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Stimulus-dependent correlations in stochastic networks

H. J. Kappen
RWCP Novel Function SNN Laboratory, Department of Biophysics, University of Nijmegen, Geert Grooteplein 21,
NL 6525 EZ Nijmegen, The Netherlands
(Received 27 September 1996; revised manuscript received 8 Januapy 1997

It has been observed that cortical neurons display synchronous firing for some stimuli and not for others. The
resulting synchronous cell assemblies are thought to form the basis of object perception. In this paper this
“dynamic linking” phenomenon is demonstrated in networks of binary neurons with stochastic dynamics.
Analytical treatment within the mean field theory and linear response theory is possible and is compared with
simulations. We establish that correlations are a sensitive function of the spatial coherence in the stimulus. We
discuss the possibility to use these correlations as a mechanism for scene segmentation.
[S1063-651%97)07705-2

PACS numbdrs): 87.10+€, 02.70--c, 05.50+q, 87.22.As

[. INTRODUCTION So far, most models have been based on oscillations and
have addressed two key questions. One question is how to
It is well established that the behavior of sensory neurongmplement dynamic feature linking, i.e., how synchrony be-
in the visual cortex can be described by a receptive field: Aween neurons can arise for some stimuli and not for others.
neuron is sensitive to certain specific stimuli and not to othdn [15] a network of bursting neurons is considered. In this
ers[1]. It is often assumed that the role of individual cells is model, stimulus-dependent assembly formation is based on
to representiocal visual features, such as edges, cornersfast synaptic modulations. Referendd$-1§ introduce a
velocities, colors, etc. These representations may coexist ametwork of pairs of nonlinear oscillators which models an
several length scales. The representation of local receptivarientation column. The network involves specific delayed
fields or features is encoded in the feed-forward synapticynchronizing and desynchronizing connections that can be
connections of individual neurons. This representation idearned. Referendd 9] discusses a network of integrate-and-
thought to be an efficient information-theoretic description offire neurons organized in orientation columns. Both these
the local structure of imagdg]. models display stimulus-dependent assembly formation in
Objects are generally believed to be represented by a cothe sense that oscillations synchronize for spatially coherent
lection of local features. The neurons that represent the localtimuli and can be made to desynchronize for incoherent
features of the object become active and constitute a sastimuli, without changing the synaptic strengths. Similar
called cell assembl}3]. The cell assembly is a neural rep- findings are reported if20]. In [21] an overview is given of
resentation of the object. various network models that can give rise to oscillatory be-
Since a visual image generally contains many objects sihavior.
multaneously, many cell assemblies can be active at the In [22] a nonoscillatory model is introduced and correla-
same time. Therefore some labeling mechanism must exist tilons between rate coded neurons are studied. It is shown that
distinguish whether active neurons belong to the same cetlorrelations are strongest for neurons firing neither too fast
assembly or to different cell assemblies. There exist variousor too slow. As a result, correlation based couplings depend
proposals to facilitate such a mechanism. One proposal isn the mean firing activities of the two neurons involved, and
based on the synchronization of the firing patterns betweethus provide in principle a mechanism for feature binding.
neurong 4—6]. It is assumed that the resulting synchronousThis property will also emerge in the present paper, but in
subpopulations of neurons form the basis of segmentatiothe context of binary neurons instead of rate coding. The
and object perceptiof7,8]. issue of how the stimulus affects the correlations is not ex-
There is some experimental evidence that neurons in thplored in[22].
visual cortex display synchronous firing for some stimuliand The second question is how synchrony can play a func-
not for otherg9-12. In particular, some studies show that tional role for scene segmentation when various objects are
synchrony depends on the amount of conflict in the stimulugpresent. An attractive model for representing various objects
presented13,14]. Thus if features are part of the same ob-in a visual scene in a translationally invariant manner was
ject, the corresponding neurons synchronize. If the same fe@roposed by23]. The translational invariance is achieved by
tures are not part of the same object, no such synchronizatidearning strong lateral connections encoding rigid relations
occurs. The observed synchrony has in fact two componentdetween object features all over the retinal image. As a re-
one is the presence or absence of a central peak in the crosailt, severalorbit assembliesare activated for each object,
correllogramg11,14). An additional aspect is the presence which are detected by individual neurons in a separated
or absence of an oscillatory component in the autodayer. An additional set of lateral couplings between these
correllograms and crosscorrellograf®10]. Both phenom-  neurons is defined. The result is, more or less, that excitatory
ena could play a functional role as a mechanism for featureonnections develop between neurons that both participate in
linking. the same object and inhibitory connections between neurons
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that participate exclusively in different objects. By assuminganalysis to objects that can be defined simply in terms of the
an oscillatory neuron model, segmentation of the image in amountof local supportive evidence in a compact region of
number of objects is achieved in the temporal domain. Thighe stimulus space. Examples of such objects are lines, bars,
model was given a solid computational basis and was ang' patches of constant texture: they involve only neurons that
lyzed theoretically if24,25. are sensitive to the same, or similar, feature values. A spa-
In th|s paper we propose Corre|ati0ns that arise in netI|a||y incoherent ObjeCt has by definition a |a|’ge Val’lablllty in
works of stochastic binary neurons as a mechanism to adéatures. A spatially coherent object has a clear dominance of
count for both feature linking and segmentation. Stochasti@ne feature value. We will show how this behavior of feature
networks provide an attractive model for several reasondiNKing can be computed analytically. In addition, we will

Assuming detailed balance, the stochastic dynamics of thed¥i€fly sketch how this mechanism can also account for seg-

networks leads asymptotically to the Boltzmann-Gibbs disMentation of objects in a scene. .
In Sec. Il we introduce the basic model of stochastic neu-

tribution. Therefore the effect of stimulus-dependent correla-

tions can be analyzed in equilibrium in the mean field frame/ON dynamics and its relation to spiking neurons. In Sec. Ill

work and the linear response theory. Such analysis is mor&e introduce an abstract model for the visual cortex consist-
complicated or not possible for oscillatory models. This ap-Ing of a two-dimensional grid of hypercolumns. Assuming

proach was first done if26], where (time-delayed correla- nearest neighbor interaction between neurons that code for
tions were studied in netv;/orks composed of several Subi_dentical feature values and absence of interactions between
populations of stochastic binary neurons. The issue of hovgifferent feature values, the model factorizes as a product of

the correlations depend on the stimulus was not addresséﬁmg mod.els. In Sec. IVA we considerthe case of a stimulus
there. that consists of a humber of spatially coherent patches of

Another advantage of the equilibrium formulation is that constant stimulus value. The model reduces to a simple two-

it offers an immediate solution to learning based on corredimensional Ising model with constant external field. We

lated activity using the Boltzmann machine learning paral/€VieW how the mean firing rate and the correlations can be
digm [27] which has a clear information-theoretic basis.Computed as a fu_nctlon of the stimulus mte_nsny and the
Learning in more complex networks involving various typesIateral coupling, using mean field theory and linear response

of inhibition, causing competition in subnetworks, can bel€ory- We discuss how these results apply to feature linking
achieved using the approach outlined 28] when the image consists of several objects. In Sec. IVB we

A third advantage of the proposed approach is that highe?btain our mgin result on dynamic fgaturg linking showing
order statistics may also play an important functional role inIhOWI the_jpatlal .coherence 0‘; an ObJe.CtI'I i.e., the amfount of
artificial networks. The experimentally observed stimulus-2¢& €VIdence in support of a spatially constant feature
dependenttwo poiny correlations are only the simplest ex- value, affects the correlations between neurons. We perform
ample. The proposed Boltzmann machine neural network i perturbation expansion around the coherent solution of Sec.
the simplest artificial system to study these phenomena. A. Our analytical aqu simulation results show _the depen-

gence of the mean firing rate and the correlations on the
oscillate all the time. Setting up the dynamics such that OS_spat|al coherence in the stimulus. In the discussion, we will

cillations arise under some conditions and not under others igr'eﬂ)ll Qddress the issue _Of segmenta}thn anfd outllnle h°"_V
in general difficult. Therefore it is difficult to obtain feature CO!'elations can segment images consisting of several previ-

linking in these models. This problem was partly overcomeOUS|y learned objects. We plan to make full treatment of this

in [18]. On the other hand, to obtain stimulus-dependent corl®PIC the subject of a future paper.
relations in stochastic models is quite straightforward, as we

will see. . e _ Il. STOCHASTIC NEURON DYNAMICS
The proposed mean field treatment is different to what is
usually done in attractor neural network29,30. Those In this section we introduce our basic model. We use

analyses are typically applied to networks for which in thebinary neurons, which can be in two staggs += 1. In order

large N limit the mean field predictions become exdfdr  to arrive at an equilibrium description, we use so-called se-

example, fully connected netwonksTherefore no non- quential dynamicgsequential dynamics is not strictly neces-

trivial  correlations exist in  these networks: sary for an equilibrium formulation, see, for instance,

(81S; . . .Sy =mym, . .. m, with m; the mean field activ- [31,32). Neurons are randomly selected one at a time at

ity. To obtain nontrivial correlations, one must therefore nec-discrete time steps. The probability of firing for neurign

essarily look at models where the mean field prediction isyiven the current state of the netwaoskis

only approximately correct. This is generally the case in

models where the number of connections per neuron does R

not grow proportional to the system size as well as in models T(s/ =1|s)=3[1+tanh Al;)], (2.1

with multimodal equilibrium distributiong26]. As an ex-

ample we consider here the simplest case of a two-

dimensional Ising model. Whereli=2?zlwijsj+hi (h; denotes a threshold or external
The main result of this paper is to show how a network offield contribution for neuron). After long times, the prob-

binary neurons can display stimulus-dependent feature linkability to observe the network in a stadebecomes indepen-

ing: correlations between neurons are a sensitive function adent of time. When the weights of the network are chosen

the spatial coherenceof the stimulus, without altering the symmetrically, this time-independent equilibrium distribu-

synaptic connections between the neurons. We restrict oudion is the Boltzmann distribution and is given by
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approximately every refractory period. For langethe aver-
age number of spikes emitted betwaeandt + 7 is given by
k=1(Yi(K))=(Un)Zp_ 3 si(k) + 1]=3[si(1) +1]. In the
last step, we have made the assumption that the probability
of firing is approximately constant on the fast time scale
‘|-| I O A

S 12131 213113123

.............. The averagé ) is over possible random choicesjgk) only
and not over ensembles of networks as is done in(EQ).
Thus we can interpret;(t)=*1 as “one or no spike emit-
ted in the intervalt,t+ 7],” respectively. By construction,

+ ___________ + no more than one spike can be emitted in this time interval
I I 1 I O B

neuron 1

when 7 is chosen as the refractory period.

Therefore in terms of spikes the dynamical rule Ejl)
- becomes that the neuron integrates all incoming signals with
+ + zero time delay over a time and each incoming spike gives
I I Y

neuron 2

a contributionw;; to the postsynaptic potential. This spike
interpretation is consistent in the sense that first translating a

spin state§(t) to a spike state and then performing spike

dynamics yields the same result as first performing spin dy-

namics, Eq(2.1), and then translating a spin state in a spike
- state.

neuron 3

lll. ARCHITECTURE

FIG. 1. Spike interpretation for network of stochastic binary  Experimental findings indicate that neurons in the visual
neurons for the simple case 0¥ 3. Time for update of the neuron cortex that encode similar features have a larger probability
states is discretized as k7o, k=1, ... . Topline: For eactk one  of being connected than neurons that encode dissimilar fea-
neuronj (k) is chosen at random. Bottom three lines: Neuifk)  tures. In addition, these connections are short range and the
is updated using Glauber dynami¢solid horizontal lines The  probability to find a connection decays with distant®ee
states; of each neuron remains unchanged when other neurons arg3] for orientation selectivity[34] for color selectivity)
updated(dashed lines Spikes are emitted when the neuron updateneyrons that encode for different features are presumed to be
andthe new state is;=1 (vertical solid lines. less connected. Here we will take a simplified approach and

L assumel) that features can take a discrete number of values
s a=1,...m, (2 that neurons encoding for different feature
p(s)= Zexp{—,BE}, 22 values are not connected, af®) neurons encoding for the
same feature value at neighboring retinal positions are con-
with nected with excitatory symmetric connectiows Thus the
model becomes a product of independent Ising models, one
E—_ 12 wiss—S his, for each feature value.
I 2 R B sl The equilibrium distribution of the feature detecting neu-
ronss in feature layerx, given a stimulus, is given by
and

1 1
pa(S|X):Z—(X)eXF<§2 Wijsisj+z hi’a(X)Si .
2= expl- BE). " ; | 3.1

Note that the form of Eqs(2.1) and (2.2) allows us to as- Si— ~1, i=1,...n denote the firing of the neuron with
sumeB=1 without loss of generality. feature preference at grid locationi . w;; is the connectivity

matrix, which isw between nearest neighbors in the grid and
zero otherwise.
x denotes the external stimulus, i.e., it consists of a two-
In order to study synchronous firing we need a spike indimensional array of pixel valuesh; ,(x) describes the
terpretation of the binary neurons. Updating occurs one newstimulus dependence of the neuron with feature preference
ron at a time at discrete time stepsy, k=1, ... asshown « at grid locationi on the stimulus. It is well known that
in Fig. 1. Let the neuron that is updated at iteratiorbe  nearby neurons in the cortex have overlapping receptive
denoted byj (k). Let y;(k)=1,0 denote whether or not neu- fields. As a result, the sensory activity reaching nearby neu-
ron i spikes at iterationk. Thus y;(k)=1<[si(k)=1 rons can generally not be varied independently. However,
Njk)=i]. here we choose to ignore this fact and assume that the stimu-
For large networks, each neuron is updated approximateljus at each grid location can be varied independently,
every nty seconds, withn the number of neurons in the x=xy, ... X,, andh; ,(x)=h,(x;).
network. If we choosentg= 7, with 7 fixed of the order of Although sensory neurons have a preferred stimulus, this
the refractory period of the neuron, every neuron is updategreference is usually not very specifimoarse coding That

Spike interpretation
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on the parameters in the netwosk, h,, andh_, and on

the coherence of the stimulus. We first consider in Sec. IVA
a fully coherent stimulus and analyze the correlations as a
function of the lateral coupling and the stimulus strength.
From this analysis we will find under which conditions a

visual stimulus composed of constant patches will display
correlated firing within each patch and uncorrelated firing
between patches.

Subsequently, in Sec. IV B we will analyze how the cor-
relations within one patch depend on the coherence in the
stimulus. We will see that correlations gradually disappear
when the incoherence increases.

A. Correlated firing in assemblies

We can perform a mean field computation of the mean

FIG. 2. In the simple Ising model, connections are only betweerfIiNg rate in each of the patches. In addition, we can com-
nearest neighbors with identical feature value, which implies thapute the correlations as well, making use of the linear re-
objects are “patches” of constant feature value. Stimulus values iffPonse theorem. o _ _
the stimulus layer only affect neurons at the same location in the The energy of the system is given, in accordance with Eq.
feature layefs). In regions where the stimulus value=a (dark (3.1, by
area$ the local field contribution to neurog) in layera ish, . In 1
the remaining regions; # « (light area$ and the local field contri- e (VL o e
bution to neurors; in layera is h_ . E 2, sifi () + ZZ, WijSiS; -
is, neurons in layerr can have graded responses dependin% : '

' : ; onsider the mean fieldMF) ener
on the amount of overlap with the stimulus. In our model we AMF) oy
will ignore coarse coding. We assume that the stimujus
either compatible with feature;, andh,(x;)=h, or x; is E, o= v
. . X ' - =2, si{hi(x)+H;}, 4.7
incompatible with featurer, andh,(x;)=h_. In the rest of ve= 22 {00+ H) @D
the paper, we will analyze only layer and drop the index

a. For this layer, only the presence or absence of featurgnere we have introducedmean fieldsH; that approximate
value a at locationi is relevant. Therefore we will redefine e |ateral interactions. Define the mean field partition func-
x;j==*1 to indicate the presence or absence of featu s {jgp

locationi, i.e.,h,(x;)=3(1+x)h,.+5(1—x)h_. h_ can

be interpreted as the neural threshold &ndas the sum of

the external stimulus and the neuron threshold. ZMF=Z exp— Eyp)=11I;2coskh; + H;).
S

IV. STIMULUS-DEPENDENT CORRELATIONS . ) . .
The partition function can be computed in the mean field

Consider a visual stimulus that may contain various ob-approximation 35]:
jects. It is a basic assumption of the present study that ob-
jects are detected through the cooperative effect of the exter-

nal input and the lateral excitation or inhibition. Thus objects Z= 2 exp—E)= Z exp(—Eug+Eue—E)

are “encoded” in the lateral connectivity structure of the s s

neivvork in the sense that if the st|mulus_|s suff|c_|ently simi- — Zue(eXp Epe— E))wie

lar” to the lateral structure the neurons involved in the struc-

ture will fire synchronously. ~ZyreXp{Epye—E))=2". (4.2

In the simple Ising model as introduced in the preceding

section, connections are only between nearest neighbors Witthe mean field approximation is in the last step and is related
identical feature value, which implies that objects areyq tne convexity of the exponential functigexpf)=exp(f).

“patches” of constant feature value, as shown in Fig. 2. A¢y = denotes expectation with respect to the MF distribu-
coherentobject is therefore a patch of constant features. Insjgp-

coherence arises when a subset of the stimulus elicits other

feature responses. The coherence is a spatial property of the 1

stimulus and measures the amount of local evidence in favor Yy =— f(S)exn —Euc). 4.3
of the hypothesis “patch of feature value is here.” A (Fowe ZMF2§ ()exp(~Ewr) (
family of stimuli is considered, such thgi(x;=1)=p-.

Thusp, =3 corresponds to a fully incoherent stimulus andFrom Eq. (4.3 we obtain (s;)ye=tanhfy+H;)=m and

p. =1 corresponds to a fully coherent stimulus. (sisj)me=mim;, where we have introduced the mean field
In this section we will study how the synchrony dependsmagnetizationm; . Thus we obtain the mean field free energy
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—F=Inz'=2, In[2costth,+H;)]— >, H;m; "o A
: ! 0.5 05
1
+ EIEJ: Wiy mim; . (4.4 % o1 oz 03 o4 % oz o4 o6 o8
Ao ! © Aot ! (C)]
The mean field$1; are given by minimizing the free en-
. 05 0.5
ergy:
(?F o0 0.1 0.2 0.3 0.4 OO 0.2 0.4 0.6 0.8
g = (-m) (Hi—; wi;mj) @9, o
oO 0.1 02 03 04 00 0.2 04 0.6 0.8
mi:tanlﬂ(hi‘FHi):tan}‘(z W,ij-i-h, . (46) ' Two ’ ’ w ’ ’
i

. L FIG. 3. Average neuron activity and correlations for coherent
We can go beyond the mean field prediction stimulus ;=1 for all i) as a function of lateral coupling for vari-

(sisj)me=m;m; in the following way. First observe that true s values of stimulus strength, =0 (solid), h, =0.1 (dashedl
correlation is andh, =0.3(dotted. (a) and(b) Average neuron activityn versus
) 2 couplingw. (c) and (d) Nearest neighbor correlatior,, versus
(si8))= l d“z %i d°z couplingw. (e) and(f) Next-nearest neighbor correlatioAg, ver-
iz dhidh; Z' dhdh; ’ sus couplingw. (a), (c), and(e) are results of the mean field com-
putation. (b), (d), and(f) are simulations. The simulations are ob-
When we now make use of E(.4), we must be aware that tained with a grid of 1&10 neurons with periodic boundary
the mean field$d; depend on the external fields through  conditions. Results are computed by temporal averaging over
Eq. (4.6). Therefore, using the approximate free energy of5000 updates per neuron. Errors in all quantities due to spatial

Eq. (4.9, averaging are less than 0.05.
ilnz’ J ﬂ i Inz’' = When m;=m independent of, A=A° can be computed
dh, ah 7 Jhy dH; using the Fourier transform. For the cubic two-dimensional

Ising lattice we find
In the last step we have used E4.6), by which all contri-
butions proportional t@H;/dh; vanish. Thus

1
1 d dm, A= 2 )zf dpG(p, - )eXp[I(k—l) pl, (4.9
(sisj)~ 7 OIh(Z m;) =mm; + dh 4.7

Equation(4.7) is known as the linear response theorem anduith ~ G(p,y)=[y—2w(cop,+co,)]t and [dp
describes how spins correlate around the mean field solutiogfw dpy/ ™ dp,. K,I denote the two-dimensional coordi-

(siS)me=mym . nate vectors for the location of neurkrl in the grid, respec-
By differentiating Eq.(4.6) we derive that tively. The result Eq(4.9) is a straightforward generalization
S of results by{40], obtained folhh=m=0. Equation(4.9) can
| . ! :

2 ( 5 — ~)dmj=dhi. be numerlcally integrated, using _sFandard methods.

7 \1-m In Fig. 3 we show the mean firing rates and the correla-
tions as a function of the lateral coupling strengthfor
various values of the stimulds The left-hand figures are the

am theoretical predictions from the mean field computation, Eq.

(sis;)—(si){(s;)= _':Aij , (4.9 (4.6, and from the linear response function, £4.9). The

dh; right-hand figures are the corresponding numerical simula-
1 tions. It is well known that the critical coupling.=0.44 is
with Ajj~= &j; /(1 m?) —w;; . incorrectly predicted by the mean field computation
The matrix A™~ is well known and controls the linear We M= =0.25. Nevertheless, the mean field Computa’uon
stability of mean field 50|UU0”S as a function of the coupling. qualltatlvely reproduces the main characteristics that are

Negative eigenvalues &' indicate bifurcation to broken found in the simulations. Sizable correlations for nearest

solutions withm#0. In[36—39, such a bifurcation analysis neighbors are found for smali and w<w,. Long-range

is performed for a large class of neural networks. In thecorrelations(next-nearest neighbor and mprequireh~0

present work we restrict our attention to stable solutions anédndw~w;. We are mainly interested in the correlations at

use A to investigate the dependence of the correlations adistance 1, because experimental findings indicate that sig-
defined in Eq.(4.8) on the stimulus coherence. nificant correlations fall off within several mi¥1]. Ana-

Thus
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FIG. 4. Top left: Sensory input to layer is present in the two
black areas l{=h,=0) and absent elsewhereh{£h_=—4), ) ) )
w=0.4. Top right: CorrelationA;; with i the neuron located at FIG. 5. Phase plot as a function of lateral coupngnd stimu-
lattice site(6,4). White (black encodes(s;s;)—(s;){s;)=0,1, re- lus coherence. . h, =0 andh_=-0.5.
spectively. Bottom left: Correlation with poiri8,3). Bottom right:

Correlation with point(7,7). m.. for neurons coupling to the stimulds. , respectively.

( )y denotes spatial averagingy),=(1n)Z;yi=p.Yy+
tomical studies show that the probability of direct synaptic+p_y_ for some quantity. » denotes the number of neigh-
connections is high when neurons are separated by this ordgprs of each neurofiv=4 for the two-dimensional(2D)
of distance. Ising mode.

We can apply the above analysis in each of the patches of The mean field$. are determined by extremizing the
constant stimulus. By ChOOSir\g%WC, h+:O, andh_<0 free energy, giving—|+: H_=H, with
we assure thatl) in regions of the network that receive
coherent inputa, correlations establish and neurons fire at H=ww(p,m,+p_m_), m.=tanh(h.+H).
approximately half their maximum firing rate ai@) in the (4.11
remaining regions thed sensitive neurons are more or less
quiescent. Simulations in a network consisting of anThus in this approximation the lateral contributions to the
11x 11 grid of neurons with open boundary conditions aremean firing rates are identicaH(, =H_=H) in the two
shown in Fig. 4. populations. The coupled system of E4.11) can be solved

As is clear from the figure, all cells belonging to a coher-using standard fixed point iteration. The phase plot is given
ently stimulated part of the stimulus are highly correlated,for w andp, for the choice of stimulus strength, =0 and

whereas cells belonging to different regicisame or differ- _=—0.5in Fig. 5. First note that for fully coherent stimu-
ent«) are not correlated. lus (p+=1) the critical coupling isn=0.25, as mentioned
before. For incoherent stimuli also a critical coupling exists
B. Coherence-dependent correlations which increases with increasing incoherence. In phases 1 and

2, the network response is “data dominated” and “prior
dominated,” respectively. In phase 1 the neural activity is
more determined by the contribution from the stimulus than

ered, such thap(x;=1)=p-. b P . ;
. \ = - . y the contribution from the lateral coupling and in phase 2
For a fixed stimulus, the network can be divided into two, ;- \arsa. In phase H~ — vw, except on the ling, =1

populations of neurons, those that are stimulated by featur\?/hereH —0. In phase 2H~ + »w
a with local field h, (x;=1) and the remaining neurons R L . . .

. ; . . Wh h I h €. k ff
with local fieldh_ (x;= —1). We introduce two mean fields en the stimulus is incoherent, i.e., it takes different

H hich imate th tribution f th values at different sites in the network, the neural activity
+,— which approximaté the average contribution from emizmi [Eq. (4.11)] is also site dependent. The site depen-
lateral interactions in the- and — populations, respectively.

. . dence breaks the translational invariance in the network and
Thus the mean fields in Eq.(4.1) become H; the Fourier transformation, used to arrive at E49), can no
=3(1+x)H. +3(1—x)H_. In terms of the average quan- |onger be applied. We can, however, perform a perturbation
tities H. andh.. the free energy Eq4.4) becomes expansion ine;=1/(1—m?) — 1/(1—m?) around the transla-

(Fy=—p.In[2coslih, +H,)]—p_In[2costih_+H )] tionally invariant solution:

In this section we will study how correlations depend on
the coherence in the stimulus. A family of stimuli is consid-

W A=(Ayt+e) 1=A%1—eAgt+(eAg)?+-- -],
—T(p_m_+p+m++2p+p_m+m_)+p+H+m+ ) o ) )
whereA, is the matrix given by Eq4.9) ande is a diagonal
+p_H_m_, (4.10  Matrix. mis the value of the constant neural activity around
which we perturb, whose numerical value will be fixed later.
where we have introduced the mean field magnetizations The first order correction is given by
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(1) 5 (a) 05} (b)
2 AKJEJ Oz 0//_/
(e) 1 2 -0.5_———{_’:/ -05 /,,:/

X > > L2 e 2 B F=-Z .-
:_WJ dp G<p’1—m2) exdi(k—1)-p]. 106 08, 1 By 08, 1
(412 0.5% O.SM
o o 0 L
The second order correction is given by ost ™ os| .-

-1 -1 -

06 08 P, 1 06 08 P, 1
<kf>:2 ALEA] €A

0.5} (e) 0.51 (f)

2> 1 o— | o}
x -
2 )4j dplj dsz(pl- T2 ) (pzym) ‘O'f-_—_f;,::‘_‘- Rl T
< > Y 08, 1 Y 08, 1
X
><exr[|(k l) p1]+ (2m )Zf dp G( ) FIG. 6. CorrelationsAy; (solid line, m, (dashed ling and
oL m_ (dash-dotted lineas a function of stimulus coherengs, .
xexdi(k—=1)-p]. (4.13 Left-hand figures are analytical results with=0.23. Right-hand

results are simulations witlv=0.35 in a 10< 10 grid with periodic

In arriving at Eqgs.(4.12 and (4.13 we have used that boundary conditions. Results are computed by te_r_nporal averagi_ng
over 5000 updates per neuron. Errors in all quantities due to spatial

2 yexp(k- p)=(2m)Xy)a(p) for yi= ey, i , respectively. averaging are less than 0.08 and(b) h, =0 andh_=—0.5.(c)
In this perturbation expansion, we have the freedom tQyng (d) h,=0.1 andh_=-05. (¢) and (f) h,=-0.1 and
choose the homogeneous solutisnaround which we ex- p = _5.
pand. We chosem such that (e),=0, which yields

1/(1-m?)=(1/(1-m?)), and which minimizes (%) lar values. Deviations from this assumption are shown in

= p+p,[1/(1—mi)— 1/(1-m?)72. Figs. 6c¢) and 6d) and Figs. 6e) and &f), respectively. For
Finally, we obtain h. >0 a fully coherent stimulus leads to too high mean firing
rates, which reduces the correlatidsgee Eq.(4.8)]. In this

_ 1 - > 2 case intermediate coherence leads to maximal correlations.
A= 5| dp G| p, (e9)xC ; L -DITE e
(2m) 1 For h_<0 for no stimulus there are sufficiently high firing
X rates to produce strong correlations.
Xexr[i(lZ— r).5]+o(63), (4.14 In Fig. 7 we give an example of the spiking behavior of
the network under various stimulus conditions.
with
V. DISCUSSION

1 - - 1
= (277)2,[ dp G( p,< 1—m2> ) (4.15 A. Feature linking
X

We have proposed to use a network of binary spins to

We are now able to compute the effect of stimulus coherstudy the experimentally observed phenomenon of stimulus-
ence on the correlations between stimulated neurons. Weependent correlations in the visual cortex. As a crude ap-
chose the lateral coupling=0.35 in our simulations to be proximation to model the cortex we have proposed a separate
close to the critical coupling but not too close to avoid prob-Ising model for each of a number of distinct feature values.
lems with mixing of phases. For each coherence, we com- We have shown how the correlations depend on the
pute the mean firing rates from E@.11). Subsequently, we strength of the stimulus, on the strength of the lateral con-
compute the correlations from Eqgt.14) and (4.15. The  nectivity, as well as on the coherence of the stimulus. These
results are given in Fig. 6. results were obtained using a mean field computation for the

The results from our analytical computation are in quali-average firing rates in the stimulated and nonstimulated
tative agreement with the simulations. In Figéa)éand Gb) populations, and using a linear response calculation for the
we see a monotone increase of the correlations between paleading order correlations. These calculations were verified
of stimulated neighboring neurons with the coherence in thevith numerical simulations.
stimulus. In addition, we see that also the average firing of We conclude that correlations between connected neurons
these neurons is strongly dependent on the coherence. Thoan be present or absent depending on the coherence in the
for incoherent stimuli we observe low incoherent firing ratesstimulus. This effect of dynamic linking is achieved without
and for coherent stimuli we observe a correlated firing at fast synaptic changes and is caused by the coherence in the
their maximal firing rate 1. stimulus only. In addition, we observe that also the mean

We observe that the relation between coherence and cofiring rates are strongly affected by the coherence in the
relations is strongly influenced by the strength of the stimu-stimulus.
lus h, . h, should be close to zero, which means that the Coherence in the stimulus was controlled by varying the
external stimulus and the neuron threshold should have simpercentage of “on” stimuli, independently for each stimulus
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is important to establish at what time scales the correlations
establish after onset of the stimulus. For unfrustrated systems
of the type that we have studied so far, this may be analyzed
within the linear response approach.

In the present work we have established the stimulus de-
pendence of correlated firing for fixed later@nd feed-
forward) connections. In a more realistic network, the lateral
connectivity would arise from learning. The connections that
will establish will be between those neurons that are corre-
lated in the stimulus environment. It is interesting to note
that the most straightforward learning paradigm for stochas-
tic networks, i.e., the Boltzmann machine learning rule, is
A indeed based on correlated activ{ty(s;).

. . B. Scene segmentation
FIG. 7. Example of the spiking behavior of the network under

various stimulus conditions. Top row shows three stimulus condi- [N this paper we have shown how correlations can estab-
tions with increasing coherence of featureSecond and third rows  lish in stochastic networks, and how these correlations de-

show a short segment of the spike trains of two neighboring neupend on the coherence in the stimulus ensemble. We have
rons that both receive stimulus. The total length of the train is demonstrated how this coherence dependence can be ana-
50r seconds. Bottom row shows time-delayed crosscorrellogramlyzed theoretically using mean field and linear response
(si(0)s;(1)) (solid line) and square mean firing ratés)? (dashed  theory.
line) as a function of time difference However, the simple Ising model is quite far removed
from how it is generally assumed that patterns are stored in
location. This gives a one parameter family of stimuli wherethe cortex. In addition, it is not clear how this mechanism
coherence is in fact the “luminanceffraction of pixels can be used for scene segmentation. Therefore in this section
“on” ). Clearly, other families of stimuli can be chosen. Forwe will give a heuristic argument for how the main ideas of
instance, in[42] the stimulus itself is modeled as an Ising this paper can be accommodated in a more realistic setting.
model. The stimulus is now defined by two parametersie plan to provide a more thorough treatment in the future.
which are the lateral Coupling and the external field. One can Consider a network of neuronss; = = 1, each encoding
then consider the one-dimensional family of stimuli defineda different featur¢25] (or orbit assembly23]). Suppose that
by varying the lateral coupling and with external field zero.the objects are nonoverlapping, i.e., features appear uniquely
Due to the lateral coupling, these stimuli have the propertyn one object and not in others. Suppose the objects are rep-
that for the same luminance, the coherence in the stimulus issented neurally byp patterns &=+1,u=1,... p.
larger than for those considered in this paper. Fully coherenéiu: +1 denotes the presence or absence of featimeb-

stimuli and fully incoherent stimuli are th_e same in bOthject,u. Suppose that as a result of training, positive connec-
approaches. One can analyze the phase diagram in the megfl,s\y . develop between neurons encoding features of the
field approach, as was done p§2], and one can probably sume gpject and negative connections develop between

compute the .correlations using the. Iine.ar response computgy, ;rong encoding features of different objects. Examples of
tion, in a similar way as was done in this paper. It should bgy .1, learning rules are given 23,25,

expected that the results from such an analysis will be quali- The energy of the system in the absence of external stimu-
tatively the same as those obtained in this paper, with thfus is given by
difference that one will observe increased correlations at the
same luminance level, compared to the results presented in
this study.

Clearly, we are not proposing the Ising model as a serious —E= 2 2 Wi SiSj + 92 Si -
computational model for the cortex. An important restriction b '
of the present work is that feature sensitivity of neurons has
been discretized and neurons have been assumed to be o

sensitive to one feature value. In addition, we assumed thay ch(t)tosmgM0= —vx;,S(IZ/p_—_l) or;Ee ?ﬂn etr;\]sny Shlqt\:v. that
only neurons that are sensitive to identical features ar e patterns;” are global minima oF. Thus the equilibrium

coupled horizontally. One should formulate models withdistributionp(s)=(1/Z)exy —BE(s)] hasp peaks around the

more complex horizontal interactions, for instance, fully con-9100@l minima. Additionally, local minima of may give
nected excitatory interaction within hypercolumns or inhibi- "S€ to small subpeaks, which we will ignore here. As a very
tion within hypercolumns which leads to competition be- crude approximation, therefore, we have
tween feature detectof®otts model In the present model,
receptive fields are nonoverlappintspatially and are
strongly specialized. One should investigate the effects of <Si>:2 Sip(S)%EE gr=
redundancy such as spatial overlap and coarse coding on the s pa
correlations.

The analytical results obtained pertain to the equilibrium
situation. To relate the correlations to functional behavior, itand

2-p
p
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4( 1
p

1—5) when i,j belong to the same pattern
(sisj) —(si)(s))~ 4
F when i,j belong to different patterns.

Thus in the absence of a stimulus all neurons fire with the same rate, but this firing is correlated depending on whether the
neurons encode features belonging to the same or different objects.

Consider now that an external visual scene is presented consisting of a Sulisgbbjects out of the objectsé*. Now,
an additional term should be addedEoof the form —=;hfs;, with h{= hX . sé the external field contribution due to the
subset of patterns that are present in the sceng.a free parameter, related to the strength of the feed-forward connections
between the retinal image and the present layer. The effect is that the global minimarwidfby attained by&*, u e S,
whereas the remaining objects will become local minima, with enetgy |2 higher than the minimal energy. By the same
argument as above we have

(s) Tq when i belongs toueS
S;)~

—1 wheni belongs toueS
and

4

1
a(l—a> wheni and j belong to the sameweS

<)\ — (g N A 4
(sisp) —(si)(s) — when i and j belong to differentu,veS

o]

~0 wheni or j belongs tou¢S.

Thus all neurons that encode features that are present in thienal bases of attraction. It should be expected that these
scene fire with the same rate and all other neurons are quéontributions do not qualitatively change the conclusions
escent. The firing between active neurons is correlated defrawn above.
pending on whether the neurons encode features belonging The difference between the mechanism for feature bind-
to the same or different objects. ing based on oscillations and the above mechanism is quite
A comment is in order here on the validity of the approxi- striking. The oscillatory solution to segmentation is to repre-
mation to replace the sum over all states by just the maximaent the different objects one after another in time like a
of the probability distribution. Whe— « this approxima- periodic movi€g[23,25. The solution based on correlated ac-
tion is exact. However, in this limit, the transition times be- tivity is, on the other hand, not periodic but stationary. There
tween theqg different phases also become infinite, which im- exists a time-independent equilibrium probability distribu-
plies that any biologically reasonable dynamics will gettion and the network is given a stochastic dynamics such that
stuck in one of the phases. In other words, ergodicity is broover long times all states are visited with this probability. As
ken and ensemble average and time average can no longerWwe saw, this leads to time-independent correlations between
identified. ThusB should be chosen small enough such thatneurons depending to which object they belong.
the transition times between the optima are reasonably small.
For lower B, the bold approximation above gets worse and
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