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Macroscopic Size Effects in Second Harmonic Generation from Si(111) Coated 
by Thin Oxide Films: The Role of Optical Casimir Nonlocality
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Optical second harmonic generation from Si(111)-SiO2 interface shows a strong nonmonotonic 
dependence on the oxide thickness between 2 and 300 nm. The Brewster angle of incidence, p ­
in, p-out combination of polarizations and strong, uniform suppression of this effect by near-index 
matching fluid exclude trivial multiple reflections and microscopic interface effects. The observation 
can be interpreted to originate from the optical (Casimir) nonlocality stemming from the thickness- 
dependent electron-electron interaction via virtual photons of the quantized electromagnetic field. 
[S0031-9007(96)01932-1]
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Zero-point fluctuations of the electromagnetic field give 
rise to long-range (Casimir) interactions, that, for example, 
in the nonretarded limit are responsible for the van der 
Waals force [1]. Recent high precision measurements 
of the forces between an atom and a metallic [2] or 
dielectric [3] surface has renewed the interest in these 
fluctuation phenomena [4]. However, Casimir effects may 
have much wider consequences, ranging from biology 
to cosmology (see [5] and [6]). A beautiful maritime 
analogy of the Casimir effect was recently discussed in
[7], whereas vacuum fluctuations of the gravitational field 
may set a limit for the accuracy of length measurements
[8]. Generally, retardation effects start playing a role 
when the time necessary for the exchange of information 
(e.g., the travel time of a photon), exceeds a characteristic 
fluctuation time of the system of interest. Therefore, the 
relevant length scale thatplays arole is c / 2 v 0, with c is the 
speed of light and v 0 is the typical fluctuation frequency. 
The Casimir effects will manifest themselves when there 
are some sort of restrictions for the fluctuation spectrum, 
i.e., the boundary conditions imposed by a cavity. We 
will show that the oxide layer of a Si-SiO2 structure can 
be responsible for nonlocal effects in its nonlinear optical 
response that stem from the Casimir interaction.

Based on the inversion symmetry breaking at an inter­
face, optical second harmonic generation (SHG) at sur­
faces and interfaces of centrosymmetric media has been 
perceived as an extremely sensitive and versatile probe for 
surface-science studies [9], in particular, for a buried in­
terface like Si-SiO2. The inversion symmetry breaking at 
the Si-SiO2 interface has been associated with a crystalline 
structure discontinuity [10], disordering [11], local strain 
[12], or band bending [13,14].

Typically the spatial scale characterizing a size effect 
observed in an SHG experiment is an informative “finger­
print” of its underlying mechanism. Two specific length 
scales can be distinguished for the oxide-thickness depen­
dence of SHG from Si(111)-SiO2: (i) r0 ~  1 nm, deter-
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mined by the morphological and electronic structure of the 
interface [12,15], and a measure of the microscopic opti­
cal nonlocality [16], and (ii) lopt ~  100 nm determining 
the nonuniformity of the optical fields in the medium due 
to optical interference [17]. In these two limiting cases 
the macroscopic and microscopic aspects of the problem 
separate quite distinctly and can be treated theoretically 
using traditional approaches.

The scale r0 enters into the quantum-mechanical expres­
sion for the interface quadratic optical susceptibility. In 
the electric-dipole approximation the quadratic response of 
a system to a monochromatic external field E ext (r , t) is cal­
culated using the Hamiltonian H  — ƒ P (r)E ext ( r , t) d 3 r , 
where H  is the Hamiltonian of the system and the operator 
of the macroscopic polarization P (r) is obtained by spatial 
averaging the microscopic dipole-moment density over the 
volume ~ r0 . A conventional approximation for H  (de­
noted by H 0) includes the interaction of the charged parti­
cles of the medium with the modes of the electromagnetic 
field with wavelengths of the order of the lattice constant, 
whereas the interaction with longer-wavelength modes 
is neglected [16]. This yields the local quadratic suscep­
tibility x bare vanishing everywhere except in a layer of 
thickness ~ r 0 at the Si-SiO2 interface, where the inver­
sion symmetry is broken. The scale lopt characterizing 
the linear-optical features of the inhomogeneous medium 
appears in the solution of the macroscopic Maxwell equa­
tions, and may lead to a very strong SHG thickness depen­
dence, as observed experimentally [17].

However, for a typical optical mode h v 0 =  3 eV, the 
relevant length scale for retardation effects c / 2 v 0 ~  lopt. 
This means that also less trivial size effects may occur 
within the intermediate range r0 #  D  #  lopt as a result 
of size dependent nonlocal optical effects.

In this paper we show that this so-called optical Casimir 
nonlocality can give rise to a substantial SHG thickness 
dependence from Si-SiO2 interfaces, for oxide thicknesses 
in the range of 2 -300  nm. The interface localization of
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the nonlinear optical source and the possibility to vary 
its inhomogeneous environment (i.e., the oxide thick­
ness) systematically appear to be essential ingredients for 
the observability o f these nonlocal optical effects. The 
experiments have been carefully designed to allow an 
unambiguous interpretation o f the data: (i) the sample 
preparation technique is chosen in such a way to pro­
vide a uniform “sampling” o f the whole SiO2-layer thick­
ness range r0 #  D  #  lopt without affecting the buried 
Si(111)-SiO2 interface at the microscopic level; (ii) to 
avoid the effects o f multiple reflections the SHG mea­
surements are carried out for the p-in, p-out polarization 
combination at Brewster angle o f incidence on the outer 
(SiO2-air) interface; (iii) to reveal the role o f the SiO2- 
air interface the SHG measurements in air are comple­
mented by those for the samples immersed in a (almost) 
refractive-index-matching liquid.

The samples used were p-type (2 -5  V cm) Si(111) 
(±0.5°) wafers on which a high quality thermal oxide 
with a thickness o f 300 nm was grown previously at 
1000 °C in a dry oxygen ambient environment. The wafers 
were annealed at a slightly higher temperature in a N 2 
atmosphere to fabricate a smooth Si-SiO2 interface. The 
wafers oxidized from the same batch were etched with a 
buffered NH 4F solution with the rate of —25 nm /m in in 
3 X 3 and 5 X 5 checkerboard configurations to produce 
samples with the oxide thickness ranging in a steplike 
manner from 2 to 300 nm.

Single-wavelength ellipsometry with a HeNe laser 
(632.8 nm) was used to measure the oxide layer thick­
nesses prior to and after etching and to check the thickness 
uniformity for each particular square on the checker­
board samples. High resolution transmission electron 
microscopy images were made for both unetched and 
etched wafers in order to verify that the originally smooth 
Si-SiO2 interface, with a corrugation of just a few atomic

layers over macroscopic distances o f —100 mm along the 
interface remained so after etching.

For the SHG experiments the output at 1064 nm o f a 
Q -switched Nd:YAG laser was used, with 10 ns pulses 
o f 10-15 mJ in a 5 mm diameter spot, well below the 
damage threshold. The SHG signal was recorded using 
standard gated electronics. The SHG measurements were 
performed for the p  -in, p  -out combination of polariza­
tions, at an angle o f incidence on the SiO2-air interface 
o f 55.5°, which is very close to the Brewster angles for 
the fundamental and SHG radiation (55.3° and 55.7°, 
respectively).

The SHG intensity l2Vf as a function o f the azimuthal 
angle for oxide thicknesses o f 34 and 65 nm is shown in 
the inset o f Fig. 1. This dependence can be described in 
the following form:

(D, w) = jA(D) + B (D )elC(D) cos3w l2, (1)

where A(D ) and B(D) are the real thickness-dependent 
amplitudes o f the isotropic and anisotropic components 
o f the quadratic polarization, respectively, and C (D ) is 
the relative phase shift between them. The plots for A ,
B , and c  versus D  for the experiments in air and water 
are shown in Fig. 1. A very pronounced D dependence 
o f all three quantities occurs for the samples in air. 
It is noteworthy that (i) the scale of the initial steep 
rise in A(D ), B(D), and C(D) is about 50-100 nm:
(ii) in the thickness dependence of A , B , and c  there 
are distinct oscillations within the range from 100 to 
300 nm. A strong suppression o f all these SHG thickness 
dependences is observed for the samples being immersed 
in water.

At first, this last observation suggests a trivial op­
tical interference effect that is suppressed by the near 
index matching properties o f the water (nH2o =  1.33,

FIG. 1. The isotropic and anisotropic SHG components A and B and the cosine of the relative phase shift C vs oxide thickness 
D . Squares, experiment; lines, theory (■, thick lines: sample in air; □, thin lines: sample in water). The inset shows the rotational 
SHG anisotropy for D = 34 nm ( • ,  thin line) and D = 65 nm (O, thick line).
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nSiO2 =  1.45). However, this is excluded by the Brewster 
angle geometry. Alternative standard explanations for the 
oxide-thickness dependence can also be excluded. The 
band bending by the charge trapped in the oxide layer [14] 
or the strain o f the subsurface Si layer [12], in principle, 
can be thickness dependent; yet the suppression o f their 
thickness dependence by immersion cannot be as uniform 
as we observed within the whole oxide-thickness range 
from 2 to 300 nm. The contribution to SHG from the 
crystalline SiO2 transition layer [11] is thickness indepen­
dent for D  $  10 nm; moreover, immersion cannot affect 
this nonlinearity. The interference between two nonlinear 
sources situated at the Si-SiO2 and SiO2-air interfaces can 
exist at the Brewster angle of incidence and be suppressed 
upon immersion; however, the contrast o f the correspond­
ing interference pattern is too low because the SiO2-air 
interface nonlinearity is by at least 2 orders of magnitude 
smaller than that o f the Si(111)-SiO2 interface [18].

The key idea o f our interpretation of the experimental 
results is that the size effect is related to a long-range 
optical nonlocality stemming from the interaction o f the 
three-layer medium (Si-SiO2-air) with the optical-range 
eigenmodes o f the quantized electromagnetic field (QEF). 
To proceed with this hypothesis in a way known from the 
theory o f the Casimir force [1] we consider the Hamilton­
ian that explicitly includes the interaction of electrons with 
the optical QEF modes,

(2)

ywhere a a and a \  are photon creation and annihilation 
operators for an optical eigenmode A with frequency ® a ; 
W  is the operator o f the interaction between the quantized 
optical field and the electron subsystem

/W — -  P ( r )E (r ) d 3r , (3)

with the electric-field operator E ( r ) = X a  u a(r)aA  + 
H.c. The function u a  ( r ) describing the spatial behavior 
of E ( r ) is the properly normalized solution o f the classical 
electrodynamical problem for the three-layer system with 
bare (i.e., determined by H 0) dielectric constants. The 
presence o f the operator W  in the Hamiltonian leads to an 
additional long-range electron-electron interaction, medi­
ated by virtual optical-wavelength photons. This results 
in an interaction between the (electrical neutral) micro­
scopic polarization sources o f volume r03 via virtual QEF 
photons (see Fig. 2). This effect has the same nature as 
the Casimir force acting between macroscopic solids [19] 
and results in a drastic change in the quadratic response 
to the external optical field E ext( r , t ). The correspond­
ing second-order susceptibility x dressed calculated in the 
dipole approximation is essentially nonlocal, in contrast

x  ijk

FIG. 2. Contributions to x (2). The left-hand side shows the 
sketch of the classical formalism to calculate x bare. The right- 
hand side shows the sketch of the quantum electrodynamic 
approach for x dressed of an inhomogeneous system, taking both 
the Coulomb and retarding parts of the interaction into account.

with the conventional local dipole susceptibility x bare
[16]. We call this type o f large-scale spatial nonlocal­
ity the optical Casimir nonlocality.

The quadratic susceptibility x dressed given by the Hamil­
tonian (2) can be calculated by treating W  as a perturbation. 
The diagrams representing the higher-order terms o f this 
expansion consist o f several compact electron parts that are 
connected with virtual-photon propagator lines giving rise 
to the Casimir nonlocality. One o f such nonlocal diagrams 
is shown in Fig. 2. Because o f the symmetry selection 
rules for the dipole-moment matrix elements, the electron 
parts with an odd number of vertices vanish everywhere 
except within the Si-SiO2 interface layer of thickness r0. 
Electron parts with even vertex numbers take nonzero val­
ues in the bulk of both Si and SiO2.

Taking into account the lowest-order nonlocal term 
given by the diagram in Fig. 2 we obtain the following 
expression:

dressed^ r 0, r " , v )  — « (r, r ' ) « ( r ’ r " j  (r, v )  1  « (r , r " )

X ƒ
+'

Xjlm( r0’ v ’ V)Ynpik(r, v ,  V )G n (r, r 0, V ; D)Gmp( r , r 0, v  -  V ; D ) d V , (4)
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where G denotes the retarded Green function of the elec­
tromagnetic field [19] calculated in zeroth order of W  and 
depending on frequency and oxide-layer thickness; v  is 
the fundamental field frequency, 8 is the Dirac delta func­
tion. For the sake of brevity, we omit the explicit expres­
sions for the tensors X  and Y  corresponding to the triangle 
and tetragon electron parts of the diagram, respectively. 
Their structure is similar to that of the quadratic and cubic 
susceptibilities of the medium. x bare ( r ) is the local (D- 
independent) susceptibility.

The essential source of the thickness dependence is the 
virtual-photon Green function G entering into the expres­
sion for x dressed and containing D  as a parameter. In op­
tical terms the thickness dependence can be interpreted as 
originating from the multibeam interference for a whole 
set of virtual eigenmodes in the oxide layer. This in­
terference is not eliminated by our choice of Brewster 
angle geometry, as this only affects one particular wave 
vector. However, immersion in refractive-index matching 
fluid does suppress this interference. This directly follows 
from Eq. (4), since the Green function G becomes thick­
ness independent in that case. Therefore, the thickness 
dependence of the SHG signal disappears upon immersion 
though the nonlocal Casimir contribution is still present.

For comparison with experiment we used a simple 
model that, however, contains all qualitative features of 
the effect. In particular, X  and Y  are taken in the factor- 
ized form, Xjjk(V) =  Xjjkm(V), Y jk l(V) =  8 j8 « m (V ), 
where Xijk reproduces the tensorial features of the 
quadratic susceptibility of the Si(111)-SiO2 interface [20] 
and the spectral function m(V) is taken as a single peak 
positioned at 3.3 eV, the dominant feature in the SHG 
spectrum from Si-SiO2 [12]. The thus obtained numerical 
results are plotted in Fig. 1 and show a quite good agree­
ment with the experiments within the whole available 
thickness range. It is worth noting that the thickness 
dependence is only partially suppressed by immersion be­
cause the refractive index matching in water is not perfect.

Apparently the Casimir nonlocality that, generally 
speaking, contributes to the linear-optical response of 
the medium as well leads to a much weaker thickness 
dependence in a linear-optical analog of our experiment. 
In fact, nonlocal corrections to the linear susceptibility 
are described by diagrams which do not contain surface- 
localized triangle parts, and, as a result, the thickness 
dependence is eroded by the additional integration over 
the volume of the bulk medium. For the same reason 
we have neglected the thickness dependence of the bulk 
quadrupole-allowed [9] quadratic susceptibility of silicon.

Summarizing, we have observed a pronounced oxide- 
thickness dependence in the SHG response from Si-SiO2 
interface that can be attributed to a new type of nonlo­
cal spatial effect: the optical Casimir nonlocality. The 
latter provides the most pronounced size dependence for 
the even-order interface nonlinearities of centrosymmetric 
media and is an intrinsically many-particle effect stem­
ming from the effective electron-electron interaction via

the optical-range modes of the quantized electromagnetic 
field.
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