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Positive curvature in the temperature dependence ofHc2 in K xBa12xBiO 3
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We report an upward curvature in the temperature dependence of the upper critical fieldHc2(T) in
K xBa12xBiO3 single crystals using ac-susceptibility measurements and magnetic fields up to 25 T. A possible
role of Landau quantization in such uncommon behavior is discussed.@S0163-1829~96!03034-2#

The theory by Werthamer-Helfand-Hohenberg1 ~WHH!
predicts the universal behavior of the upper critical field
Hc2(T) in superconductors with weak electron-phonon cou-
pling. The behavior can be described by a universal function
hc2(T) expressed in the reduced variables for magnetic field
h5H@Tc(2dHc2 /dT)T5Tc

#21 and temperaturet5T/Tc .

The functionhc2(t) has a negative second derivative and
saturates to the valuehc2'0.7 att50. The WHH theory has
described successfully properties of conventional supercon-
ductors but many new superconductors discovered during the
last decade exhibit behavior inconsistent with the theory.
Amorphous alloys based on transition metals2 and K3C60
~Ref. 3! shows the linear dependenceHc2(T) down to low
temperatures. Some organic superconductors4 and electron-
doped high-temperature superconductors@L22xCexCuO42y
whereL5Pr,Sm,Nd~Refs. 5 and 6!# even have a positive
second derivative. Furthermore, in stark contrast to WHH a
divergingHc2(T) was observed in overdoped Tl2Ba2CuO6
films,7 whereHc2 increased rapidly with decreasing tempera-
ture in the whole temperature range 1.t.0.001, and in
Bi 2Sr2CuOy films.

8

In this work we report a non-WHH behavior with a posi-
tive second derivative in KxBa12xBiO3 single crystals. This
material represents the family of high-temperature supercon-
ductors but is copper-free and has the cubic structure. It has
the highest transition temperature among all known copper-
free superconductors. At the same time, the upper critical
field of K xBa12xBiO3 is only about 25 T at helium tempera-
ture and this allows detailed measurements of the whole
H(T) diagram. There have already been a number of studies
of its Hc2(T) dependence in relatively low magnetic
fields.9–14 Recently, Affronteet al.15 have extended the ear-
lier work to higher fields and found~using resistance mea-
surements! thatHc2(T) dependence has an upward curvature
with no sign of saturation down toT50.1Tc . As this con-
tradicts to the conventional WHH theory, the authors ex-
pressed some doubts concerning the homogeneity of their
samples and the presence of two superconducting phases.15

We have employed a different experimental technique for
tracing the superconducting transition~ac susceptibility!
which responds differently if a minor part of the second su-
perconducting phase would be present. Our observation of

the upward curvature, when using a different method and
samples grown by a different technique, indicates that the
violation of the WHH theory is an intrinsic property of
K xBa12xBiO3 material.

Experimental samples were prepared by electrochem-
ical crystallization.16 A melted mixture of KOH,
Ba~OH! 28H2O, and Bi2O3 with the ion ratio K:Ba:Bi
572:1:2 waskept in an electrolitic bath at 300 °C. The
process of crystal growth continued for 3 h and was followed
by 20 h of keeping the grown crystals in the melt at the same
temperature but without electric current. In the present ex-
periment we have employed two samples which have irregu-
lar shape and masses 2.2 and 1.5 mg. They were black in
color with a blue shimmer. The critical temperatures of 31.8
and 30.3 K were detected. The superconducting transitions in
zero field had widths 1.7 and 2.5 K, respectively. Experimen-
tal results were practically identical for both samples and for
brevity we present here only those obtained for the sample
with the highestTc .

ac susceptibility of KxBa12xBiO3 single crystals has
been measured using the standard four-coil compensation
scheme. Measurements in fields up to 8 T were carried out in
a superconducting solenoid and a Bitter magnet was em-
ployed for higher fields up to 25 T. Figure 1 shows experi-
mental curves of the real part of ac susceptibilityx8(T) ver-
sus temperature at fixed values of the magnetic field. The
onset of thex8 signal has been taken as the indication of the
superconducting transition. Such a convention has been dis-
cussed in many of the cited papers and in fields below 10 T
it is known to lead to the sameHc2(T) dependence as any
other method. Furthermore, the fact of the upward curvature
for Hc2(T) is beyond the uncertainty related to the definition
of the superconducting transition on ourx8 curves.

The resultingH(T) diagram of KxBa12xBiO3 is shown
in Fig. 2. The point at the highest field in this plot~solid
circle! was obtained using another method. The sample was
mounted in a torque magnetometer which measured the force
exerted on a magnetic moment by a nonparallel magnetic
field or a field gradient. We used the following procedure to
detect the superconducting state. The sample~immersed in
the exchange gas! was cooled down from a temperature
aboveTc to 4.2 K in the field 18 T. Then, at the constant
temperature of 4.2 K the field was swept up at a constant
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rate. The measured force increased first linearly with the field
indicating the superconducting state with pinned or partly
pinned vortices. Then, in the field of 23.7 T we have ob-
served a kink followed by an approximately constant value
of the force. Details may be interpreted in different ways but
the behavior indicates unambiguously that the superconduc-
tivity persists below 23.7 T. We assume this value to be the
lower limit for Hc2 at 4.2 K as indicated by the arrow in Fig.
2.

It is clearly seen from Fig. 2 thatHc2(T) in
K xBa12xBiO3 has a superlinear dependence down to
t50.12 without any tendency to saturation. The experimen-
tal data can be described by the quadratic function~solid line
in Fig. 2!

H532.221.8T10.025T2, ~1!

whereH in T andT in K. The WHH behavior is shown by
the dotted curve. The WHH theory requires only the knowl-
edge of values ofTc and (dHc2 /dT)T5Tc

and the dotted

curve represents the best fit to a part of the experimental
curve nearTc . The observation of the superlinear depen-
dence may be considered as the main experimental result of
this communication. We note that the observed behavior is
very similar to the one reported by Affronteet al.15 for their
‘‘most metallic samples.’’

There are a number of reasons which may lead to the
violation of the WHH theory. They were frequently dis-
cussed earlier~see, e.g., Ref. 3! but neither of them is appli-
cable to the case of KxBa12xBiO3. For instance, the pres-
ence of magnetic impurities or a strong anisotropy are out of
suspicion as KxBa12xBiO3 is a nonmagnetic material with
the cubic structure and a nearly spherical Fermi surface.17

Also, strong coupling may in general cause a positive curva-
ture of the curveHc2(T) in the middle temperature range.18

However, KxBa12xBiO3 is believed~on the basis of mea-
surements of its tunneling gap19,20! to be a superconductor
with weak or intermediate coupling. The theory of Kotliar
and Kapitulnik21 takes into account the disorder and predicts
an increase in a value of the reduced upper critical field by a
factor of not greater than 1.25. This is considerably less than
the increase found in our experiment~see Fig. 2!.

In the absence of any present theory which could explain
the observed behavior, we discuss below another mechanism
which in our opinion could lead to low-temperature devia-
tions from the WHH theory. In the presence of Landau quan-
tization the magnetic field not only suppresses the supercon-
ductivity but may also result in its partial enhancement due
to an increase in the density of states at the bottom of Landau
levels.22–24 For such enhancement to take place, several
rather strict conditions have to be met. First, the Landau
splitting \V has to be larger than temperature so that the
total number of states in the energy intervalT near the Fermi
level could be increased significantly in high fields. This
means in particular that the ‘‘bare’’ valueHWHH(T50)
which is determined in the WHH theory by values ofTc and
(dHc2 /dT)T5Tc

, has to be large enough. Our material as

well as other high-Tc superconductors are good candidates
from this point of view. ForKxBa12xBiO3, the value of
HWHH(0) is about 10 T~see Fig. 2!. The scattering frequency
1/t has to be also small compared to both the Larmour fre-
quencyV and temperatureT

\/t!\V. ~2!

Otherwise, the broadening of sharp features in the density of
states by scattering would destroy any possible enhancement
of superconductivity.

A further limitation is due to Zeeman splitting which

FIG. 1. Real part of ac susceptibility of a KxBa12xBiO3 single
crystal in various magnetic fields. The measuring frequency is 200
kHz. x085x8 (T50,H50).

FIG. 2. Temperature dependence of the upper critical field in
K xBa12xBiO3. The solid circle is the lower limit forHc2 at 4.2 K.
The solid line is quadratic function~1!. The dashed line is the
function hc2(t) which follows from the WHH theory. The right
scale is normalized to the valueTc(2dHc2 /dT)T5Tc

which is used
as a parameter in the functionhc2(t).
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leads to two Landau ladders,en
2 and en

1 instead of one.
Because of the splitting, the Fermi leveleF can coincides
with only one spin-polarized Landau level at any one time.
As a result, the density of states increases only for half of
electrons which has the privileged spin direction. Even if the
effectiveg factor is precisely equal to 2, Landau levels for
opposite spin directions,en

2 anden8
1 which cross the Fermi

energy simultaneously, have different indicesn5n8 and
electrons at these levels have different spatial dependence of
the corresponding wavefunctions. This leads to suppression
of electron pairing and superconductivity. However, accord-
ing to Spivak and Zhou,25 in the presence of Zeeman split-
ting the disorder may play an important role and help the
pairing of electrons. The disorder gives rise to a random
potentialV(r ) which varies the position of the two Landau
ladders relatively the Fermi level. Therefore, there are spa-
tially separated regions in the vicinity of some pointsr2 and
r1 where Landau levels with the samen but with opposite
spin directions are at the Fermi level:

eF5en
21V~r2!, eF5en

11V~r1!. ~3!

If such regions are found at a distanceur22r1u smaller than
the coherence lengthj0, superconducting droplets of the size
j0 appear. The number of the droplets is determined by a
probability of finding such favorable regions at a given ran-
dom potentialV(r ).

The pairing condition~3! can be satisfied in some regions
at any magnetic field. When the field is changed, the two sets
of points, r2 and r1 , move in space and so do the super-
conducting droplets. In this model there are no preferable
values of the magnetic field and this rules out any
Shubnikov–de-Haas-like oscillations inTc2(T) or other ther-
modynamics quantities which could be expected in the ideal
case.23,26On the other hand, the enhanced superconductivity
is not homogeneous: it exists inside some cluster which vol-
ume and specific pattern both depend on the field. The su-
perconducting volume is expected to decrease with increas-
ing magnetic field, in agreement with the behavior in Fig. 1
where the magnetic momentx8 saturates at low temperatures
to decreasingly lower absolute values as the magnetic field
increases. The increase inHc2 due to disorder is compen-
sated by the decrease in the bulk superconducting response.

The discussed model contains two opposing requirements
for the disorder. On the one hand, to maintain the increase in
the density of states, inequality~2! should be valid. On the
other hand, fluctuations of the random potential on thej0
scale should be larger than Zeeman splitting. It is easier to
meet these two requirements if the disorder potentialV(r ) is
dominated by relatively long-range fluctuations: the scatter-
ing is not so effective in this case. Again, high-Tc supercon-
ductors are good candidates for having such type of random
potential. Their carrier density depends on the doping level
which cannot fluctuate on a very short range. At the same
time, fluctuations of the carrier density on the scale of the
order ofj0 are expected even in high-quality scale crystals.

In our samples, the potassium concentration is likely to be
such slightly fluctuating parameter which determines the ran-
dom potentialV(r ).

If the speculation about the quantization enhancement of
the superconductivity is valid, the ratioT/\V is expected to
be the major parameter which determines enhancement of
the upper critical field. Figure 3 presents our experimental
data in the corresponding form. Here, the enhancement of the
upper critical fieldHc2 ~compared to the valueHWHH) is
plotted againstT/\V. The Larmour frequencyV was calcu-
lated from the measuredHc2 using the free-electron mass.
For simplicity, the experimental dependenceHc2(T) is taken
in the form ~1!. The obtained function has quite a sensible
form from the point of view of the discussed physics: when
the parameterT/\V reaches 1 there is a reasonable enhance-
ment ofHc2(T) by a factor of about 1.5. The tendency of the
function of Fig. 3 to diverge when the argument tends to zero
corresponds remarkably to what one could expect within the
framework of models.23,25Unfortunately, Refs. 23 and 25 do
not give any expression forHc2(T) to compare it with our
experimental curve.

The discussed model can also explain a qualitative obser-
vation of Affronteet al.15 thatHc2 at low temperatures de-
pends on the crystal quality. While their ‘‘most metallic
samples’’ had the upper critical fieldHc2 of about 25 T at 2
K, a sample with 15 times larger resistivity in the normal
state remained superconducting, at least partly, up to 32 T.
This is in agreement with our suggestion that the random
potential is an important factor effecting the valueHc2.

In conclusion, we have found a non-WHH behavior of the
superconductivity in KxBa12xBiO3 single crystals and at-
tribute it to the presence of Landau quantization which be-
comes important in superconductors with a high value of the
critical field.

One of the authors~V.F.G.! gratefully acknowledges the
hospitality of the staff of High Field Magnet Laboratory of
the University of Nijmegen where the high-field experiments
were performed. The work was supported by the Russian
Fund for Fundamental Research and the Large Installation
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FIG. 3. Enhancement ofHc2 vs the ratio of temperature to Lan-
dau splitting.
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