform continuity and Theorem 13. By The-

orem 18, map(f)(unit(a0)) ≍ unit(f(a0)) and map(g)(unit(a0)) ≍ unit(g(a0)). By Theorem 12,
Bε(unit(f(a0)), unit(g(a0))) holds. So all together Bε+2ε0

(map(f)(x), map(g)(x)). Since ε0 and
x were arbitrary, Bε(map(f),map(g)) holds. �

With uniformly continuous function spaces in hand, one can construct the function ap :
C(X →Y )→C(X)→C(Y ), which one can think of as a function that takes the limit of
uniformly continuous functions.

ap(f)=
d e f

λx.λε.map(f(
ε

2
))(x)(

ε

2
).
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Theorem 25. For any f : C(X →Y ) and x: C(X), ap(f)(x) is a regular function.

Proof. Let ε1 and ε2 be arbitrary. Let fi=
d e f

f(
εi

2
) : X → Y . Because f is regular, Bε1

2
+

ε2

2

(f1, f2)

holds. Let yi=
d e f

map(fi)(x). By Lemma 24, Bε1

2
+

ε2

2

(y1, y2) holds. By Theorem 13,

Bε1

2

(unit(y1(
ε1

2
)), y1) and Bε2

2

(y2, unit(y2(
ε2

2
))) hold. All together Bε1+ε2

(unit(y1(
ε1

2
)),

unit(y2(
ε2

2
))) holds. By Theorem 12, Bε1+ε2

(y1(
ε1

2
), y2(

ε2

2
)) holds as required. �

Lemma 26. For any f : C(X →Y ), x: C(X), and ε, Bε(ap(f)(x),map(f(ε))(x)) holds.

Proof. Let δ be arbitrary. Let g=
d e f

f(
δ

2
) and h=

d e f

f(ε). Because f is regular, Bδ

2
+ε

(map(g)(x),

map(h)(x)) holds. By Theorem 13, Bδ

2

(unit(map(g)(x)(
δ

2
)), map(g)(x)) and Bδ(map(h)(x),

unit(map(h)(x)(δ))) hold. All together Bε+2δ(unit(map(g)(x)(
δ

2
)), unit(map(h)(x)(δ))) holds,

and by Theorem 12, Bε+2δ(map(g)(x)(
δ

2
), map(h)(x)(δ)) holds. By Theorem 8, Bε(map(g)(x),

map(h)(x)) holds as required. �

Theorem 27. For any f : C(X →Y ), ap(f) is uniformly continuous with modulus λε.µf(
ε

3
)(

ε

3
).

Proof. Let ε be arbitrary, and let δ=
d e f

µf(
ε

3
)(

ε

3
). Suppose x1 and x2 are such that Bδ(x1, x2)

holds. Then Bε

3

(map(f(
ε

3
))(x1), map(f(

ε

3
))(x2)) holds. By Lemma 26, Bε

3

(ap(f)(xi),

map(f(
ε

3
))(xi)) hold. Together this means that Bε(ap(f)(x1), ap(f)(x2)) holds as required. �

Theorem 28. The function ap is uniformly continuous with modulus id.

Proof. Let ε be arbitrary. Suppose f1 and f2 are such that Bε(f1, f2) holds. Let x and δ be

arbitrary. Because f1 and f2 are regular functions, Bδ

2
+ε

(f1(
δ

4
), f2(

δ

4
)) holds. Therefore,

Bδ

2
+ε

(map(f1(
δ

4
))(x), map(f2(

δ

4
))(x)) holds. By Lemma 26, Bδ

4

(ap(fi)(x), map(fi(
δ

4
))(x)) holds.

Together this yields Bδ+ε(ap(f1)(x), ap(f2)(x)), and since δ and x were arbitrary, Bε(ap(f1),
ap(f2)) holds as required. �

By using ap, one can define a map2 function that lifts a curried function f : X → Y →Z.

map2(f)=
d e f

ap ◦map(f): C(X)→C(Y )→C(Z).

Other map functions can be made to lift n-ary functions by repeated use of ap.

5. Functions of Real Numbers

Using this completion monad, it is now very easy to define the real numbers.

R=
d e f

C(Q)

Functions operating on the real numbers can be created by using map or bind to lift
uniformly continuous functions operating on the rationals. This is the advantage of using the
monad functions. It is often easier to define a function on the rationals than on the reals
because it is possible to decide for two rational numbers a and b which of a < b, a = b, or a > b

hold. The real numbers do not have this property.

Theorem 29.

• For all a : Q, the functions λb.−b and λb.a + b are both uniformly continuous from Q to
Q with moduli id.

• For all a :Q, λb.max (a, b) is uniformly continuous from Q to [a,∞[ with modulus id.

• For all a :Q, λb.min (a, b) is uniformly continuous from Q to ]−∞, a] with modulus id.

• The function λb. |b| is uniformly continuous from Q to [0,∞[ with modulus id.
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• For all a : Q, λb.a b is uniformly continuous from Q to Q with modulus λε.ε |a|−1 (or
any modulus in the case when a = 0).

All these unary functions can be lifted, by using map, to functions on R. For the moment one of
the arguments to the binary functions + , · , min , and max must be rational. For example, for
any a:Q one can use map to create the unary function λb.a + b :R→R, the function that trans-
lates by a rational number, but one does not yet have the binary function λa b. a + b :
R→R→R.

At this point, one can see why regular functions work better than regular sequences. For
multiplication the modulus of continuity is λε.ε |a|−1. If one used regular sequences, then one
would need to find a point suitably far in the sequence. The result would be an over-approxima-
tion of the computation one needs. For a deep computation, these over-approximations would
add up and can cause a lot of unnecessary work to be done. By using regular functions, one can
request exactly the amount of accuracy required.

5.1. Reciprocal.

Not all functions that one wishes to represent are uniformly continuous. One example of a
non-uniformly continuous function is the reciprocal function, λx.x−1. Bishop and Bridges [1]
define a continuous function as a function that is uniformly continuous on every closed interval
in its domain. The general idea is for each x to find a domain containing x that the function is
uniformly continuous on, and then evaluate this function at x.

Theorem 30. For every a : Q+, λx.x−1 is uniformly continuous on [a, ∞[ and ]∞, −a], and
both functions have a modulus of continuity of λε.ε a2.

One can now define x−1 for any x : R such that x < 0 or 0 < x, where 0 < x=
d e f∃ε.ε < x(ε) and

similarly for x < 0. Suppose 0 < x. Then there exists some a : Q such that 0 < a ≤ x. One can
inject x into the domain [a,∞[, and then invert it.

x−1=
d e f

map(λb: [a,∞[.b−1)(max (a, x)).

Similarly if x < 0, then there exists some a : Q such that x ≤ a < 0. In this case, define the
inverse as

x−1=
d e f

map(λb: ]−∞, a].b−1)(min (a, x)).

It is important to note that the result is independent of the choice of domain that x is injected
into. If 0 < a ≤ x and 0 < a′ ≤ x, then whether x is injection into [a, ∞[ or x is injected into [a′,

∞[, the result of x−1 is equivalent.

Notice that the larger the value of a, the larger the modulus of continuity is. The larger the
modulus of continuity is, the more efficient the lifted function is because less work is done in
approximating the input. Therefore, it is helpful to find as large an a as is reasonable when
computing the reciprocal.

5.2. Binary Functions of Real Numbers.

One can use map2 to lift addition to operate on R.

Theorem 31. The function λa.λb.a + b is uniformly continuous from Q to Q→Q with
modulus id.

The definition of addition for xy :R is

x + y=
d e f

map2(λa.λb.a + b)(x)(y).

The definition of multiplication on R is a little more complicated than for addition.

Theorem 32. For any c : Q+, the function λa.λb.a b is uniformly continuous from Q to [−c,

c]→Q with modulus λε.ε c−1.
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The definition of multiplication for xy :R is

x y=
d e f

map2(λa.λb.a b)(x)(max (−c,min (c, y))) where c=
d e f |y(1)|+ 1.

Because multiplication is not uniformly continuous, some closed interval containing y must be
found. This requirement is reflected in the fact that c is used in the definition of the modulus of
continuity.

This definition of multiplication is asymmetric because only y is bound by a closed interval.
The usual definition of multiplication in exact real arithmetic implementations finds closed inter-
vals containing both x and y. The definition here is the natural definition of multiplication one
gets when one uses monad operations. It saves one from the unnecessary work of finding a
closed interval for x.

5.3. Power Series.
Other elementary functions can be defined in terms of power series. The limit of a conver-

gent sequence can be found if the modulus of convergence is known. It is particularly easy to
compute the limit of an alternating decreasing series.

Theorem 33. Suppose lim
n→∞

an = 0, an is alternating, and ∀i, |ai+1| < |ai|. Then
∑

i=0
∞

ai = x

where x(ε)=
d e f ∑

ε<ai
ai.

The power series of several elementary functions are alternating and decreasing on small
rational inputs because the terms are bounded by a geometric series.

• For −1 < a≤ 0, expQ(a)=
d e f ∑

i=0
∞ ai

i!
.

• For −1 < a < 1, sinQ(a)=
d e f ∑

i=0
∞ (−1)i a2i+1

(2i +1)!
.

• For 1≤ a < 2, lnQ(a)=
d e f ∑

i=0
∞ (−1)i (a − 1)i+1

i + 1
.

• For −1 < a < 1, arctanQ(a)=
d e f ∑

i=0
∞ (−1)ia2i+1

2i +1
.

These four functions can be extended to all rationals in their domains by repeated applications
of the following formulas to reduce input into the above domains.

exp(a) ≍ exp2(
a

2
)

exp(a) ≍ exp−1(−a)

sin(a) ≍ 3 sin(
a

3
)− 4 sin3(

a

3
)

ln(a) ≍ ln(
a

2
)+ ln(2)

ln(a) ≍ ln(
3

4
a)+ ln(

4

3
)

ln(a) ≍ −ln(a−1)

arctan(a) ≍ arctan(−a)

arctan(a) ≍ π

2
− arctan(a−1) (for 0 < a)

arctan(a) ≍ π

4
+ arctan(

a− 1

a+ 1
) (for 0< a)

The number π can be defined in terms of arctan in several ways. Below is a definition [7] that
uses particularly small inputs to arctan.

π =
d e f

(48 arctan(
1

38
) + 80 arctan(

1

57
))+ (28 arctan(

1

239
)+ 96 arctan(

1

268
))

Also cos can be easily defined in terms of sin.

cos(a)=
d e f

1− 2 sin2(
a

2
)

Theorem 34. The functions sin, cos, and arctan are uniformly continuous on Q with moduli
id.
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Theorem 35. For every a :Z, exp is uniformly continuous on ]−∞, a] with modulus λε.ε 2−a if
a≤ 0 and modulus λε.ε 3−a if 0≤ a.

Theorem 36. For every a :Q+, ln is uniformly continuous on [a,∞[ with modulus λε.ε a.

These functions can all be lifted, using bind, to functions on R or whatever the completions
of their domains are. The non-uniformly continuous functions exp and ln are defined the same
way the reciprocal was defined; for each input x some suitable domain is found, and x is injected
into that domain. Then the lifted function is evaluated.

Other elementary functions can be defined in terms of the four elementary functions given
above.

tan(x) =
d e f sin(x)

cos(x)

sinh(x) =
d e f exp(x)− exp(−x)

2

cosh(x) =
d e f exp(x)+ exp(−x)

2

tanh(x) =
d e f sinh(x)

cosh(x)

xy =
d e f

exp(y ln(x))

arcsin(x) =
d e f

arctan(
x

1− x2
√ )

arccos(x) =
d e f π

2
− arcsin(x)

arcsinh(x) =
d e f

ln(x + 1 +x2
√

)

arccosh(x) =
d e f

ln(x + x2− 1
√

)

arctanh(x) =
d e f 1

2
ln(

1+ x

1− x
)

6. Improving Efficiency

6.1. Compression.
Calculations on rational numbers become more expensive as the size of the numerator and

denominator become larger. One can keep rational numbers in reduced form by dividing
through by the gcd of the numerator and denominator after each operation; however, for real
numbers one can do better. Let us say that

n1

d1

is simpler than
n2

d2

if |n1| + |d1| < |n2| + |d2|. In

any closed rational interval, there is a unique rational number that is simplest [16]. This idea
can be used to compress real numbers; that is to try to make the rational outputs of
regular functions simple while keeping the real number it represents the same.

approx(a, ε)=
d e f

c where c is the simplest rational number in [a− ε, a + ε].

compress(x)=
d e f

λε. approx(x(
ε

2
),

ε

2
).

Theorem 37. For any x :R, compress(x)≍ x.

Proof. Let ε be arbitrary. Bε

2

(compress(x)(ε), x(
ε

2
)) holds by the definition of approx. Because

x is a regular function, B3ε

2

(x(
ε

2
), x(ε)) holds. Therefore, Bε(compress(x)(ε), x(ε)) holds as

required. �

Generous use of compress can greatly increase the efficiency of the computation. In my
implementation every function operating on R passes its input through compress first.

Notice that if one uses the alternative defintion of regular function given in section 3.4, then
this definition of compress does not work. I do not see a way of defining a version of compress
for the alternative definition of regular function, and without compress, the rational numbers
used in computation become too large for practical evaluation.

6.2. Newton Approximation.
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Although one can define x
√

as exp(
1

2
ln(x)), the square root function is common enough to

warrant its own, more efficient, definition. If a :Q is such that 1≤ a < 4, one can compute a
√

by

taking the limit of Newton approximations. Let the first approximation be b0=
d e f a +1

2
, and let suc-

cessive approximations bi+1=
d e f

approxQ(
a + bi

2

2 bi
, 2−2i+1−1). The first approximation has an error of

at most
1

2
. Each successive approximation squares the error.

Theorem 38. For any a : Q, such that 1 ≤ a < 4, let x(ε)=
d e f

bn, where n is the first natural
number such that 2−2n ≤ ε. Then x is a regular function.

Proof. It suffices to show that for all n, a
√ − 2−2n ≤ bn ≤ a

√
+2−2n

and 1≤ bn.

Suppose n = 0. For the bound below note that 0 ≤ (a − 1)2

4
= b0

2 − a, so a
√ − 2−1 ≤ a

√ ≤ b0.

For the bound above note that (b0− 2−1)2 =
a2

4
≤ a, so b0≤ a

√
+ 2−1. Finally note that 1≤ a, so

1≤ b0.

Suppose n = m + 1. Let δ=
d e f

2−2m

and c=
d e f a + bm

2

2 bm
. Assume by induction that a

√ − δ ≤ bm ≤
a

√
+ δ and 1 ≤ bm. This means that |bm − a

√ | ≤ δ. Therefore, bm
2 − 2 bm a

√
+ a ≤ δ2. This

implies that c − a
√ ≤ δ2

2 bm
≤ δ2

2
because 1 ≤ bm. Also notice that 0 ≤ (bm + a

√
)2

2 bm
= c − a

√
.

Together one sees that a
√ ≤ c ≤ a

√
+

δ2

2
. Because bm+1 is within

δ2

2
of c, one concludes that

a
√ − δ2 ≤ bm+1 ≤ a

√
+ δ2. All that remains is to prove that 1 ≤ bm+1. 1≤ c because 1 ≤ a. The

only rational simpler than 1 is 0. Therefore, the only way bm+1 could be less than 1 is if it were

0. That would require that 1 ≤ c ≤ δ2

2
; however

δ2

2
is less than 1. This makes it is impossible for

c to be 0. �

For 0 < a that falls outside the interval [1, 4[, one can find some m : Z such that 1 ≤ 4m a < 4.
Therefore, one can define the square root function on the rationals as

0
√

=
d e f

0

for 1≤ a < 4, a
√

=
d e f

x (where x is defined as in Theorem 38)

otherwise, a
√

=
d e f 4m a

√

2m
(for some m :Z such that 1≤ 4m a < 4).

Theorem 39. The function λa. a
√

is uniformly continuous from Q0+ to R, with modulus
λε.ε2.

By using bind, the square root function can be lifted to the domain C(Q0+).

6.3. More Efficient Power Series.
A power series converges faster for values closer to 0. For sin and exp, the two equations

mentioned before

exp(a) ≍ exp2(
a

2
)

sin(a) ≍ 3 sin(
a

3
)− 4 sin3(

a

3
)

can be repeatedly applied to shrink the input arbitrarily close to 0. There is, of course, a trade-
off between evaluating a polynomial each time this equation is used and having the power series
converge faster. The optimal trade-off depends on the input and the implementation of the
library. For simplicity, in my implementation I shrink the input until it is less than 2−50, which
is a value that seems to work well in my implementation for some example problems [13].

Unfortunately such nice reductions do not seem to exist for ln or arctan.

6.4. More Efficient Periodic Functions.
The functions sin and cos are both periodic with period 2π. With a reasonably fast imple-

mentation of π, it is possible to subtract out a multiple of 2π to reduce the size of the argument
to sin or cos.

∀n:Z, sin(x) ≍ sin(x−n 2π)

∀n:Z, cos(x) ≍ cos(x−n 2π)
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The best value of n would be
⌊ x

2π

⌉

. The function mapping x to a nearest integer ⌊x⌉ is not

computable for real numbers, but it is computable for the rationals—it does not matter which

integer
1

2
maps to. The approximation

x

2π
(
1

2
) is within

1

2
of

x

2π
, so

⌊

x

2π
(
1

2
)
⌉

is an integer within 1

of
⌊ x

2π

⌉

, which is good enough to use for n.

In practice one can be even more clever with the symmetries of sin and cos to reduce the
range a little bit further.

6.5. Summing Lists.

It is not uncommon to want to sum a list of real numbers. The use of ap in the definition of
addition means that to compute x + y within ε, one must compute both x and y within

ε

2
. If

one associates the sum of a list of numbers all to one side a0 + (a1 + (a2 + � + an)), the first

term a0 is only approximated within
ε

2
, while the last term an is approximated within

ε

2n .

If one is summing a list with exactly a power of 2 number of terms, as in the definition of π,
then one can associate the sum into a balanced binary tree. In this case all terms will be
approximated to the same degree; however, to handle more general cases it is useful to directly
define the sum of n real numbers.

∑

i=0

n

xi=
d e f

λε.
∑

i=0

n

xi(
ε

n
)

Theorem 40. The term
∑

i=0
n

xi is a regular function.

7. Implementation

The one goal of this work is to produce an actual implementation of the real numbers that is
reasonably efficient and, more importantly, reliable. I have written a prototype Haskell module
that implements the functions described in this paper. This code, entitled Few Digits [14], com-
peted in the “Many Digits” Friendly Competition [13] occurring on October 3-4, 2005. The
library consists of less than 440 lines of Haskell code and is included in Appendix A. Although
the code did not do particularly well in the contest, finishing eighth out of nine, it still can com-
pute thousands of decimal digits within minutes or seconds for many of the problems.

A lot of time is spent computing approx(a, ε). One suggestion I have received is to instead
quickly find some good approximation instead of spending so much time finding the perfect
approximation. Another place much time is spent is evaluating the polynomial approximation of
the elementary functions. It only takes a polynomial of a few degrees to cause the exact evalua-
tion on large (in terms of simplicity) rational numbers to become very slow. Such precise com-
putation over the rationals is unnecessary because the resulting rational number will just be feed
to compress and a simpler rational number found. One possible solution may be to define the
reals to be the completion of some dense set other than Q (such as the dyadic rationals
D=

d e f{ a

2n |an : Z}). However, such a set is not closed under division, so evaluating Taylor series

becomes more difficult.

The code is more or less faithful to the theory described in this paper. In the Haskell code
Complete is the type constructor of the monad, unit is called const, join is called
completeComplete, map is called evalUniformCts, and bind is called evalUniformCts2.
Unfortunately, because only uniformly continuous functions can be mapped, this monad does
not fit into Haskell’s Monad class.

The most significant difference between the description here and the implementation is that
the power series for exp is computed for small positive inputs. Even though the series is not
alternating, the series is still nice enough to get a good handle on its modulus of convergence.
Another minor difference is that map2, called evalBinaryUniformCts, is implemented directly
rather than implemented via ap.

There are a couple of other Haskell specific issues to note. In order to make the reals an
instance of the Floating class, it is necessary to make a new data type. This new data type is
called CReal, which means constructive reals (or computable reals or Cauchy reals). Since a new
data type must be created anyway, I also added a memoized integer approximation to the data
structure.
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7.1. Comparisons With Other Implementations.
Boehm et al. [2] were the first to implement an exact real arithmetic library. They imple-

mented both a functional representation and a representation as lazy lists. The real number rep-
resentation in this paper is a functional representation. Lester has very short Haskell module (a
little over 200 lines) called Era (exact real arithmetic) that has a real number data type very
similar to Boehm et al.’s implementation. Computer proofs of some of the algorithms have been
verified by PVS [9][8]. Because of the similarity between the two programs, a quick comparison
is in order (unfortunately Era did not compete in the “Many Digits” Friendly Competition).
Here is one test that illustrates the difference between the two implementations. Consider com-
puting an approximation of cos(

F4

F5

) and cos(
F2 3 9 4

F2 3 9 5
) within 10−1000 where Fn is the nth Fibonacci

number (
F4

F5

=
3

5
). The two ratios are both close to the golden ratio, so they are close to each

other. Table 1 shows the time each system takes to do the real number portion of the computa-
tion (the Fibonacci ratios were precomputed).

cos(
F4

F5

) cos(
F2 3 9 4

F2 3 9 5
)

Few Digits 0.93 s 37.53 s
Era 2.73 s 2.71 s

Table 1. Timings for the computation of two Haskell real number implementations.

Because Era uses dyadic rationals in its representation, the two ratios are equally bad for it.
Era takes about the same amount of time for both problems. The power series implementation
in Few Digits does polynomial computation with rational numbers before compressing. The
more terms and the larger the rational numbers, the longer the computation takes.

Another comparable implementation is Muñoz and Lester’s [12] PVS implementation. It uses
interval arithmetic to perform real number computation. Dealing with non-monotonic functions
is difficult with interval arithmetic. Because of this, their implementation cannot approximate
some expressions, such as sin(

π

2
), to arbitrary accuracy. The approach in this paper has no

problems dealing with non-monotonic functions.

8. Future Work

In order to produce a highly reliable implementation of the real numbers, the next step is to
write the proofs in a computer proof assistant such as Coq [10] and verify the correctness of the
algorithms. Coq is a proof assistant based on the calculus of inductive constructions. It can be
seen as a dependently typed functional programming language with inductive and coinductive
data types. I believe that the theorems presented in this paper are sufficiently straight-forward
to be easily proved in a computer proof assistant.

9. Conclusion

The completion monad offers a simple, clear, and convenient way of constructively creating the
completion of any metric space, and defining continuous functions on prelength spaces. I have
created one possible implementation of the real numbers using this style, and demonstrate that
this approach can perform practical computations. This approach avoids some difficulties that
other computer verified implementations have. This completion monad is flexible enough to
allow for alternative implementations of real numbers, such as the completion of the dyadic
rationals, and alternative implementations of elementary functions. This same monad could be
used to create other complete spaces, such as the complex numbers, the unit sphere, the projec-
tive plane, etc.
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Appendix A. Haskell Source Code for Few Digits
module Complete where

type Gauge = Rational -- Intended to be strictly positive

-- Intended that d (f x) (f y) <= x + y

type Complete a = Gauge -> a

completeComplete :: (Complete (Complete a)) -> Complete a

completeComplete f eps = (f (eps/2)) (eps/2)

-- A uniformly continuous function on some subset of a to b

-- Hopefully the name of the function gives an indication of

-- the domain.

data UniformCts a b = UniformCts

{modulus :: (Gauge -> Gauge),

forgetUniformCts :: (a -> b)}

evalUniformCts :: UniformCts a b -> Complete a -> Complete b

evalUniformCts (UniformCts mu f) x eps = f (x (mu eps))

evalUniformCts2 :: UniformCts a (Complete b) -> Complete a -> Complete b

evalUniformCts2 f x = completeComplete $ evalUniformCts f x

completeUniformCtsRange :: Complete (UniformCts a b) ->

UniformCts a (Complete b)

completeUniformCtsRange f = UniformCts mu g

where

mu eps = modulus (f (eps/2)) (eps/2)

g x eps = forgetUniformCts (f eps) x

evalBinaryUniformCts :: UniformCts a (UniformCts b c) ->

Complete a -> Complete b -> Complete c

{- This was the original implementation.

evalBinaryUniformCts f x =

evalUniformCts2 $ completeUniformCtsRange $ evalUniformCts f x

-}

{- This implementation seems better -}

evalBinaryUniformCts f x y eps = (evalUniformCts approxf y) (eps/2)

where

approxf = (evalUniformCts f x) (eps/2)

module Base where

import Ratio

type Base = Rational

approxBase :: Base -> Rational -> Base

approxBase = approxRational

powers x = zipWith (%) (genpowers n) (genpowers d)

where

n = numerator x

d = denominator x

genpowers x = 1:(map (x*) (genpowers x))

module CReal where

import Base

import Complete

import Control.Exception

radius :: Base

radius = 2^^(-51)

data CReal = CReal {approx :: Complete Base,

intApprox :: Integer}

bound x = fromInteger (1+(abs (intApprox x)))

makeCReal :: Complete Base -> CReal

makeCReal x = CReal x’ n

where

n = round (x (1/2))

x’ eps | eps >= 1 = fromInteger n

| otherwise = x eps

{- produces a regular function whose resulting approximations are

small in memory size -}

compress :: Complete Base -> Complete Base

compress x eps = approxBase (x (eps/2)) (eps/2)

squish :: CReal -> Complete Base

squish = compress . approx

instance Show CReal where

show x = error "Cannot show a CReal"

Russell O’Connor 17


sources.tar




Base.hs


module Base where

import Ratio

type Base = Rational

approxBase :: Base -> Rational -> Base
approxBase = approxRational

powers x = zipWith (%) (genpowers n) (genpowers d)
  where
   n = numerator x
   d = denominator x
   genpowers x = 1:(map (x*) (genpowers x))











Complete.hs


module Complete where

type Gauge = Rational -- Intended to be strictly positive

-- Intended that d (f x) (f y) <= x + y
type Complete a = Gauge -> a

completeComplete :: (Complete (Complete a)) -> Complete a
completeComplete f eps = (f (eps/2)) (eps/2)

-- A uniformly continuous function on some subset of a to b
-- Hopefully the name of the function gives an indication of
-- the domain.
data UniformCts a b = UniformCts 
        {modulus :: (Gauge -> Gauge),
         forgetUniformCts :: (a -> b)}

evalUniformCts :: UniformCts a b -> Complete a -> Complete b
evalUniformCts (UniformCts mu f) x eps = f (x (mu eps))

evalUniformCts2 :: UniformCts a (Complete b) -> Complete a -> Complete b
evalUniformCts2 f x = completeComplete $ evalUniformCts f x

completeUniformCtsRange :: Complete (UniformCts a b) -> 
                           UniformCts a (Complete b)
completeUniformCtsRange f = UniformCts mu g
 where
  mu eps = modulus (f (eps/2)) (eps/2)
  g x eps = forgetUniformCts (f eps) x

evalBinaryUniformCts :: UniformCts a (UniformCts b c) -> 
                        Complete a -> Complete b -> Complete c
{- This was the original implementation.
evalBinaryUniformCts f x =
  evalUniformCts2 $ completeUniformCtsRange $ evalUniformCts f x
-}

{- This implementation seems better -}
evalBinaryUniformCts f x y eps = (evalUniformCts approxf y) (eps/2)
 where
  approxf = (evalUniformCts f x) (eps/2)










CReal.hs


module CReal where

import Base
import Complete
import Control.Exception

radius :: Base
radius = 2^^(-51)

data CReal = CReal {approx :: Complete Base, 
                    intApprox :: Integer}

bound x = fromInteger (1+(abs (intApprox x)))

makeCReal :: Complete Base -> CReal
makeCReal x = CReal x' n
 where
  n = round (x (1/2))
  x' eps | eps >= 1 = fromInteger n
         | otherwise = x eps

{- produces a regular function whose resulting approximations are 
   small in memory size -}
compress :: Complete Base -> Complete Base
compress x eps = approxBase (x (eps/2)) (eps/2)

squish :: CReal -> Complete Base
squish = compress . approx

instance Show CReal where
 show x = error "Cannot show a CReal"
 {- show x = show $ map (\n -> squish x ((1/2)^n)) [0..] -}

realBase :: Base -> CReal
realBase x = makeCReal (const x)

approxRange :: CReal -> Gauge -> (Base, Base)
approxRange x eps = (r-eps, r+eps)
 where 
  r = approx x eps

{- proveNonZeroFrom will not terminate if the input is 0 -}
{- Finds some y st 0 < (abs y) <= (abs x) -}
proveNonZeroFrom :: Gauge -> CReal -> Base
proveNonZeroFrom g r | high < 0 = high
                     | 0 < low = low
                     | otherwise = proveNonZeroFrom (g/2) r
 where
  (low, high) = approxRange r g

proveNonZero = proveNonZeroFrom 1

makeCRealFun :: (UniformCts Base Base) -> CReal -> CReal
makeCRealFun f x = makeCReal $ evalUniformCts f (squish x)

makeCRealFun2 :: (UniformCts Base (Complete Base)) -> CReal -> CReal
makeCRealFun2 f x = makeCReal $ evalUniformCts2 f (squish x)

makeCRealBinFun :: (UniformCts Base (UniformCts Base Base)) -> 
                   CReal -> CReal -> CReal
makeCRealBinFun f x y = 
  makeCReal $ evalBinaryUniformCts f (squish x) (squish y) 

negateCts = UniformCts id negate

realNegate :: CReal -> CReal
realNegate = makeCRealFun negateCts

plusBaseCts a = UniformCts id (a+)
realTranslate a = makeCRealFun (plusBaseCts a)

plusCts :: UniformCts Base (UniformCts Base Base)
plusCts = UniformCts id plusBaseCts

realPlus :: CReal -> CReal -> CReal
realPlus = makeCRealBinFun plusCts 

instance Eq CReal where
 a==b = 0==proveNonZero (realPlus a (realNegate b))

multBaseCts 0 = UniformCts (const 1) (const 0)
multBaseCts a = UniformCts mu (a*)
 where
  mu eps = eps/(abs a)

realScale :: Base -> CReal -> CReal
realScale 0 = \_ -> realBase 0
realScale a = makeCRealFun (multBaseCts a)

{- \x -> (\y -> (x*y)) is uniformly continuous on the domain (abs y) <= maxy -}
multUniformCts :: Base ->
                  UniformCts Base (UniformCts Base Base)
multUniformCts maxy = UniformCts mu multBaseCts
 where
  mu eps = assert (maxy>0) (eps/maxy)

{- We need to bound the value of x or y.  I think it is better to bound
   x so I actually compute y*x -}
realMult :: CReal -> CReal -> CReal
realMult x y = makeCRealBinFun (multUniformCts (bound x)) y x

absCts = UniformCts id abs

realAbs :: CReal -> CReal
realAbs = makeCRealFun absCts

instance Num CReal where
 (+) = realPlus
 (*) = realMult
 negate = realNegate
 abs = realAbs
 signum x = realScale (signum (proveNonZero x)) (realBase 1)
 fromInteger = realBase . fromInteger

{- domain is (-inf, nonZero] if nonZero < 0
   domain is [nonZero, inf) if nonZero > 0 -}
recipUniformCts :: Base -> UniformCts Base Base
recipUniformCts nonZero = UniformCts mu f
 where
  f a | 0 <= nonZero = recip (max nonZero a)
      | otherwise = recip (min a nonZero)
  mu eps = eps*(nonZero^2)

realRecipWitness :: CReal -> Base -> CReal
realRecipWitness x nonZero = makeCRealFun (recipUniformCts nonZero) x

realRecip :: CReal -> CReal
realRecip x = realRecipWitness x (proveNonZero x)

instance Fractional CReal where
 recip = realRecip
 fromRational = realBase . fromRational

intPowerCts _ 0 = UniformCts (const 1) (const 1)
intPowerCts maxx n = UniformCts mu (^n)
 where
  mu eps = assert (maxx > 0) $ eps/((fromIntegral n)*(maxx^(n-1)))

realPowerInt x n = makeCRealFun (intPowerCts (bound x) n) x

type Polynomial a = [a]

evalPolynomial :: (Num a) => Polynomial a -> a -> a
evalPolynomial [] x = 0
evalPolynomial (a:as) x = a + x*(evalPolynomial as x)

diffPolynomial :: (Num a) => Polynomial a -> Polynomial a 
diffPolynomial p = zipWith (*) (tail p) (map fromInteger [1..])

polynomialUniformCts :: Base -> 
                        Polynomial Base -> UniformCts Base Base
polynomialUniformCts _ [] = UniformCts (const 1) (const 0)
polynomialUniformCts maxx p |maxSlope==0 = UniformCts (const 1) (const (head p))
                            |otherwise = UniformCts mu (evalPolynomial p)
 where
  maxSlope = evalPolynomial (map abs (diffPolynomial p)) (max 1 maxx)
  mu eps = assert (maxSlope > 0) $ eps/maxSlope

realBasePolynomial :: Polynomial Base -> CReal -> CReal
realBasePolynomial p x = 
 makeCRealFun (polynomialUniformCts (bound x) p) x

factorials = fact 1 1
 where
  fact i j = i:(fact (i*j) (j+1))

interleave [] _ = []
interleave (x:xs) l = x:(interleave l xs)

taylorApprox m p x eps =
  sum (zipWith (*) p (takeWhile highError preTerms))
 where
  preTerms = zipWith (/) (powers x) factorials
  highError t = m*(abs t) >= eps
  
{- only valid for x <= ln(2).  Works best for |x| <= 1/2 -}
rationalSmallExp :: Base -> CReal
rationalSmallExp x = assert ((abs x)<=(1/2)) $
  makeCReal $ expTaylorApprox
 where
  m | x <= 0 = 1
    | otherwise = 2
  expTaylorApprox eps =
    sum terms
   where
    terms = takeWhile highError $ zipWith (/) (powers x) factorials
    highError t = m*(abs t) >= eps

rationalExp :: Base -> Base -> CReal
rationalExp tol x | (abs x) <= tol = rationalSmallExp x
                  | otherwise = realPowerInt (rationalExp tol (x/2)) 2

expUniformCts :: Integer -> UniformCts Base (Complete Base)
expUniformCts upperBound = UniformCts mu (approx . rationalExp radius)
 where
  mu eps | upperBound <= 0 = eps*(2^(-upperBound))
         | otherwise = eps/(3^upperBound)

realExp :: CReal -> CReal
realExp x = makeCRealFun2 (expUniformCts (1+intApprox x)) x

{-Requires that abs(a!!i+1) < abs(a!!i) and the sign of the terms alternate -}
alternatingSeries :: [Base] -> Complete Base
alternatingSeries a eps = sum partSeries
 where
  partSeries = (takeWhile (\x -> (abs x) > eps) a)

rationalSin :: Base -> Base -> CReal
rationalSin tol x | tol <= (abs x) = 
                     realBasePolynomial [0, 3, 0, (-4)] (rationalSin tol (x/3))
                  | otherwise = CReal (alternatingSeries series) 0
 where
  series = fst $ unzip $ iterate (\(t,n) -> (-t*(x^2)/(n^2+n),n+2)) (x, 2)

sinCts :: UniformCts Base (Complete Base)
sinCts = UniformCts id (approx . rationalSin radius)

realSlowSin :: CReal -> CReal
realSlowSin = makeCRealFun2 sinCts

realSin :: CReal -> CReal
realSin x | 0==m = realSlowSin x'
          | 1==m = realSlowCos x'
          | 2==m = negate $ realSlowSin x'
          | 3==m = negate $ realSlowCos x'
 where
  n = intApprox (x / realPi2)
  m = n `mod` 4
  x' = x - (realScale (fromInteger n) realPi2)

rationalCos :: Base -> Base -> CReal
rationalCos tol x = realBasePolynomial [1, 0, (-2)] (rationalSin tol (x/2))

cosCts :: UniformCts Base (Complete Base)
cosCts = UniformCts id (approx . rationalCos radius)

realSlowCos :: CReal -> CReal
realSlowCos = makeCRealFun2 cosCts

realCos :: CReal -> CReal
realCos x | 3==m = realSlowSin x'
          | 0==m = realSlowCos x'
          | 1==m = negate $ realSlowSin x'
          | 2==m = negate $ realSlowCos x'
 where
  n = intApprox (x / realPi2)
  m = n `mod` 4
  x' = x - (realScale (fromInteger n) realPi2)

{- computes ln(x).  only valid for 1<=x<2 -}
rationalSmallLn :: Base -> CReal
rationalSmallLn x = assert (1<=x && x<=(3/2)) $
  makeCReal $
  alternatingSeries (zipWith (*) (poly 1) (tail (powers (x-1))))
 where
  poly n = (1/n):(-1/(n+1)):(poly (n+2))

{- requires that 0<=x -}
rationalLn :: Base -> CReal
rationalLn x | x<1 = negate (posLn (recip x))
             | otherwise = posLn x
 where
  ln43 = rationalSmallLn (4/3)
  ln2 = wideLn 2
  {- good for 1<=x<=2 -}
  wideLn x | x < (3/2) = rationalSmallLn x
           | otherwise = (rationalSmallLn ((3/4)*x)) + ln43
  {- requires that 1<=x -}
  posLn x | n==0 = wideLn x
          | otherwise = (wideLn x') + (realScale n ln2)
   where
    (x',n) = until (\(x,n) -> (x<=2)) (\(x,n) -> (x/2,n+1)) (x,0)

{- domain is [nonZero, inf) -}
lnUniformCts :: Base -> UniformCts Base (Complete Base)
lnUniformCts nonZero = UniformCts mu f
 where
  f x = approx $ rationalLn (max x nonZero)
  mu eps = assert (nonZero > 0) $ eps*nonZero

realLnWitness :: CReal -> Base -> CReal
realLnWitness x nonZero = makeCRealFun2 (lnUniformCts nonZero) x

realLn :: CReal -> CReal
realLn x = realLnWitness x (proveNonZero x)

{- only valid for (abs x) < 1 -}
rationalSmallArcTan :: Base -> CReal
rationalSmallArcTan x = assert ((abs x)<(1/2)) $ makeCReal $
  alternatingSeries (zipWith (\x y->x*(y^2)) (series 0) (powers x))
 where
  series n = (x/(n+1)):(-x/(n+3)):(series (n+4))

rationalArcTan :: Base -> CReal
rationalArcTan x | x <= (-1/2) = negate $ posArcTan $ negate x
                 | otherwise = posArcTan x
 where
  {-requires (-1/2) < x-}
  posArcTan x | 2 < x = realPi2 - rationalSmallArcTan (recip x)
              | (1/2) <= x = realPi4 + rationalSmallArcTan y
              | otherwise = rationalSmallArcTan x
   where
    y = (x-1)/(x+1)

arcTanCts :: UniformCts Base (Complete Base)
arcTanCts = UniformCts id (approx . rationalArcTan)

realArcTan :: CReal -> CReal
realArcTan = makeCRealFun2 arcTanCts

{- Computes x * Pi -}
{- http://aemes.mae.ufl.edu/~uhk/PI.html -}
scalePi :: Base -> CReal
scalePi x = 
 ((realScale (x*48) (rationalSmallArcTan (1/38))) + 
  (realScale (x*80) (rationalSmallArcTan (1/57)))) +
 ((realScale (x*28) (rationalSmallArcTan (1/239))) +
  (realScale (x*96) (rationalSmallArcTan (1/268))))

real2Pi = scalePi 2
realPi = scalePi 1
realPi2 = scalePi (1/2)
realPi4 = scalePi (1/4)

nestedBalls :: [(Base, Base)] -> Complete Base
nestedBalls ((lb,ub):bs) eps | (ub - lb) < 2*eps = (ub+lb)/2
                             | otherwise = nestedBalls bs eps

{- My algorithm -}
{-
rationalSqrt :: Base -> CReal
rationalSqrt x = makeCReal (nestedBalls (iterate betterBounds (0,(1+x)/2)))
 where
  betterBounds (lb, ub) = assert (lb <= lb' && lb' <= ub' && ub' <= ub) $
    (lb', ub')
   where
    intercept a b = (x + a*b)/(a+b)
    lb' = intercept lb ub
    ub1 = intercept lb lb
    ub2 = intercept ub ub
    ub' = if (lb > 0) then (min ub1 ub2) else ub2
-}
{- Freek's algorithm -}
rationalSqrt :: Base -> CReal
rationalSqrt n | n < 1 = realScale (1/2) (rationalSqrt (4*n))
               | 4 <= n = realScale 2 (rationalSqrt (n/4))
               | otherwise = makeCReal (\eps -> f eps)
 where
  f eps = fst $ until (\(x,err) -> err <= eps) newton ((1+n)/2, 1/2)
  newton (x,err) = (approxBase x' e1, e1*2)
   where
    x' = (n+x^2)/(2*x)
    e1 = err^2/2

sqrtCts :: UniformCts Base (Complete Base)
sqrtCts = UniformCts (^2) (approx . rationalSqrt)

realSqrt :: CReal -> CReal
realSqrt = makeCRealFun2 sqrtCts

instance Floating CReal where
 exp = realExp
 log = realLn
 pi = realPi
 sin = realSin
 cos = realCos
 atan = realArcTan
 sqrt = realSqrt
 sinh x = realScale (1/2) (exp x - (exp (-x)))
 cosh x = realScale (1/2) (exp x + (exp (-x)))
 asin x = atan (x/sqrt(realTranslate 1 (negate (realPowerInt x 2))))
 acos x = realPi2 - asin x
 acosh x = log (x+sqrt(realTranslate (-1) (realPowerInt x 2)))
 asinh x = log (x+sqrt(realTranslate 1 (realPowerInt x 2)))
 atanh x = realScale (1/2) 
   (log ((realTranslate 1 x) / (realTranslate 1 (negate x))))

{- testing stuff is below -}
test0 = makeCReal id

answer n x = shows (intApprox (realScale (10^n) x))
  "x10^-"++(show n)

sumRealList :: [CReal] -> CReal
sumRealList [] = realBase 0
sumRealList l = makeCReal (\eps -> sum (map (\x -> approx x (eps/n)) l))
 where
  n = fromIntegral $ length l
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{- show x = show $ map (\n -> squish x ((1/2)^n)) [0..] -}

realBase :: Base -> CReal

realBase x = makeCReal (const x)

approxRange :: CReal -> Gauge -> (Base, Base)

approxRange x eps = (r-eps, r+eps)

where

r = approx x eps

{- proveNonZeroFrom will not terminate if the input is 0 -}

{- Finds some y st 0 < (abs y) <= (abs x) -}

proveNonZeroFrom :: Gauge -> CReal -> Base

proveNonZeroFrom g r | high < 0 = high

| 0 < low = low

| otherwise = proveNonZeroFrom (g/2) r

where

(low, high) = approxRange r g

proveNonZero = proveNonZeroFrom 1

makeCRealFun :: (UniformCts Base Base) -> CReal -> CReal

makeCRealFun f x = makeCReal $ evalUniformCts f (squish x)

makeCRealFun2 :: (UniformCts Base (Complete Base)) -> CReal -> CReal

makeCRealFun2 f x = makeCReal $ evalUniformCts2 f (squish x)

makeCRealBinFun :: (UniformCts Base (UniformCts Base Base)) ->

CReal -> CReal -> CReal

makeCRealBinFun f x y =

makeCReal $ evalBinaryUniformCts f (squish x) (squish y)

negateCts = UniformCts id negate

realNegate :: CReal -> CReal

realNegate = makeCRealFun negateCts

plusBaseCts a = UniformCts id (a+)

realTranslate a = makeCRealFun (plusBaseCts a)

plusCts :: UniformCts Base (UniformCts Base Base)

plusCts = UniformCts id plusBaseCts

realPlus :: CReal -> CReal -> CReal

realPlus = makeCRealBinFun plusCts

instance Eq CReal where

a==b = 0==proveNonZero (realPlus a (realNegate b))

multBaseCts 0 = UniformCts (const 1) (const 0)

multBaseCts a = UniformCts mu (a*)

where

mu eps = eps/(abs a)

realScale :: Base -> CReal -> CReal

realScale 0 = \_ -> realBase 0

realScale a = makeCRealFun (multBaseCts a)

{- \x -> (\y -> (x*y)) is uniformly continuous on the domain (abs y) <= maxy -}

multUniformCts :: Base ->

UniformCts Base (UniformCts Base Base)

multUniformCts maxy = UniformCts mu multBaseCts

where

mu eps = assert (maxy>0) (eps/maxy)

{- We need to bound the value of x or y. I think it is better to bound

x so I actually compute y*x -}

realMult :: CReal -> CReal -> CReal

realMult x y = makeCRealBinFun (multUniformCts (bound x)) y x

absCts = UniformCts id abs

realAbs :: CReal -> CReal

realAbs = makeCRealFun absCts

instance Num CReal where

(+) = realPlus

(*) = realMult

negate = realNegate

abs = realAbs

signum x = realScale (signum (proveNonZero x)) (realBase 1)

fromInteger = realBase . fromInteger

{- domain is (-inf, nonZero] if nonZero < 0

domain is [nonZero, inf) if nonZero > 0 -}

recipUniformCts :: Base -> UniformCts Base Base

recipUniformCts nonZero = UniformCts mu f

where

f a | 0 <= nonZero = recip (max nonZero a)

| otherwise = recip (min a nonZero)

mu eps = eps*(nonZero^2)

realRecipWitness :: CReal -> Base -> CReal
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realRecipWitness x nonZero = makeCRealFun (recipUniformCts nonZero) x

realRecip :: CReal -> CReal

realRecip x = realRecipWitness x (proveNonZero x)

instance Fractional CReal where

recip = realRecip

fromRational = realBase . fromRational

intPowerCts _ 0 = UniformCts (const 1) (const 1)

intPowerCts maxx n = UniformCts mu (^n)

where

mu eps = assert (maxx > 0) $ eps/((fromIntegral n)*(maxx^(n-1)))

realPowerInt x n = makeCRealFun (intPowerCts (bound x) n) x

type Polynomial a = [a]

evalPolynomial :: (Num a) => Polynomial a -> a -> a

evalPolynomial [] x = 0

evalPolynomial (a:as) x = a + x*(evalPolynomial as x)

diffPolynomial :: (Num a) => Polynomial a -> Polynomial a

diffPolynomial p = zipWith (*) (tail p) (map fromInteger [1..])

polynomialUniformCts :: Base ->

Polynomial Base -> UniformCts Base Base

polynomialUniformCts _ [] = UniformCts (const 1) (const 0)

polynomialUniformCts maxx p |maxSlope==0 = UniformCts (const 1) (const (head p))

|otherwise = UniformCts mu (evalPolynomial p)

where

maxSlope = evalPolynomial (map abs (diffPolynomial p)) (max 1 maxx)

mu eps = assert (maxSlope > 0) $ eps/maxSlope

realBasePolynomial :: Polynomial Base -> CReal -> CReal

realBasePolynomial p x =

makeCRealFun (polynomialUniformCts (bound x) p) x

factorials = fact 1 1

where

fact i j = i:(fact (i*j) (j+1))

interleave [] _ = []

interleave (x:xs) l = x:(interleave l xs)

taylorApprox m p x eps =

sum (zipWith (*) p (takeWhile highError preTerms))

where

preTerms = zipWith (/) (powers x) factorials

highError t = m*(abs t) >= eps

{- only valid for x <= ln(2). Works best for |x| <= 1/2 -}

rationalSmallExp :: Base -> CReal

rationalSmallExp x = assert ((abs x)<=(1/2)) $

makeCReal $ expTaylorApprox

where

m | x <= 0 = 1

| otherwise = 2

expTaylorApprox eps =

sum terms

where

terms = takeWhile highError $ zipWith (/) (powers x) factorials

highError t = m*(abs t) >= eps

rationalExp :: Base -> Base -> CReal

rationalExp tol x | (abs x) <= tol = rationalSmallExp x

| otherwise = realPowerInt (rationalExp tol (x/2)) 2

expUniformCts :: Integer -> UniformCts Base (Complete Base)

expUniformCts upperBound = UniformCts mu (approx . rationalExp radius)

where

mu eps | upperBound <= 0 = eps*(2^(-upperBound))

| otherwise = eps/(3^upperBound)

realExp :: CReal -> CReal

realExp x = makeCRealFun2 (expUniformCts (1+intApprox x)) x

{-Requires that abs(a!!i+1) < abs(a!!i) and the sign of the terms alternate -}

alternatingSeries :: [Base] -> Complete Base

alternatingSeries a eps = sum partSeries

where

partSeries = (takeWhile (\x -> (abs x) > eps) a)

rationalSin :: Base -> Base -> CReal

rationalSin tol x | tol <= (abs x) =

realBasePolynomial [0, 3, 0, (-4)] (rationalSin tol (x/3))

| otherwise = CReal (alternatingSeries series) 0

where

series = fst $ unzip $ iterate (\(t,n) -> (-t*(x^2)/(n^2+n),n+2)) (x, 2)

sinCts :: UniformCts Base (Complete Base)

sinCts = UniformCts id (approx . rationalSin radius)
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realSlowSin :: CReal -> CReal

realSlowSin = makeCRealFun2 sinCts

realSin :: CReal -> CReal

realSin x | 0==m = realSlowSin x’

| 1==m = realSlowCos x’

| 2==m = negate $ realSlowSin x’

| 3==m = negate $ realSlowCos x’

where

n = intApprox (x / realPi2)

m = n ‘mod‘ 4

x’ = x - (realScale (fromInteger n) realPi2)

rationalCos :: Base -> Base -> CReal

rationalCos tol x = realBasePolynomial [1, 0, (-2)] (rationalSin tol (x/2))

cosCts :: UniformCts Base (Complete Base)

cosCts = UniformCts id (approx . rationalCos radius)

realSlowCos :: CReal -> CReal

realSlowCos = makeCRealFun2 cosCts

realCos :: CReal -> CReal

realCos x | 3==m = realSlowSin x’

| 0==m = realSlowCos x’

| 1==m = negate $ realSlowSin x’

| 2==m = negate $ realSlowCos x’

where

n = intApprox (x / realPi2)

m = n ‘mod‘ 4

x’ = x - (realScale (fromInteger n) realPi2)

{- computes ln(x). only valid for 1<=x<2 -}

rationalSmallLn :: Base -> CReal

rationalSmallLn x = assert (1<=x && x<=(3/2)) $

makeCReal $

alternatingSeries (zipWith (*) (poly 1) (tail (powers (x-1))))

where

poly n = (1/n):(-1/(n+1)):(poly (n+2))

{- requires that 0<=x -}

rationalLn :: Base -> CReal

rationalLn x | x<1 = negate (posLn (recip x))

| otherwise = posLn x

where

ln43 = rationalSmallLn (4/3)

ln2 = wideLn 2

{- good for 1<=x<=2 -}

wideLn x | x < (3/2) = rationalSmallLn x

| otherwise = (rationalSmallLn ((3/4)*x)) + ln43

{- requires that 1<=x -}

posLn x | n==0 = wideLn x

| otherwise = (wideLn x’) + (realScale n ln2)

where

(x’,n) = until (\(x,n) -> (x<=2)) (\(x,n) -> (x/2,n+1)) (x,0)

{- domain is [nonZero, inf) -}

lnUniformCts :: Base -> UniformCts Base (Complete Base)

lnUniformCts nonZero = UniformCts mu f

where

f x = approx $ rationalLn (max x nonZero)

mu eps = assert (nonZero > 0) $ eps*nonZero

realLnWitness :: CReal -> Base -> CReal

realLnWitness x nonZero = makeCRealFun2 (lnUniformCts nonZero) x

realLn :: CReal -> CReal

realLn x = realLnWitness x (proveNonZero x)

{- only valid for (abs x) < 1 -}

rationalSmallArcTan :: Base -> CReal

rationalSmallArcTan x = assert ((abs x)<(1/2)) $ makeCReal $

alternatingSeries (zipWith (\x y->x*(y^2)) (series 0) (powers x))

where

series n = (x/(n+1)):(-x/(n+3)):(series (n+4))

rationalArcTan :: Base -> CReal

rationalArcTan x | x <= (-1/2) = negate $ posArcTan $ negate x

| otherwise = posArcTan x

where

{-requires (-1/2) < x-}

posArcTan x | 2 < x = realPi2 - rationalSmallArcTan (recip x)

| (1/2) <= x = realPi4 + rationalSmallArcTan y

| otherwise = rationalSmallArcTan x

where

y = (x-1)/(x+1)

arcTanCts :: UniformCts Base (Complete Base)

arcTanCts = UniformCts id (approx . rationalArcTan)

realArcTan :: CReal -> CReal

realArcTan = makeCRealFun2 arcTanCts
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{- Computes x * Pi -}

{- http://aemes.mae.ufl.edu/~uhk/PI.html -}

scalePi :: Base -> CReal

scalePi x =

((realScale (x*48) (rationalSmallArcTan (1/38))) +

(realScale (x*80) (rationalSmallArcTan (1/57)))) +

((realScale (x*28) (rationalSmallArcTan (1/239))) +

(realScale (x*96) (rationalSmallArcTan (1/268))))

real2Pi = scalePi 2

realPi = scalePi 1

realPi2 = scalePi (1/2)

realPi4 = scalePi (1/4)

nestedBalls :: [(Base, Base)] -> Complete Base

nestedBalls ((lb,ub):bs) eps | (ub - lb) < 2*eps = (ub+lb)/2

| otherwise = nestedBalls bs eps

{- My algorithm -}

{-

rationalSqrt :: Base -> CReal

rationalSqrt x = makeCReal (nestedBalls (iterate betterBounds (0,(1+x)/2)))

where

betterBounds (lb, ub) = assert (lb <= lb’ && lb’ <= ub’ && ub’ <= ub) $

(lb’, ub’)

where

intercept a b = (x + a*b)/(a+b)

lb’ = intercept lb ub

ub1 = intercept lb lb

ub2 = intercept ub ub

ub’ = if (lb > 0) then (min ub1 ub2) else ub2

-}

{- Freek’s algorithm -}

rationalSqrt :: Base -> CReal

rationalSqrt n | n < 1 = realScale (1/2) (rationalSqrt (4*n))

| 4 <= n = realScale 2 (rationalSqrt (n/4))

| otherwise = makeCReal (\eps -> f eps)

where

f eps = fst $ until (\(x,err) -> err <= eps) newton ((1+n)/2, 1/2)

newton (x,err) = (approxBase x’ e1, e1*2)

where

x’ = (n+x^2)/(2*x)

e1 = err^2/2

sqrtCts :: UniformCts Base (Complete Base)

sqrtCts = UniformCts (^2) (approx . rationalSqrt)

realSqrt :: CReal -> CReal

realSqrt = makeCRealFun2 sqrtCts

instance Floating CReal where

exp = realExp

log = realLn

pi = realPi

sin = realSin

cos = realCos

atan = realArcTan

sqrt = realSqrt

sinh x = realScale (1/2) (exp x - (exp (-x)))

cosh x = realScale (1/2) (exp x + (exp (-x)))

asin x = atan (x/sqrt(realTranslate 1 (negate (realPowerInt x 2))))

acos x = realPi2 - asin x

acosh x = log (x+sqrt(realTranslate (-1) (realPowerInt x 2)))

asinh x = log (x+sqrt(realTranslate 1 (realPowerInt x 2)))

atanh x = realScale (1/2)

(log ((realTranslate 1 x) / (realTranslate 1 (negate x))))

{- testing stuff is below -}

test0 = makeCReal id

answer n x = shows (intApprox (realScale (10^n) x))

"x10^-"++(show n)

sumRealList :: [CReal] -> CReal

sumRealList [] = realBase 0

sumRealList l = makeCReal (\eps -> sum (map (\x -> approx x (eps/n)) l))

where

n = fromIntegral $ length l
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