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Optical second harmonic generation from Si(111)-SiO, interface shows a strong nonmonotonic
dependence on the oxide thickness between 2 and 300 nm. The Brewster angle of incidence, p-
in, p-out combination of polarizations and strong, uniform suppression of this effect by near-index
matching fluid exclude trivial multiple reflections and microscopic interface effects. The observation
can be interpreted to originate from the optical (Casimir) nonlocality stemming from the thickness-
dependent electron-electron interaction via virtual photons of the quantized electromagnetic field.
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Zero-point fluctuations of the electromagnetic ficld give
rise to long-range (Casimir) interactions, that, for example,
i the nonretarded limit are responsible for the van der
Waals force [1]. Recent high precision measurements
of the forces between an atom and a metallic [2] or
dielectric [3] surface has renewed the interest in these
fluctuation phenomena [4]. However, Casimir effects may
have much wider consequences, ranging from biology
to cosmology (see [5] and [6]). A beautiful maritime
analogy of the Casimir effect was recently discussed in
[7], whereas vacuum fluctuations of the gravitational field
may set a limit for the accuracy of length measurements
[8]. Generally, retardation effects start playing a role
when the time necessary for the exchange of information
(e.g., the travel time of a photon), exceeds a characteristic
fluctuation time of the system of interest. Therefore, the
relevant length scale that plays arole is ¢ /2wy, with ¢ is the
speed of light and wy 1s the typical fluctuation frequency.
The Casimir effects will manifest themselves when there
are some sort of restrictions for the fluctuation spectrum,
1.c., the boundary conditions imposed by a cavity. We
will show that the oxide layer of a Si-SiO, structure can
be responsible for nonlocal effects in its nonlinear optical
response that stem from the Casimir interaction.

Based on the inversion symmetry breaking at an inter-
face, optical second harmonic generation (SHG) at sur-
faces and interfaces of centrosymmetric media has been
perceived as an extremely sensitive and versatile probe for
surface-science studies [9], in particular, for a buried in-
terface like Si-Si0,. The inversion symmetry breaking at
the Si-SiO, interface has been associated with a crystalline
structure discontinuity [10], disordering [11], local strain
[12], or band bending [13,14].

Typically the spatial scale characterizing a size effect
observed in an SHG experiment is an informative “finger-
print” of its underlying mechanism. Two specific length
scales can be distinguished for the oxide-thickness depen-
dence of SHG from Si(111)-Si0,: (1) ro ~ 1 nm, deter-
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mined by the morphological and electronic structure of the
mterface [12,15], and a measure of the microscopic opti-
cal nonlocality [16], and (i1) /,p¢ ~ 100 nm determining
the nonuniformity of the optical fields in the medium due
to optical interference [17]. In these two limiting cases
the macroscopic and microscopic aspects of the problem
separate quite distinctly and can be treated theoretically
using traditional approaches.

The scale r( enters into the quantum-mechanical expres-
sion for the interface quadratic optical susceptibility. In
the electric-dipole approximation the quadratic response of
a system to a monochromatic external field E<'(r, ¢) is cal-
culated using the Hamiltonian H — [P(@)E™(r, ¢) d’r,
where H is the Hamiltonian of the system and the operator
of the macroscopic polarization P(r) is obtained by spatial
averaging the microscopic dipole-moment density over the
volume ~rg. A conventional approximation for H (de-
noted by Hy) includes the interaction of the charged parti-
cles of the medium with the modes of the electromagnetic
field with wavelengths of the order of the lattice constant,
whereas the interaction with longer-wavelength modes
is neglected [16]. This vields the local quadratic suscep-
tibility x®¥° vanishing everywhere except in a layer of
thickness ~r¢ at the Si-S10, interface, where the inver-
sion symmetry is broken. The scale I,y characterizing
the linear-optical features of the inhomogeneous medium
appears in the solution of the macroscopic Maxwell equa-
tions, and may lead to a very strong SHG thickness depen-
dence, as observed experimentally [17].

However, for a typical optical mode fiwg = 3 eV, the
relevant length scale for retardation effects ¢/2wg = Iop,.
This means that also less trivial size effects may occur
within the intermediate range ro = D = I, as a result
of size dependent nonlocal optical effects.

In this paper we show that this so-called optical Casimir
nonlocality can give rise to a substantial SHG thickness
dependence from Si-SiO, interfaces, for oxide thicknesses
in the range of 2—-300 nm. The interface localization of
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the nonlinear optical source and the possibility to vary
its inhomogeneous environment (i.e., the oxide thick-
ness) systematically appear to be essential ingredients for
the observability of these nonlocal optical effects. The
experiments have been carefully designed to allow an
unambiguous interpretation of the data: (i) the sample
preparation technique is chosen in such a way to pro-
vide a uniform “sampling” of the whole SiO,-layer thick-
ness range ro = D = l,, without affecting the buried
Si(111)-Si0, interface at the microscopic level; (ii) to
avoid the effects of multiple reflections the SHG mea-
surements are carried out for the p-in, p-out polarization
combination at Brewster angle of incidence on the outer
(S810,-air) interface; (iii) to reveal the role of the SiO,-
air interface the SHG measurements in air are comple-
mented by those for the samples immersed in a (almost)
refractive-index-matching liquid.

The samples used were p-type (2—-5 QL cm) Si(111)
(£0.5°) wafers on which a high quality thermal oxide
with a thickness of 300 nm was grown previously at
1000 °C in a dry oxygen ambient environment. The wafers
were annealed at a slightly higher temperature in a N,
atmosphere to fabricate a smooth Si-SiO, interface. The
wafers oxidized from the same batch were etched with a
buffered NH,F solution with the rate of ~25 nm/min in
3 X 3 and 5 X 5 checkerboard configurations to produce
samples with the oxide thickness ranging in a steplike
manner from 2 to 300 nm.

Single-wavelength ellipsometry with a HeNe laser
(632.8 nm) was used to measure the oxide layer thick-
nesses prior to and after etching and to check the thickness
uniformity for each particular square on the checker-
board samples. High resolution transmission electron
microscopy images were made for both unetched and
etched wafers in order to verify that the originally smooth
Si-810, interface, with a corrugation of just a few atomic

layers over macroscopic distances of ~100 wm along the
interface remained so after etching.

For the SHG experiments the output at 1064 nm of a
(O-switched Nd:YAG laser was used, with 10 ns pulses
of 10—15 mJ in a 5 mm diameter spot, well below the
damage threshold. The SHG signal was recorded using
standard gated electronics. The SHG measurements were
performed for the p-in, p-out combination of polariza-
tions, at an angle of incidence on the SiO»-air interface
of 55.5°, which is very close to the Brewster angles for
the fundamental and SHG radiation (55.3° and 55.7°,
respectively).

The SHG intensity 15;,‘” as a function of the azimuthal
angle for oxide thicknesses of 34 and 65 nm is shown in
the inset of Fig. 1. This dependence can be described in
the following form:

13 (D, @) = |A(D) + B(D)e'" P cos3¢’, (1)
where A(D) and B(D) are the real thickness-dependent
amplitudes of the isotropic and anisotropic components
of the quadratic polarization, respectively, and (D) is
the relative phase shift between them. The plots for A,
B, and ¢ versus D for the experiments in air and water
are shown in Fig. 1. A very pronounced D dependence
of all three quantities occurs for the samples in air.
It is noteworthy that (i) the scale of the initial steep
rise in A(D), B(D), and (D) is about 50—-100 nm:
(i1) in the thickness dependence of A, B, and ¢ there
are distinct oscillations within the range from 100 to
300 nm. A strong suppression of all these SHG thickness
dependences is observed for the samples being immersed
in water.

At first, this last observation suggests a trivial op-
tical interference effect that is suppressed by the near
index matching properties of the water (ngy,0 = 1.33,
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The isotropic and anisotropic SHG components A and B and the cosine of the relative phase shift ¢ vs oxide thickness

D. Squares, experiment; lines, theory (M, thick lines: sample in air; [, thin lines: sample in water). The inset shows the rotational
SHG anisotropy for D = 34 nm (@, thin line) and D = 65 nm (O, thick line).
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nsio, = 1.45). However, this is excluded by the Brewster
angle geometry. Alternative standard explanations for the
oxide-thickness dependence can also be excluded. The
band bending by the charge trapped in the oxide layer [14]
or the strain of the subsurface Si layer [12], in principle,
can be thickness dependent; yet the suppression of their
thickness dependence by immersion cannot be as uniform
as we observed within the whole oxide-thickness range
from 2 to 300 nm. The contribution to SHG from the
crystalline Si0, transition layer [11] is thickness indepen-
dent for D = 10 nm; moreover, immersion cannot affect
this nonlinearity. The interference between two nonlinear
sources situated at the Si-SiO, and SiO ,-air interfaces can
exist at the Brewster angle of incidence and be suppressed
upon immersion; however, the contrast of the correspond-
ing interference pattern is too low because the SiO,-air
interface nonlinearity is by at least 2 orders of magnitude
smaller than that of the Si(111)-SiO, interface [18].

The key idea of our interpretation of the experimental
results is that the size effect is related to a long-range
optical nonlocality stemming from the interaction of the
three-layer medium (Si-SiO,-air) with the optical-range
eigenmodes of the quantized electromagnetic field (QEF).
To proceed with this hypothesis in a way known from the
theory of the Casimir force [1] we consider the Hamilton-
ian that explicitly includes the interaction of electrons with
the optical QEF modes,

H=Hy,+ W+ ZthaXaA, 2)
A

where a); and a, are photon creation and annihilation
operators for an optical eigenmode A with frequency w,;
W is the operator of the interaction between the quantized
optical field and the electron subsystem

W = —/P(r)E(r) d*r, (3)

with the electric-field operator E(r) = D> A ua(r)ay +
H.c. The function u,(r) describing the spatial behavior
of E(r) is the properly normalized solution of the classical
electrodynamical problem for the three-layer system with
bare (i.e., determined by H,) dielectric constants. The
presence of the operator W in the Hamiltonian leads to an
additional long-range electron-electron interaction, medi-
ated by virtual optical-wavelength photons. This results
in an interaction between the (electrical neutral) micro-
scopic polarization sources of volume rS via virtual QEF
photons (see Fig. 2). This effect has the same nature as
the Casimir force acting between macroscopic solids [19]
and results in a drastic change in the quadratic response
to the external optical field E**'(r,7). The correspond-
ing second-order susceptibility y9°*°¢ calculated in the

H=H, l:> H= H0+W+;h0)AaxaA
E¥ =0 E* =0
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FIG. 2. Contributions to y?. The left-hand side shows the

sketch of the classical formalism to calculate y°*®. The right-
hand side shows the sketch of the quantum electrodynamic
approach for y¥* of an inhomogeneous system, taking both
the Coulomb and retarding parts of the interaction into account.

with the conventional local dipole susceptibility y "

[16]. We call this type of large-scale spatial nonlocal-
ity the optical Casimir nonlocality.

The quadratic susceptibility y¥****d given by the Hamil-
tonian (2) can be calculated by treating W as a perturbation.
The diagrams representing the higher-order terms of this
expansion consist of several compact electron parts that are
connected with virtual-photon propagator lines giving rise
to the Casimir nonlocality. One of such nonlocal diagrams
is shown in Fig. 2. Because of the symmetry selection
rules for the dipole-moment matrix elements, the electron
parts with an odd number of vertices vanish everywhere
except within the Si-SiO, interface layer of thickness ry.
Electron parts with even vertex numbers take nonzero val-
ues in the bulk of both Si and SiO».

Taking into account the lowest-order nonlocal term
given by the diagram in Fig. 2 we obtain the following

dipole approximation is essentially nonlocal, in contrast | expression:

XS, v, w) = 8(r, )8 (e, )X (r, ) + 8(r,r")

—+o0
X f lem(rla (U,Q)anl‘k(l', w, Q)rln(r, l'/, Q;D)rlnp(ry r/’w - QaD) dQ) s (4)

oo
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where I' denotes the retarded Green function of the elec-
tromagnetic field [19] calculated in zeroth order of W and
depending on frequency and oxide-layer thickness; w is
the fundamental field frequency, & is the Dirac delta func-
tion. For the sake of brevity, we omit the explicit expres-
sions for the tensors X and Y corresponding to the triangle
and tetragon electron parts of the diagram, respectively.
Their structure is similar to that of the quadratic and cubic
susceptibilities of the medium. y®*°(r) is the local (D-
independent) susceptibility.

The essential source of the thickness dependence is the
virtual-photon Green function I' entering into the expres-
sion for x9s%¢ and containing D as a parameter. In op-
tical terms the thickness dependence can be interpreted as
originating from the multibeam interference for a whole
set of virtual eigenmodes in the oxide layer. This in-
terference is not eliminated by our choice of Brewster
angle geometry, as this only affects one particular wave
vector. However, immersion in refractive-index matching
fluid does suppress this interference. This directly follows
from Eq. (4), since the Green function I becomes thick-
ness independent in that case. Therefore, the thickness
dependence of the SHG signal disappears upon immersion
though the nonlocal Casimir contribution is still present.

For comparison with experiment we used a simple
model that, however, contains all qualitative features of
the effect. In particular, X and Y are taken in the factor-
ized form, X; () = Xijp(Q), Yiju(Q) = 8;j6up(€d),
where X;; reproduces the tensorial features of the
quadratic susceptibility of the Si(111)-Si0, interface [20]
and the spectral function u(€)) is taken as a single peak
positioned at 3.3 eV, the dominant feature in the SHG
spectrum from Si-Si0O, [12]. The thus obtained numerical
results are plotted in Fig. 1 and show a quite good agree-
ment with the experiments within the whole available
thickness range. It is worth noting that the thickness
dependence 1s only partially suppressed by immersion be-
cause the refractive index matching in water 1s not perfect.

Apparently the Casimir nonlocality that, generally
speaking, contributes to the linear-optical response of
the medium as well leads to a much weaker thickness
dependence in a linear-optical analog of our experiment.
In fact, nonlocal corrections to the linear susceptibility
are described by diagrams which do not contain surface-
localized triangle parts, and, as a result, the thickness
dependence is eroded by the additional integration over
the volume of the bulk medium. For the same reason
we have neglected the thickness dependence of the bulk
quadrupole-allowed [9] quadratic susceptibility of silicon.

Summarizing, we have observed a pronounced oxide-
thickness dependence in the SHG response from Si-SiO,
interface that can be attributed to a new type of nonlo-
cal spatial effect: the optical Casimir nonlocality. The
latter provides the most pronounced size dependence for
the even-order interface nonlinearities of centrosymmetric
media and is an intrinsically many-particle effect stem-
ming from the effective electron-clectron interaction via

the optical-range modes of the quantized electromagnetic
field.
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