
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

This full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/29795

 

 

 

Please be advised that this information was generated on 2014-11-19 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16118706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/29795


Physics Letters B 295 (1992) 371-382 
North-Holland

PHYSICS LETTERS B

Search for isosinglet neutral heavy leptons in Z° decays
L3 Collaboration

O. Adriani8, M. Aguilar-Benitezb, S. Ahlenc, J. Alcarazd, A. Aloisioe, G. Alversonf,
M.G. Alviggie, G. Ambrosi8, Q. Anh, H. Anderhub1, A.L. Anderson J, V.P. Andreevk,
T. Angelov-*, L. Antonov^, D. Antreasyanm, P. Arceb, A. Arefievn, A. Atamanchukk,
T. Azemoon0, T. Azizp,q, P.V.K.S. Babah, P. Bagnaiar, J.A. Bakkens, L. Baksay1, R.C. Ball0, 
S. Banerjeep, J. Baou, R. Barillered, L. Baroner, A. Baschirottov, R. Battiston8, A. Bayw,
F. Becattini8, U. Becker j’1, F. Behner1, J. Behrens1, S. Beingessnerx, Gy.L. Benczey,
J. Berdugob, P. Bergest B. Bertucci8, B.L. Betev*’1, M. Biasini8, A. Biland1, G.M. Bilei8,
R. Bizzarrir, J.J. Blaisingx, G.J. Bobbinkd,z, M. Bocciolinia, R. Bockq, A. Böhmq, B. Borgiar, 
M. Bosetiv, D. Bourilkovaa, M. Bourquinw, D. Boutignyx, B. Bouwensz, E. Brambilla6,
J.G. Bransonab, I.C. Brockac, M. Brooksad, C. Buissonae, A. Bujakaf, J.D. Burger j,
W.J. Burgerw, J. Busenitz\ X.D. Caih, M. Capellag, M. Caria8, G. Carlinoe, F. Carminati3,
A.M. Cartacei8, R. Castello v, M. Cerrada*5, F. Cesaronir, Y.H. Chang j, U.K. Chaturvedi*1,
M. Chemarinae, A. Chenah, C. Chenai, G.M. Chenai, H.F. Chen '̂, H.S. Chenai, J. Chen J,
M. Chen j, M.L. Chen0, W.Y. Chenh, G. Chiefaric, C.Y. Chien\ M. Chmeissani0,
M.T. Choiak, S. Chung ■>, C. Civininia, I. Clare J, R. Clarej, T.E. Coanad, H.O. Cohn8*,
G. Coignetx, N. Colinod, A. Continm, F. Crijnsaa, X.T. Cuih, X.Y. Cuih, T.S. DaiJ,
R. D’Alessandroa, R. de Asmundise, A. Degréx, K. Deiters j, E. Dénesy, P. Deness,
F. DeNotaristefanir, M. Dhina1, D. DiBitonto ', M. Diemozr, H.R. Dimitrove, C. Dionisir,d, 
M.T. Dova*1, E. Dragoe, T. Drieveraa, D. Duchesneauw, P. Duinkerz, I. Duranam, S. Easo8,
H. El Mamouniae, A. Englerac, FJ. Epplingj, F.C. Ernéz, P. Extermannw, R. Fabbrettian,
M. Fabrean, S. Falcianor, S.J. Fan80, O. Fackler88, J. Fayae, M. Felcinid, T. Fergusonac,
D. Fernandezb, G. Fernandez*3, F. Ferronir, H. Fesefeldtq, E. FiandriniB, J. Fieldw,
F. Filthaut88, G. Finocchiaror, P.H. Fisheru, G. Forconi™, T. Foreman2, K. Freudenreich1,
W. Friebelap, M. FukushimaJ, M. Gailloudaq, Yu. Galaktionov nJ, E. Gallo8, S.N. Gangulid,p, 
P. Garcia-Abiab, S.S. Gauah, D. Geleae, S. Gentiler,d, S. Goldfarbf, Z.F. Gongaj, E. Gonzalezb, 
P. Göttlicher9, A. Gougasu, D. Goujonw, G. Grattaar, C. Grinned, M. Gruenewaldar, C. Guh, 
M. Guanzirolih, J.K. Guoa°, V.K. Guptas, A. Gurtup, H.R. Gustafson0, LJ. Gutayaf,
K. Hangarterq, A. Hasanh, D. Hauschildtz, C.F. Heao, T. Hebbekerq, M. Hebertab, G. Herten ,̂ 
U. Herten q, A. Hervéd, K. Hilgersq, H. Hofer\ H. Hooraniw, G. Huh, G.Q. Hu80, B. Uieae, 
M.M. Ilyas*1, V. Innocente0, H. Janssend, S. Jezequel\ B.N. Jin81, L.W. Jones0, A. Kasseraq, 
R.A. Khan*1, Yu. Kamyshkov^, P. Kapinosk’ap, J.S. Kapustinskyad, Y. Karyotakisd, M. Kaur*1, 
S. Khokhar*1, M.N. Kienzle-Focacciw, J.K. Kim8*', S.C. Kimak, Y.G. Kimak, W.W. Kinnisonad, 
D. Kirkbyar, S. Kirsch 8p, W. Kittel88, A. KlimentovJ-0, A.C. König88, E. Koffemanz,
O. Kornadtq, V. Koutsenkoj,n, A. Koulbardisk, R.W. Kraemer80, T. Kramer ,̂ V.R. Krastev^’8, 
W. Krenzq, A. Krivshichk, H. Kuijten88, K.S. Kumar8S, A. Kunin8S,n, G. Landi8, D. Lanskeq, 
S. Lanzanoe, P. Lebrun“ , P. Lecomte1, P. Lecoqd, P. Le Coultre1, D.M. Lee8d, I. Leedomf, 
J.M. Le Goffd, R. Leisteap, M. Lenti8, E. Leonardir, J. Lettry1, X. Leytensz, C. Liaj,h,
H.T. Liai, P.J. Li80, X.G. Li8i, J.Y. Liao80, W.T. Lin8h, Z.Y. Lin8̂  F.L. Linded,
B. Lindemannq, D. Linnhofer1, L. Listae, Y. Liu*1, W. Lohmannap’d, E. Longor, Y.S. Luai,

Elsevier Science Publishers B.V. 371



Volume 295, number 3,4 PHYSICS LETTERS B 3 December 1992

J.M. Lubbers d, K. Lübelsmeyer q, C. Lucir, D. Luckey L. Ludovicir, L. Luminarir,
W. Lustermann ap, J.M. Maai, W.G. Ma'», M. MacDermott1, P.K. MalhotraP’1, R. Malik",
A. Malininx>n, C. Mañab, D.N. Mao0, Y.F. Mao81, M. Maolinbay1, P. Marchesini1, F. Marionx,
A. Marin0, J.P. Martinae, L. Martinez-Lasob, F. Marzanor, G.G.G. Massaro2, T. Matsuda-*,
K. Mazumdarp, P. McBrideas, T. McMahonaf, D. McNally1, M. Merkaa, L. Merolae,
M. Meschini3, W.J. Metzgeraa, Y. Miac>, G.B. Millsad, Y. Mirh, G. Mirabella, J. Mnichq,
M. Möller q, B. Monteleoni3, R. Morandx, S. Morgantir, N.E. Moulaih, R. Mountar, S. Müllerq,
A. Nadtochyk, E. Nagyy, M. Napolitanoe, H. Newman ar, C. Neyer1, M.A. Niazh, A. Nippe q,
H. Nowakap, G. Organtinir, D. Pandoulasq, S. Paoletti3, P. Paoluccie, G. Passaleva3,8,
S. Patricellie, T. Paul“, M. Pauluzzi8, F. Pauss1, Y.J. Peiq, S. Pensottiv, D. Perret-Gallixx,
J. Perrierw, A. Pevsner“, D. Piccoloe, M. Pierid, P.A. Piroué5, F. Plasil3*, Y. Plyaskin",
M. Pohl1, V. Pojidaev n,a, N. Produitw, J.M. Qian0, K.N. Qureshi11, R. Raghavanp,
G. Rahal-Callot1, P.G. Rancoitav, M. Rattaggiv, G. Ravenz, P. Razis3*, K. Readaf, D. Ren1,
Z. Renh, M. Rescignor, S. Reucroftf, A. Rickerq, S. Riemannap, W. Riemersaf, K. Riles0,
O. Rind0, H.A. Rizvih, F.J. Rodriguezb, B.P. Roe0, M. Röhnerq, S. Röhnerq, L. Romerob,
J. Roseq, S. Rosier-Leesx, R. Rosmalenaa, Ph. Rosseletaq, A. RubbiaJ, J.A. Rubiod,
H. Rykaczewski1, M. Sachwitzap, J. Saliciod, J.M. Saliciob, G.S. Sandersad, A. Santocchia8,
M.S. Sarakinosj, G. Sartorellim,h, M. Sassowskyq, G. Sauvage\ V. Schegelskyk, D. Schmitzq,
P. Schmitz q, M. Schneegansx, H. Schopperau, D.J. Schotanus aa, S. Shotkin-*, HJ. Schreiber ap,
J. Shuklaac, R. Schulteq, S. Schulteq, K. Schultzeq, J. Schwenkeq, G. Schweringq, C. Sciaccae,
I. Scottas, R. Sehgal11, P.G. Seiler3”, J.C. Sensd>z, L. Servoli6, 1. Sheerab, D.Z. Shen30,
S. Shevchenko ar, X.R. Shiar, E. Shumilov", V. Shoutko11, E. Söderströms, D. Sonak,
A. Sopczak3b, C. Spartiotis“, T. Spickermannq, P. Spillantinia, R. Starostaq, M. Steuer™̂ ,
D.P. Stickland5, F. SticozziJ, H. Stonew, K. Strauch“ , B.C. Stringfellowaf, K. Sudhakarp,
G. Sultanovh, R.L. Sumner5, L.Z. Sun3«1, H. Suter1, R.B. Suttonac, J.D. Swainh, A.A. Syedh,
X.W. Tang31, L. Taylorf, G. Terziv, C. Timmermansaa, Samuel C.C. Tingj, S.M. TingJ,
M. Tonuttiq, S.C. Tonwarp, J. Tóthy, A. Tsaregorodtsevk, G. Tsipolitis3C, C. Tully3r,
K.L. Tungai, J. Ulbricht\ L. Urbán y, U. Uwer q, E. Valenter, R.T. Van de Walle aa, I. Vetlitsky n,
G. Viertel \  P. Vikash, U. Vikash, M. Vivargentx, H. Vogelac, H. Vogt3p, I. Vorobiev“,
A.A. Vorobyovk, L. Vuilleumieraq, M. Wadhwah, W. Wallraffq, C.R. WangaJ, G.H. Wangac,
J.H. Wang31, X.L. Wang^, Y.F. Wangj, Z.M. Wangh-aJ, A. Weberq, J. Weber1, R. Weillaq,
T.J. Wenaus36, J. Wenningerw, M. White-i, C. Willmottb, F. Wittgensteind, D. Wrights,
R.J. Wuai, S.X. Wuh, Y.G. Wuai, B. WysiouchJ, Y.Y. Xie30, Y.D. Xuai, Z.Z. Xu3-*, Z.L. Xue30,
D.S. Yan30, X.J. YanJ, B.Z. YangaJ, C.G. Yang3i, G. Yang*1, K.S. Yangai, Q.Y. Yangai,
Z.Q. Yang30, C.H. Yeh, J.B. Y eaJ, Q. Yeh, S.C. Yeh311, Z.W. Yinao, J.M. Youh, N. Yunush,
M. Yzermanz, C. Zaccardelliar, P. Zemp1, M. Zengh, Y. Zengq, D.H. Zhangz, Z.P. Zhangaj’h,
B. Zhou c, J.F. Zhou q, R.Y. Zhu3r, H.L. Zhuang3i, A. Zichichim-d’h and B.C.C. van der Zwaanz
a /N/rjv -  Sezione di Firenze and University o f Florence, 1-50125 Florence, Italy
b Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, E-28040 Madrid, Spain 
c Boston University, Boston, MA 02215, USA
d European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland ,
e INFN -  Sezione di Napoli and University o f Naples, 1-80125 Naples, Italy 
f Northeastern University, Boston, MA 02115, USA
g INFN -  Sezione di Perugia and Università Degli Studi di Perugia, 1-06100 Perugia, Italy 
h World Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland 
1 Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zurich, Switzerland 
J Massachusetts Institute o f Technology, Cambridge, MA 02139, USA 
k Nuclear Physics Institute, St. Petersburg, Russian Federation

372



Volume 295, number 3,4 PHYSICS LETTERS B 3 December 1992

1 Bulgarian Academy o f  Sciences, Institute o f  Mechatronics, BU-1113 Sofia, Bulgaria 
m INFN -  Sezione di Bologna, 1-40126 Bologna, Italy
n Institute o f Theoretical and Experimental Physics, ITEP, 117 259 Moscow, Russian Federation
0 University o f Michigan, Ann Arbor, M I 48109, USA
p Tata Institute o f Fundamental Research, Bombay 400 005, India 
q I. Physikalisches Instituí, RWTH, W-5100 Aachen, FRG2 

and I I I  Physikalisches Instituí, RWTH, W-5100 Aachen, FRG 2 
r INFN  -  Sezione di Roma and University o f  Rome, “La Sapienza", 1-00185 Rome, Italy 
s Princeton University, Princeton, NJ 08544, USA
1 University o f Alabama, Tuscaloosa, AL 35486, USA
u Johns Hopkins University, Baltimore, MD 21218, USA 
v INFN -  Sezione di Milano, 1-20133 Milan, Italy 
w University o f Geneva, CH-1211 Geneva 4, Switzerland
x Laboratoire d ’Annecy-le-Vieux de Physique des Particules, LAPP, IN2P3-CNRS, B.P. 110,

F-74941 Annecy-le-Vieux Cedex, France 
y Central Research Institute for Physics o f the Hungarian Academy o f Sciences, H-1525 Budapest 114, Hungary3 
z National Institute for High Energy Physics, NIKHEF, NL-1009 DB Amsterdam, The Netherlands 
aa University o f Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands 
ab University o f California, San Diego, CA 92182, USA 
ac Carnegie Mellon University, Pittsburgh, PA 15213, USA 
ad Los Alamos National Laboratory, Los Alamos, NM 87544, USA 
ae Instituí de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard,

F-69622 Villeurbanne Cedex, France 
af Purdue University, West Lafayette, IN  47907, USA 
ag Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 
ah High Energy Physics Group, Taiwan, ROC  
ai Institule o f High Energy Physics, IHEP, Beijing, China
aJ Chinese Universily o f  Science and Technology, USTC, Hefei, Anhui 230 029, China
ak Cenler for High Energy Physics, Korea Advanced Inslitule o f Sciences and Technology, 305-701 Taejon, South Korea 

Oak Ridge National Laboratory, Oak Ridge, 77V 37831, USA 
am Departamento de Física de Partículas Elementales, Universidad de Santiago, E-15706 Santiago de Compostela, Spain 
an Paul Scherrer Instituí, PSI, CH-5232 Villigen, Switzerland 
ao Shanghai Institute o f Ceramics, SIC, Shanghai, China 
ap DESY -  Institut JUr Hochenergiephysik, 0-1615 Zeuihen, FRG 
aq Universily o f Lausanne, CH-1015 Lausanne, Switzerland 
ar California Institute o f Technology, Pasadena, CA 91125, USA 
as Harvard University, Cambridge, MA 02139, USA 
at Department o f Natural Sciences, University o f Cyprus, Nicosia, Cyprus 
au University o f Hamburg, W-2000 Hamburg, FRG

Received 23 September 1992

We search for neutral heavy leptons that are isosinglets under the standard SU (2)l gauge group. Such neutral heavy 
leptons are expected in many extensions of the standard model. Three types of heavy leptons Ne, N^, NT associated 
with the three neutrino types v* have been directly searched for and no evidence for a signal has been found.
We set the limit Br(Z° —► z//N*) < 3 x 10” 5 at the 95% CL for the mass range from 3 GeV up to m%.
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1. Introduction

Isosinglet neutral heavy leptons (INHL) arise in 
many models that attempt to unify the presently ob
served interactions into a single gauge scheme such 
as grand unified theories or superstring inspired mod-
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els [1 ]. Their existence is also predicted in many ex
tended electroweak models such as left-right symmet
ric and see-saw models [2],

Except the neutrinos, all the observed fundamen
tal fermions that couple to the SU (2) l weak interac
tion have a right-handed component that transforms 
as an isosinglet. The simplest way to accommodate the 
lack of experimental evidence for right-handed neu
trinos is to attribute it to an intrinsic asymmetry in 
the fermion spectrum, as in the standard model. This 
is made possible by the assumption that neutrinos are 
massless. However, there is no good theoretical ba
sis for this choice [1,3]- Small neutrino masses [3] 
can fit naturally in many theoretical contexts that in
clude isosinglet neutral heavy leptons as right-handed 
neutrinos. Some models can also accomodate strictly 
massless light neutrinos, while keeping massive isos
inglet partners [4].

Constraints on the isosinglet neutral lepton admix
ture in gauge currents have been placed by several ex
periments [5,6]. The mass range covered, however, 
has been below 10 GeV, except for the limit obtained 
by the OPAL Collaboration which extends from 4 GeV 
up to mz [6].

In this paper we describe our search for an isosinglet 
neutral heavy lepton within the mass range from about 
1 GeV up to m z . This search is based on the data 
collected at LEP with the L3 detector during 1990 and 
1991 at centre of mass energies between 88.2 and 94.3 
GeV. The total integrated luminosity is 17.5 pb_1, 
corresponding to about 424 000 hadronic Z° decays.

3. Production and decays

2. The L3 detector

The L3 detector covers 99% of An. The detector 
consists of a central vertex chamber (TEC) with inner 
radius of 9 cm and outer of 47 cm, a high resolution 
electromagnetic calorimeter composed of BGO crys
tals extending from of 50 to 85 cm, a ring of scintilla
tion counters, a uranium and brass hadron calorime
ter with proportional wire chamber readout from 88 
cm to 213 cm and a precise muon chamber system. 
These detectors are installed in a 12m diameter mag
net which provides a uniform field of 0.5 Tesla along 
the beam axis. The detector and its performance are 
described in detail elsewhere [7].

In this search, one isosinglet neutral heavy lepton 
N* is assumed to be associated with each generation 
of light neutrinos via the mixing amplitude Ue. We do 
not consider mixing of the light neutrinos with higher 
isodoublet states (sequential leptons) nor the possi
bility of mixing among light neutrinos (as discussed 
in ref. [4]). However, our results can be straight
forwardly interpreted in such models. Also, the large 
mass difference between the light and heavy neutri
nos allows us to ignore oscillation [4].

The mixing between the isosinglet neutral lepton 
and its associated isodoublet neutrino allows single 
production to occur in Z° decays#1 :

Zo (1)

The production cross section is reduced from the neu
trino pair production cross-section by a phase-space 
factor and by the square of a mixing amplitude. It can 
be written as [4,8]

Br(Zo viN i)

Br(Z

x 1 -

+ vt )\Ut

1 + 1
2 m \

where Ui is the mixing amplitude, the mass of N* 
and mz the mass of the Z°. In contrast to Z° decay into 
sequential isodoublet neutral leptons where pair pro
duction is dominant (when kinematically allowed), 
here single production dominates because the corre
sponding pair production cross section is suppressed 
relatively to the single production cross section by an 
additional \ Ut\2 factor, which is expected to be small 
[8].

Isosinglet neutral leptons decay via the neutral or 
charged weak currents

N* —> Z*v and Z* —► ee, t t , vv, qq,

/qv, ptv, tv, qq .

#1 From here on, all arguments hold for particle as well as 
for antiparticle.
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To calculate the branching ratios of these decays 
into the final states, we use the formulae from Refs. 
[4,8]. For most of the mass range, the dominant de
cay mode is via charged currents, with a lepton and 
two quark final state, which is about 50% of the to
tal rate. For low masses, the branching ratios depend 
on kinematical constraints, especially for the r fam
ily, where for masses below 3 GeV, the dominant de
cay mode is via the neutral current with mainly a light 
neutrino and two quarks.

The mean decay length is a function of the coupling 
constant \Ue\2 and the mass. It is given by [4]

L n =  /ty c tN  oc fi\Ue\ ~ 2W n ,

where a «  -6 .  This implies that the decay can oc
cur far from the interaction point if the particle has 
a low mass or a very small coupling. We consider in 
our searches also the case where the decay occurs far 
from the interaction vertex (e.g. in the BGO calorime
ter or in the hadron calorimeter), which allows us to 
consider mean decay lengths of up to 2 metres.

4. Monte Carlo simulation

In order to determine the acceptance for detecting 
the isosinglet neutral lepton events, a Monte Carlo 
generator based on the TIPTOP [9] and KORALZ 
[10] programs has been written. We include all mass 
effects and decay modes and assume the angula de
pendence for production to be (1 + cos2 6). For low 
mass studies, several mean decay lengths have been 
studied. Initial state radiation has been taken into 
account. For the decays involving quarks, we use 
JETSET with string fragmentation [11]. To estimate 
the background, we use various Monte Carlo genera
tors [10-12] to generate Z° —► e+e- (y), /¿+A~(y), 
r + T _ ( y )  and qq(y) decays.

The Monte Carlo events have been fully simulated 
in the L3 detector using the GEANT3 program [13], 
which takes into account the effects of energy loss, 
multiple scattering and showering in the materials, 
and then reconstructed in the same way as data.

5. Event signatures and selection

Because of the Lorentz boost in the laboratory 
frame, the decay signature depends on the mass of 
the isosinglet lepton. For low mass, we have mainly 
monojet events, while for high mass, two or more jets 
are dominant. The selection is subdivided accord
ing to the number of reconstructed jets. In this way, 
the efficiencies are optimized for all mass ranges in 
a natural manner. Jets are reconstructed based on 
the calorimeters information using the algorithm de
scribed in ref. [14]. Isolated particles of at least 2 
GeV with only one energy cluster in the BGO, such as 
electrons or muons, are considered as jets. A particle 
cluster from t decay is also reconstructed as a single 
jet. In all searches, the electron identification relies 
on the shape of the energy deposition in the BGO 
calorimeter : the ratio of the energy deposited in a 
3 x 3  crystal array (J^9) and a 5 x 5 array ( X 2 5) 
must satisfy > 0-95, consistent with an
electromagnetic shower shape. The muon identifica
tion is based on the reconstruction of a track in the 
muon chambers. This track is extrapolated backward 
towards the beam line and is required to pass within 
100 mm from the interaction point in the R-(j) plane 
and within 200 mm in the z  direction. In the case of 
displaced vertex searches (see section 5.2), the tracks 
are required to pass within 400 mm from the interac
tion point in both the R-<j> plane and the z  direction.

The following trigger conditions are used for all the 
searches. The total energy trigger [15] requires a total 
energy of 15 GeV in the BGO and hadron calorimeter. 
The cluster trigger requires a cluster in the calorime
ters with energy greater than 7 GeV. The charged clus
ter trigger requires a cluster in the calorimeter with 
an energy greater than 3 GeV and a TEC track point
ing into the cluster direction. The single muon trig
ger selects events when at least one muon track with a 
transverse momentum with respect to the beam axis 
greater than 1.5 GeV is detected in the muon cham
bers and at least one scintillation counter has fired. 
The combined trigger efficiency is found to be close 
to 100% [16] in all decay modes for the events pass
ing the cuts described below. From a study of inclu
sive muon events, the single muon trigger efficiency 
is found to be better than 95% for muons with energy 
greater than 5 GeV [17].
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For the search for monojets with a displaced ver
tex, we cross-check the trigger efficiency by comparing 
it with the charged cluster trigger which has a lower 
energy threshold. The relative efficiency is found to 
exceed 99% for the events passing the cuts described 
below.

5.1. Search for monojets

By searching for monojet events, we cover inclu
sively all visible decay modes of an isosinglet lepton 
of mass < 15 GeV. We select events that have exactly 
one reconstructed jet and at least two “good” tracks m 
in the TEC detector.

One source of background to this topology is 
e+e~ — » T + r ~ ( y )  where the visible energy of one r  

is below the threshold of the jet reconstruction algo
rithm due to the large fraction of energy carried away 
by the neutrino. In this case, however, some calori- 
metric energy and at least one low momentum track 
are expected in the hemisphere opposite to the mono
jet. We therefore require the energy in a cone of 30° 
half opening angle#3 around the direction opposite 
to the jet to be less than 0.1 GeV and that no tracks 
exist in a 90° cone. The two distributions are shown 
in fig. 1. The peak in the energy distribution centered 
at approximately 0.25 GeV corresponds to the energy 
deposition of minimum ionizing particles traversing 
the BGO calorimeter. The number of tracks in the 
90° cone is computed without strict track quality re
quirement since we are interested in vetoing charged 
particles. The efficiency for reconstructing at least 
one track in the presence of a charged particle is 
calculated from Bhabha events and is (99.5 ±  0.1)%. 
The total number of events after the energy cut is 154 
events, while we expect 137 ± 10 from Monte Carlo. 
A small disagreement between the distributions of 
the data and Monte Carlo is observed (see fig. lb). 
This is attributed to the splitting of tracks into two 
or more parts. This effect, which occurs only at low

#2

#3

A “good” track is defined as having an impact parameter 
to the vertex smaller than 10 mm, at least 20 hits and 
a distance between the innermost and outermost used 
hit (in units of wire spacing) greater than 30 out of a 
maximum of 64. Its tranverse momentum must satisfy
Pt > 100 MeV.
All the cone sizes mentioned refer to the half opening 
angle of the cone.
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Fig. 1. (a) Energy in the 30° cone around the opposite 
direction of the jet and (b) Number of tracks in the 90° 
cone around the opposite direction of the jet. The circles are 
data, the shaded area is the background MC. The dashed 
line is the predicted signal Z° -*■ v N for a mass of 10 GeV. 
The arrows indicate the position of cuts.

momentum, is underestimated in our simulation. 
This, however, does not affect our selection.

Two-photon process background events are pro
duced dominantly at low polar angles and have small 
energy deposition. They are eliminated by requiring 
the energy of the monojet to be greater than 15 GeV 
and its polar angle to be in the range 20° < 6 < 160°.

After applying all the cuts, we are left with 2 events 
from data, while we expect 0.6 db 0.4 from Z° —► 
t + t ~  ( y )  events. One of the two candidates is shown 
in fig. 2.

5.2. Search for monojets with a displaced vertex

As mentioned in section 3, low masses or small mix
ing amplitudes |Ue\2 can result in decays far from the 
interaction point. To estimate the acceptance for such 
events, we generate all visible decay modes with decay 
lengths from a few cm up to 2 m. The detection effi-

V

ciency can be parametrized as fi, oc 1 -  exp(-Z //L )  
where L l is an effective length parameter depending 
on the decay mode i. The values of the L' param-
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Fig. 2. Front view of the monojet candidate event: the event 
has two electromagnetic clusters and two tracks. The most 
energetic cluster Cl has an energy 33.4 GeV and the cor
responding track T1 has a positive charge and a momen
tum of 28.3 GeV/c. The second cluster C2 has an energy 
of 121 MeV and the track T2 has a negative charge and a 
momentum of 168 MeV. The cluster Cl is compatible with 
an electron.

eters for the various decay modes are shown in ta
ble 1. From the monojet search with the track con
straint (see section 5.1), we obtain V  = 30 ±  1 cm 
for all decay modes as the efficiency is dominated by 
the track quality requirement.

Without the track constraint, it is clear that the pa- 
rameters V  are larger for the decay modes for which

Table 1
Fitted values of the U  parameter of the parametrization of 
the dependence of the acceptance with displaced vertex for 
different decay modes,

\
Decay mode i L l (cm)

N
N
N
N
N
N
N
N
N
N

eqq

rqq
v t t
vptjÏ
vrx
vejì
u tï
VJXT
vqq

81 ±  7
120 ± 10

81 rb 7
56 ±  6
33 ±  3
61 ±  4
88 ±  7
81 ±  7
88 i  7
81 ±  7

selections are based on the hadron calorimeter and 
muon chambers, because of the larger decay distance 
between the production vertex and these subdetec
tors. For the vfifi decay mode, the effective parame
ter U w  is dominated by the trigger efficiency.

For selecting monojet events, we use the cuts de
scribed in section 5.1 but remove the requirement on 
the number of “good” TEC tracks. We restrict the 
searches to the barrel region of the detector. We apply 
further selection criteria based on the decay modes.

For purely electromagnetic monojets, we select 
the events with exactly one energy cluster with 
S 9 / X 25 > *̂95 in the BGO calorimeter. We re
quire that the energy deposited in the entire hadron 
calorimeter be less than 3 GeV, and that no energy is 
found in the luminosity monitor. The muon cham
bers must have no reconstructed segments in the three 
layers. To reduce background from the e+e~ —> vvy  
process, we require the energy of the cluster to be 
greater than 15 GeV. Applying the cuts to the data, we 
find one event while we expect 0.6 ±  0.6 events from 
the e+e~ -> v v y  process. The candidate has a cluster 
of 19 GeV with no activity in the rest of the detector.

For monojets with electromagnetic and hadronic 
activity, we require the energy deposited in the BGO 
calorimeter to be at least 2 GeV and the energy in 
the hadronic calorimeter to be at least 5 GeV. The 
total energy should be greater than 15 GeV. The muon 
chambers must have no reconstructed segments in the 
three layers. To remove contamination from cosmic 
rays, we ask for at least one scintillator hit within 
±1.5 ns of the beam crossing. We find no candidates 
for this mode.

For events with mostly hadronic activity, the energy 
of the jet must be at least 20 GeV and there should be 
less than 2 GeV deposited in the BGO calorimeter. To 
remove cosmic rays, we ask for at least one scintilla
tor hit in time, coming from the side can fake in coin
cidence hits. We apply a cut on the lateral and longi
tudinal shape of the shower development so that it is 
compatible with particles coming from the interaction 
point. This removes the background originating from 
the beam halo, produced by particles entering hori
zontally through the sides of the hadron calorimeter. 
Only one event survives the selection.

We also search for monojets containing at least one 
muon. We find no candidates for this decay mode.
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5.3. Search for two acoplanar jets

This event topology consists of a pair of acoplanar 
and acollinear jets with large missing energy and trans
verse imbalance. This search covers all decay modes 
containing a neutrino in the final state for the mass 
region ^ 15 GeV and the modes containing hadrons 
and a lepton for the mass region 15 < mn ^ 50 GeV. 
Backgrounds to this topology come from events where 
some energy is either unseen or not well measured in 
the detector.

We select all events which have exactly two recon
structed jets and at least two “good” tracks. Almost all 
dilepton and hadronic decays of the Z° are removed 
by requiring an acoilinearity r\ between the two jets 
greater than 35° and an acoplanarity 6<j> greater than 
20°. The distributions of rj and S<j) are shown in fig. 3.

Initial state radiation and two-photon background 
are reduced by the requirement that the polar angle
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of the two jets. The circles are data, the shaded area is the 
background M C  The dashed line shows the predicted signal 
Z° —► i/N for a mass of 50 GeV. The arrows indicate the 
position of cuts.

*

Fig. 4. Front view of the two jet candidate: the cluster 01 
has an energy of 10.5 GeV and the track T1 has positive 
charge and a momentum of 5.3 GeV. The cluster C2 has an 
energy of 5.6 GeV and the track T2 has a negative charge 
and a momentum of 4.9 GeV. The direction of the missing 
momentum points into the barrel region.

Qm of the missing momentum should satisfy 20° < 
dm < 160°. The most energetic jet must have at least 
10 GeV and the second jet at least 5 GeV. Remaining 
background is removed by requiring that the energy 
in the 30° cone around the direction of the missing 
momentum be less than 0.2 GeV and that the number 
of tracks in this cone be zero.

After applying all cuts, one event is left in the data 
while we expect 0.2 ±  0.2 from the Z° —► t+t“ (y) 
decay. The candidate is shown in fig. 4.

5.4. Search for isolated leptons in three or more jets

By selecting hadronic events with an isolated lepton, 
we search for the £ qq decay modes for the mass region 
£  50 GeV.

The main background to this topology comes from 
the semileptonic decays of heavy quarks. Radiative 
hadronic decays Z° — ► qqy where a hard photon con
verts in the beam-pipe can also fake an isolated elec
tron.

We select events with three or more reconstructed 
jets. The visible energy must be greater than 0Ay/s. 
The energy of the third jet must be at least 5 GeV, 
to remove the QCD background. For the eqq mode,
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there must be an electromagnetic cluster of at least 5 

GeV with X 9 /  X 25 > ^-95 and a TEC track within 
±  10 mrad in the R-<j> plane. The isolation criterium 
is that the energy in the 30° cone around the electron 
candidate is less than 3 GeV. For the jiqq mode, the 
energy in the 30° around the muon must be less than 
5 GeV (in this case, we do not subtract the calorimet- 
ric energy loss of the muon). To improve the rejection 
of hadronic background where a jet is mismeasured, 
we require that the energy in a 20° cone around the 
missing momentum direction be less than 2 GeV. This 
cut is applied only when the visible energy is less than 
0 .9 ^ , i.e. when the direction of missing momentum 
is well defined. In the rqq mode, the identification of 
an isolated tau suffers from the large background from 
hadronic events. We look for isolated tracks with mo
mentum greater than 2 GeV. There should not be any 
other track inside the 20° cone around this track. The 
energy inside the 1 0 ° cone around the track should 
be more than 3 GeV, and the difference of energies in 
the 20° and 10° cones around the track should be less 
than 1 GeV. The acoplanarity between the two most 
energetic jets has to be greater than 30°.

After applying our selection cuts to the data, we find 
a total of 42 candidates in the three decay modes. The 
data events and the Monte Carlo background expec
tations are shown in table 2 .

In these decay modes, the reconstruction of the in
variant mass of the isosinglet neutral lepton is possi
ble due to the presence of only one light neutrino in 
the final state. The reconstructed masses have a res
olution of 1 1 % for the eqq and //qq modes and 15% 
for the rqq mode. We rescale the invariant mass as 
follows:

mN y/s
P v + E '

where pv is the missing momentum of the event, and 
E  is the event energy. This improves the resolution

Table 2
List of selected events in data and Monte Carlo.

Decay mode Data Monte Carlo

eqq 6 1 ± 2
/¿qq 10 1 ± 2
rqq 26 23 ± 3
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Fig. 5. Distribution of invariant mass of the candidate events 
compatible with (a) N —> eqq, (b) N —► /¿qq and (c) 
N —► rqq. The circles are data, the shaded area is the back
ground MC. The dashed line shows the predicted signal 
Z° u N  for a mass of 50 GeV.

on the mass measurement to 6 % for the eqq and //qq 
modes and 1 1 % for the Tqq mode almost indepen
dently of the mass. The invariant mass distributions 
for data and background Monte Carlo are shown in 
fig. 5. The selected events are grouped in the mass re
gion «  80-90 GeV. These events are compatible with 
the expected background.

6. Results

We calculate the 95% confidence level upper limit 
on the square of the mixing amplitude and the branch
ing ratio for each generation. Following ref. [19], the 
probability e for observing in different channels j  
( j  =s 1 , . . , ,  / c) Jj events or less for a signal s and 
estimated background bj is given by
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gj(b)P(n\EjS + b) db

g j ( b ) P( nb-,b)db ) ,

where e,- is defined as

Ej =  L j  e'J n ’
I

where the summation is made over the decay modes 
i. P is the Poisson distribution function, e) is the de
tection efficiency for the decay mode i in the channel 
j .  rt is the branching ratio of this decay mode. gj (b)  
is the probability distribution for the background in 
the channel j ,  which is assumed to follow a Poisson 
distribution of mean bj.

The list of channels along with the data candidates 
and Monte Carlo background events are shown in 
table 3. For the case with three or more jets, the 
number of events in data and Monte Carlo back
ground for a given mass M  is defined as the num
ber of events which have a reconstructed mass in the 
range of M ±  1.5ato, where ctm varies from 3 to 8 GeV 
for different masses and decay modes.

The combined efficiencies for the various decay 
modes are listed in table 4. The efficiencies are all 
above 20%, expect in the rqq mode where the effi
ciency drops for masses very close to m z .  The sources 
of systematic errors in the determination of the upper 
limits are the following:
-  2% absolute systematical uncertainties in the Monte 
Carlo simulation of the detector;
-  2% statistical error in the determination of the sig
nal detection efficiencies due to limited Monte Carlo 
statistics;
-  0.5% experimental uncertainty on the number of 
hadronic events [18].

The results for the mixing coupling constant as a 
function of the mass is shown in fig. 6. The mixing 
term |f7*|2 is constrained to be less than 2 x 10~4 for 
the mass range 3 < mn < 50 GeV. Above 50 GeV, 
the limit worsens due to the phase space factor. In 
terms of branching ratio, the limit can be expressed 
as Br (Z° —> ) < 3 x 10-5 for masses from 3 GeV

a 10
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o

to c • ̂  
a .DOu

10
-2

10
-3

10
~4

1 ml  . . I . , * , - ! . I . I

l 10 INHL Mass (GeV)
Fig. 6. The 95% CL upper limit on the coupling constant 
| Ui |2 as a function of the mass of the isosinglet neutral 
heavy lepton. The solid line is the limit for Nc, the dashed 
line is the limit for and the dotted line is for NT.

Table 4
Detection efficiency in percent for different INHL masses 
and decay modes.

Mass (GeV)

5 30 50 68 78 89

N
N
N
N
N
N
N
N
N
N

eqq
MQ
rqq
yee
vpCji
Z/TT
v€ji
v€x

vqq

48
49
50 
54 
42
36 
47 
31 
30
37

44
42
40
49
42 
23
43 
34 
36 
38

47
35
35
56
39
24
41
38
34
43

49
34
33
44 
36 
20
45 
38 
36 
42

40
39
10
36
39 
22 
50
40
37 
32

22
32

3
37 
30 
20 
45
38 
35 
26

up to m z« The coupling constant limit as a function 
of the mean decay length L  is shown in fig. 7.
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Table 3
List of channels used for the determination of the limits.

Channel Data Monte Carlo

purely electromagnetic monojet without TEC tracks 1 0.6±0.6
purely hadronic monojet without TEC tracks 1 0
monojet with TEC tracks and without muon tracks 2 0.6±0.4
monojet with muon tracks 0 0
two jet events 1 0.2db0.2

three or more jets events see text
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Fig. 7. The 95% CL upper limit on the coupling constant 
| Ui |2 as a function of the mean decay length. The solid 
line is the limit for Ne, the dashed line is the limit for 
and the dotted line is for NT.

7. Conclusion

We searched for all visible decay modes of an isos
inglet neutral lepton from very low masses up to mz. 
We also searched for displaced vertex decays. No ex
cess was found in the data. We set limits of the or
der of 10“4 on the mixing term | Ut |2 as a function of 
the mass and as a function of the decay length. These 
correspond to limits of the order of 3 x 10“ 5 on the

branching ratio Br(Zo UlNt).
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