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by Thin Oxide Films: The Role of Optical Casimir Nonlocality
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Optical second harmonic generation from Si(111)-SiO2 interface shows a strong nonmonotonic 
dependence on the oxide thickness between 2 and 300 nm. The Brewster angle of incidence, p 
in, p-out combination of polarizations and strong, uniform suppression of this effect by near-index 
matching fluid exclude trivial multiple reflections and microscopic interface effects. The observation 
can be interpreted to originate from the optical (Casimir) nonlocality stemming from the thickness- 
dependent electron-electron interaction via virtual photons of the quantized electromagnetic field. 
[S0031-9007(96)01932-1]

PACS numbers: 42.65.Ky, 03.70. + k, 78.20.-e

Zero-point fluctuations of the electromagnetic field give 
rise to long-range (Casimir) interactions, that, for example, 
in the nonretarded limit are responsible for the van der 
Waals force [1]. Recent high precision measurements 
of the forces between an atom and a metallic [2] or 
dielectric [3] surface has renewed the interest in these 
fluctuation phenomena [4]. However, Casimir effects may 
have much wider consequences, ranging from biology 
to cosmology (see [5] and [6]). A beautiful maritime 
analogy of the Casimir effect was recently discussed in
[7], whereas vacuum fluctuations of the gravitational field 
may set a limit for the accuracy of length measurements
[8]. Generally, retardation effects start playing a role 
when the time necessary for the exchange of information 
(e.g., the travel time of a photon), exceeds a characteristic 
fluctuation time of the system of interest. Therefore, the 
relevant length scale thatplays arole is c / 2 v 0, with c is the 
speed of light and v 0 is the typical fluctuation frequency. 
The Casimir effects will manifest themselves when there 
are some sort of restrictions for the fluctuation spectrum, 
i.e., the boundary conditions imposed by a cavity. We 
will show that the oxide layer of a Si-SiO2 structure can 
be responsible for nonlocal effects in its nonlinear optical 
response that stem from the Casimir interaction.

Based on the inversion symmetry breaking at an inter
face, optical second harmonic generation (SHG) at sur
faces and interfaces of centrosymmetric media has been 
perceived as an extremely sensitive and versatile probe for 
surface-science studies [9], in particular, for a buried in
terface like Si-SiO2. The inversion symmetry breaking at 
the Si-SiO2 interface has been associated with a crystalline 
structure discontinuity [10], disordering [11], local strain 
[12], or band bending [13,14].

Typically the spatial scale characterizing a size effect 
observed in an SHG experiment is an informative “finger
print” of its underlying mechanism. Two specific length 
scales can be distinguished for the oxide-thickness depen
dence of SHG from Si(111)-SiO2: (i) r0 ~  1 nm, deter-
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mined by the morphological and electronic structure of the 
interface [12,15], and a measure of the microscopic opti
cal nonlocality [16], and (ii) lopt ~  100 nm determining 
the nonuniformity of the optical fields in the medium due 
to optical interference [17]. In these two limiting cases 
the macroscopic and microscopic aspects of the problem 
separate quite distinctly and can be treated theoretically 
using traditional approaches.

The scale r0 enters into the quantum-mechanical expres
sion for the interface quadratic optical susceptibility. In 
the electric-dipole approximation the quadratic response of 
a system to a monochromatic external field E ext (r , t) is cal
culated using the Hamiltonian H  — ƒ P (r)E ext ( r , t) d 3 r , 
where H  is the Hamiltonian of the system and the operator 
of the macroscopic polarization P (r) is obtained by spatial 
averaging the microscopic dipole-moment density over the 
volume ~ r0 . A conventional approximation for H  (de
noted by H 0) includes the interaction of the charged parti
cles of the medium with the modes of the electromagnetic 
field with wavelengths of the order of the lattice constant, 
whereas the interaction with longer-wavelength modes 
is neglected [16]. This yields the local quadratic suscep
tibility x bare vanishing everywhere except in a layer of 
thickness ~ r 0 at the Si-SiO2 interface, where the inver
sion symmetry is broken. The scale lopt characterizing 
the linear-optical features of the inhomogeneous medium 
appears in the solution of the macroscopic Maxwell equa
tions, and may lead to a very strong SHG thickness depen
dence, as observed experimentally [17].

However, for a typical optical mode h v 0 =  3 eV, the 
relevant length scale for retardation effects c / 2 v 0 ~  lopt. 
This means that also less trivial size effects may occur 
within the intermediate range r0 #  D  #  lopt as a result 
of size dependent nonlocal optical effects.

In this paper we show that this so-called optical Casimir 
nonlocality can give rise to a substantial SHG thickness 
dependence from Si-SiO2 interfaces, for oxide thicknesses 
in the range of 2 -300  nm. The interface localization of

© 1996 The American Physical Society



Volume 78, Number 1 P H Y S I C A L  R E V I E W  L E T T E R S 6 January 1997

the nonlinear optical source and the possibility to vary 
its inhomogeneous environment (i.e., the oxide thick
ness) systematically appear to be essential ingredients for 
the observability o f these nonlocal optical effects. The 
experiments have been carefully designed to allow an 
unambiguous interpretation o f the data: (i) the sample 
preparation technique is chosen in such a way to pro
vide a uniform “sampling” o f the whole SiO2-layer thick
ness range r0 #  D  #  lopt without affecting the buried 
Si(111)-SiO2 interface at the microscopic level; (ii) to 
avoid the effects o f multiple reflections the SHG mea
surements are carried out for the p-in, p-out polarization 
combination at Brewster angle o f incidence on the outer 
(SiO2-air) interface; (iii) to reveal the role o f the SiO2- 
air interface the SHG measurements in air are comple
mented by those for the samples immersed in a (almost) 
refractive-index-matching liquid.

The samples used were p-type (2 -5  V cm) Si(111) 
(±0.5°) wafers on which a high quality thermal oxide 
with a thickness o f 300 nm was grown previously at 
1000 °C in a dry oxygen ambient environment. The wafers 
were annealed at a slightly higher temperature in a N 2 
atmosphere to fabricate a smooth Si-SiO2 interface. The 
wafers oxidized from the same batch were etched with a 
buffered NH 4F solution with the rate of —25 nm /m in in 
3 X 3 and 5 X 5 checkerboard configurations to produce 
samples with the oxide thickness ranging in a steplike 
manner from 2 to 300 nm.

Single-wavelength ellipsometry with a HeNe laser 
(632.8 nm) was used to measure the oxide layer thick
nesses prior to and after etching and to check the thickness 
uniformity for each particular square on the checker
board samples. High resolution transmission electron 
microscopy images were made for both unetched and 
etched wafers in order to verify that the originally smooth 
Si-SiO2 interface, with a corrugation of just a few atomic

layers over macroscopic distances o f —100 mm along the 
interface remained so after etching.

For the SHG experiments the output at 1064 nm o f a 
Q -switched Nd:YAG laser was used, with 10 ns pulses 
o f 10-15 mJ in a 5 mm diameter spot, well below the 
damage threshold. The SHG signal was recorded using 
standard gated electronics. The SHG measurements were 
performed for the p  -in, p  -out combination of polariza
tions, at an angle o f incidence on the SiO2-air interface 
o f 55.5°, which is very close to the Brewster angles for 
the fundamental and SHG radiation (55.3° and 55.7°, 
respectively).

The SHG intensity l2Vf as a function o f the azimuthal 
angle for oxide thicknesses o f 34 and 65 nm is shown in 
the inset o f Fig. 1. This dependence can be described in 
the following form:

(D, w) = jA(D) + B (D )elC(D) cos3w l2, (1)

where A(D ) and B(D) are the real thickness-dependent 
amplitudes o f the isotropic and anisotropic components 
o f the quadratic polarization, respectively, and C (D ) is 
the relative phase shift between them. The plots for A ,
B , and c  versus D  for the experiments in air and water 
are shown in Fig. 1. A very pronounced D dependence 
o f all three quantities occurs for the samples in air. 
It is noteworthy that (i) the scale of the initial steep 
rise in A(D ), B(D), and C(D) is about 50-100 nm:
(ii) in the thickness dependence of A , B , and c  there 
are distinct oscillations within the range from 100 to 
300 nm. A strong suppression o f all these SHG thickness 
dependences is observed for the samples being immersed 
in water.

At first, this last observation suggests a trivial op
tical interference effect that is suppressed by the near 
index matching properties o f the water (nH2o =  1.33,

FIG. 1. The isotropic and anisotropic SHG components A and B and the cosine of the relative phase shift C vs oxide thickness 
D . Squares, experiment; lines, theory (■, thick lines: sample in air; □, thin lines: sample in water). The inset shows the rotational 
SHG anisotropy for D = 34 nm ( • ,  thin line) and D = 65 nm (O, thick line).
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nSiO2 =  1.45). However, this is excluded by the Brewster 
angle geometry. Alternative standard explanations for the 
oxide-thickness dependence can also be excluded. The 
band bending by the charge trapped in the oxide layer [14] 
or the strain o f the subsurface Si layer [12], in principle, 
can be thickness dependent; yet the suppression o f their 
thickness dependence by immersion cannot be as uniform 
as we observed within the whole oxide-thickness range 
from 2 to 300 nm. The contribution to SHG from the 
crystalline SiO2 transition layer [11] is thickness indepen
dent for D  $  10 nm; moreover, immersion cannot affect 
this nonlinearity. The interference between two nonlinear 
sources situated at the Si-SiO2 and SiO2-air interfaces can 
exist at the Brewster angle of incidence and be suppressed 
upon immersion; however, the contrast o f the correspond
ing interference pattern is too low because the SiO2-air 
interface nonlinearity is by at least 2 orders of magnitude 
smaller than that o f the Si(111)-SiO2 interface [18].

The key idea o f our interpretation of the experimental 
results is that the size effect is related to a long-range 
optical nonlocality stemming from the interaction o f the 
three-layer medium (Si-SiO2-air) with the optical-range 
eigenmodes o f the quantized electromagnetic field (QEF). 
To proceed with this hypothesis in a way known from the 
theory o f the Casimir force [1] we consider the Hamilton
ian that explicitly includes the interaction of electrons with 
the optical QEF modes,

(2)

ywhere a a and a \  are photon creation and annihilation 
operators for an optical eigenmode A with frequency ® a ; 
W  is the operator o f the interaction between the quantized 
optical field and the electron subsystem

/W — -  P ( r )E (r ) d 3r , (3)

with the electric-field operator E ( r ) = X a  u a(r)aA  + 
H.c. The function u a  ( r ) describing the spatial behavior 
of E ( r ) is the properly normalized solution o f the classical 
electrodynamical problem for the three-layer system with 
bare (i.e., determined by H 0) dielectric constants. The 
presence o f the operator W  in the Hamiltonian leads to an 
additional long-range electron-electron interaction, medi
ated by virtual optical-wavelength photons. This results 
in an interaction between the (electrical neutral) micro
scopic polarization sources o f volume r03 via virtual QEF 
photons (see Fig. 2). This effect has the same nature as 
the Casimir force acting between macroscopic solids [19] 
and results in a drastic change in the quadratic response 
to the external optical field E ext( r , t ). The correspond
ing second-order susceptibility x dressed calculated in the 
dipole approximation is essentially nonlocal, in contrast

x  ijk

FIG. 2. Contributions to x (2). The left-hand side shows the 
sketch of the classical formalism to calculate x bare. The right- 
hand side shows the sketch of the quantum electrodynamic 
approach for x dressed of an inhomogeneous system, taking both 
the Coulomb and retarding parts of the interaction into account.

with the conventional local dipole susceptibility x bare
[16]. We call this type o f large-scale spatial nonlocal
ity the optical Casimir nonlocality.

The quadratic susceptibility x dressed given by the Hamil
tonian (2) can be calculated by treating W  as a perturbation. 
The diagrams representing the higher-order terms o f this 
expansion consist o f several compact electron parts that are 
connected with virtual-photon propagator lines giving rise 
to the Casimir nonlocality. One o f such nonlocal diagrams 
is shown in Fig. 2. Because o f the symmetry selection 
rules for the dipole-moment matrix elements, the electron 
parts with an odd number of vertices vanish everywhere 
except within the Si-SiO2 interface layer of thickness r0. 
Electron parts with even vertex numbers take nonzero val
ues in the bulk of both Si and SiO2.

Taking into account the lowest-order nonlocal term 
given by the diagram in Fig. 2 we obtain the following 
expression:

dressed^ r 0, r " , v )  — « (r, r ' ) « ( r ’ r " j  (r, v )  1  « (r , r " )

X ƒ
+'

Xjlm( r0’ v ’ V)Ynpik(r, v ,  V )G n (r, r 0, V ; D)Gmp( r , r 0, v  -  V ; D ) d V , (4)
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where G denotes the retarded Green function of the elec
tromagnetic field [19] calculated in zeroth order of W  and 
depending on frequency and oxide-layer thickness; v  is 
the fundamental field frequency, 8 is the Dirac delta func
tion. For the sake of brevity, we omit the explicit expres
sions for the tensors X  and Y  corresponding to the triangle 
and tetragon electron parts of the diagram, respectively. 
Their structure is similar to that of the quadratic and cubic 
susceptibilities of the medium. x bare ( r ) is the local (D- 
independent) susceptibility.

The essential source of the thickness dependence is the 
virtual-photon Green function G entering into the expres
sion for x dressed and containing D  as a parameter. In op
tical terms the thickness dependence can be interpreted as 
originating from the multibeam interference for a whole 
set of virtual eigenmodes in the oxide layer. This in
terference is not eliminated by our choice of Brewster 
angle geometry, as this only affects one particular wave 
vector. However, immersion in refractive-index matching 
fluid does suppress this interference. This directly follows 
from Eq. (4), since the Green function G becomes thick
ness independent in that case. Therefore, the thickness 
dependence of the SHG signal disappears upon immersion 
though the nonlocal Casimir contribution is still present.

For comparison with experiment we used a simple 
model that, however, contains all qualitative features of 
the effect. In particular, X  and Y  are taken in the factor- 
ized form, Xjjk(V) =  Xjjkm(V), Y jk l(V) =  8 j8 « m (V ), 
where Xijk reproduces the tensorial features of the 
quadratic susceptibility of the Si(111)-SiO2 interface [20] 
and the spectral function m(V) is taken as a single peak 
positioned at 3.3 eV, the dominant feature in the SHG 
spectrum from Si-SiO2 [12]. The thus obtained numerical 
results are plotted in Fig. 1 and show a quite good agree
ment with the experiments within the whole available 
thickness range. It is worth noting that the thickness 
dependence is only partially suppressed by immersion be
cause the refractive index matching in water is not perfect.

Apparently the Casimir nonlocality that, generally 
speaking, contributes to the linear-optical response of 
the medium as well leads to a much weaker thickness 
dependence in a linear-optical analog of our experiment. 
In fact, nonlocal corrections to the linear susceptibility 
are described by diagrams which do not contain surface- 
localized triangle parts, and, as a result, the thickness 
dependence is eroded by the additional integration over 
the volume of the bulk medium. For the same reason 
we have neglected the thickness dependence of the bulk 
quadrupole-allowed [9] quadratic susceptibility of silicon.

Summarizing, we have observed a pronounced oxide- 
thickness dependence in the SHG response from Si-SiO2 
interface that can be attributed to a new type of nonlo
cal spatial effect: the optical Casimir nonlocality. The 
latter provides the most pronounced size dependence for 
the even-order interface nonlinearities of centrosymmetric 
media and is an intrinsically many-particle effect stem
ming from the effective electron-electron interaction via

the optical-range modes of the quantized electromagnetic 
field.
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