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We discuss the application of the embedding method to the problem of finding the eigenstates of
confined quantum systems. Embedding is a general way of tackling boundary condition problems,
giving a true variational principle, and we apply it to the confinement problem by embedding
within an isotropic medium with a very large potential. Corrections for incomplete confinement are
described. The method is tested on examples recently studied by Brownstein [Phys. Rev. Lett. 71,
1427 (1993)j, namely, an electron in two dimensions confined within the quadrant of a circle, and a
H atom oB center in a spherical cavity.

In this paper, we show how the embedding method,
a variational method for taking care of boundary con-
ditions on the wave function, can be used to find the
eigenstates of quantum systems confined by an electively
infinite potential barrier. There have been several papers
recently on this type of problem, in particular, for solv-
ing the Schrodinger equation for a H atom confined in
cylindrical and spherical cavities. These have used
trial wave functions vanishing on the boundary walls (the
requirement on the exact solution of the problem),
nonvanishing basis functions with constraints that the
trial function vanishes at a finite set of points, and a sta-
tionary principle due to Brownstein for a trial function
not necessarily vanishing on the boundary. The embed-
ding method can tackle this class of problem, and it gives
a minimum variational principle. Advances in nanostruc-
ture fabrication techniques mean that this is not of purely
theoretical interest for example, the cylindrical confine-
ment problem is relevant to an impurity atom in a quan-
tum wire, and the spherical case to an impurity in a
quantum dot.

In the embedding method, we consider the region of
I

interest I joined on to region II, and derive a variational
principle for a trial function P defined explicitly only in
region I the boundary condition that, the wave func-
tion must be joined on to the solution of the Schrodinger
equation in region II is replaced by additional boundary
terms in the Hamiltonian for region I. The original mo-
tivation for this approach was to develop a method for
solving the Schrodinger equation in a defect region of a
solid, using basis functions of finite extent in the defect
region (I) and the embedding potential taking care of
the infinitely extended substrate (II) (a recent applica-
tion is to adsorbatess). Here region I is the cavity, and
the very high potential beyond the boundary of the cavity
constitutes region II. The variational principle is derived
by notionally extending P into II with an exact solution
of the Schrodinger equation at some energy e (in fact
a parameter), which matches in amplitude to P over the
boundary surface S, separating I and II. The contribution
of the wave function in II to the expectation value of the
Hamiltonian is then eliminated using Green's theorem.
Using Hartree atomic units, with e = 6 = m = 1, the
resulting expression for the expectation value is

f&d3rgsp+ fzd rs -, Pz~ + fzd rs fzd rig (Go —e z' ) P

/id'r0' —jsd'rs J'sd'r', y 6', y

The first integral in the numerator is the expectation
value of the Hamiltonian through region I, the region
of interest; the second is an integral over the bound-
ary surface S involving the normal derivative of the trial
function combined with the kinetic energy operator in
H, the surface normal derivative ensures a Hermitian op-
erator for integrals restricted to I; and the third term is
a double integral over S, involving the surface inverse of
the Green function Go for region II evaluated at energy e
with zero normal derivative on S. Go is the embedding
potential, and it ensures that when the energy is mini-

mized, gi not only satisfies the Schrodinger equation in
I, but also matches in amplitude and derivative, the ex-
act solution in II. The energy derivative of Go, which
appears in both the numerator and denominator gives
the normalization of P in II, and provides a correction to
the embedding potential so that it is evaluated (to first
order) at the energy E rather than the trial energy e.

The embedding potential cannot be defined for an in-
finite potential in II, and so to apply this method to con-
fined systems, we choose a constant but very large poten-
tial V in II. As a result, the variational principle will con-
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verge from above to the lowest eigenvalue of this system,
but this will, in principle, lie helot the true eigenvalue
of the actual confined system, as there is slight leakage
of the wave function out of I. We discuss below how this
error may be assessed. The large potential leads to a
great simplification in the embedding formalism. Let us
consider, for example, confinement in a spherical cavity
of radius B, for which the embedding potential can be
expanded as a sum over spherical harmonics:

(rs, rs) = ) .Ql. &z, (fl)&z*, (fl ).
L

For large V, QL, is given by

(assuming normalized wave functions). Hence we obtain
a 1/~V variation, and knowing this error behavior re-
moves the apparent drawback of using a finite V.

As a first example we consider the same model prob-
lem as Brownstein, a free electron in two dimensions
confined within a quadrant of a circle with radius A.
The exact solutions of this problem have the form (using
cylindrical polar coordinates)

P„g(p, e) = J„(A„I,p/R) sin(po),

where p is an even integer, J„ is a Bessel function, and
J„(A„y) = 0. The corresponding eigenenergies are

so

Go (rs, rs) = 8(rg —rs).

2 ( R )
To test (5) we use the same basis functions as Brownstein,
expanding P in (5) in terms of

/, d'rOH4+ /~ d'rs (-', 4 ~~, +

j dsrpz (5)

This holds for a cavity of arbitrary shape, as minimiz-

ing E leads to a wave function P not only satisfying the
Schrodinger equation within I, but also satisfying

0 = —v'2V(P
Ons

Because OGo /Be is negligible compared with Go for
large V, the variational expression (1) then simplifies to

(x, y) = sin(marx/R) sin(n7ry/R), (12)

with m, n varying from 1 up to a maximum value M.
These functions automatically satisfy the zero amplitude
requirement over the straight lines x = 0, y = 0, and the
integral over S in (5) reduces to a line integral over the
perimeter of the quadrant.

Typical results for this system are shown in Fig.
1, where we study the second lowest eigenvalue ob-
tained with various basis set dimensions and confining
potentials, and we also compare them with the esti-
mates obtained using the stationary method derived by

over S, which for large V and well-behaved functions
means

P(rs) = 0, (7)

as we require.
In practice very large values of V can be used, so the

error in the eigenvalue due to leakage can be made as
small as we require. Furthermore, the error varies ap-
proximately as 1/~V, and so extrapolation of the eigen-
value to complete confinement can be made. To show
this behavior, we consider @—the solution we require
which satisfies the Schrodinger equation in I with zero
amplitude boundary condition on S at energy Eo. Then,
from Green's theorem, the difference between E0 and E,
the energy of P satisfying the Schrodinger equation with
boundary condition (6), is given by
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and using (6), this becomes
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FIG. 1. Variational estimates of the E4 i eigenstate [Eq.
(11)j of a two-dimensional free electron confined to a quadrant
of radius B = 1 a.u. Energies evaluated with the embedding
method for confining potentials V, 4V, and 1024V, where
V = 8 x 10, are compared with those given by Brownstein's
method (Ref. 7) as a function of M (see text —basis set
size M ). The inset shows the variation of the eigenvalue
given by the embedding method with the confining potential
V, for the basis set with M = 22. Similar behavior occurs
for smaller basis sets. The exact value of the eigenvalue is

84, g ——28.7915.
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Brownstein. Brownstein's method gives a variable num-
ber of ghost states below the ground state and so, in
this case, we select the eigenvalue closest to the exact
answer. We see uniform convergence in the embedding
results with an increasing basis set size, unlike the eigen-
values given by Brownstein's method from which it would
be impossible to deduce an accurate eigenvalue. Esti-
mates obtained using small confining potentials are bet-
ter at small basis set sizes due to a cancellation of errors

leakage reduces the eigenvalue, while the variational
solution means the result lies above that obtained with
a larger basis set —but for large basis sizes, the value
converges below the exact eigenvalue. The inset shows
the behavior of the eigenvalue with confining potential,
from which it is clear that the error due to leakage can
be accurately estimated and corrected for.

Even for large basis sets the eigenvalues calculated for
this problem retain considerable error. This is due to
the choice of basis set, which does not contain sufIicient
fjexibility to satisfy the zero amplitude boundary condi-
tions. A better chosen basis set would greatly improve
convergence. This is shown in a second more physical
example which was also considered by Brownstein, and
by Gorecki and Byers Brown and Diamond, Goodfriend
and Tsonchev, where a H atom is placed 0.5 a.u. ofI'

center in a spherical cavity of radius 3 a.u. Our results
are presented in Table I along with those of Brownstein,
in both cases using the basis functions,

u p(r, g) = e "r cos~(0),

where r and 0 are the radial and polar coordinate relative
to the atom at the origin, and a = 0, 1, . . . (N —1),P =
0, 1, . . . (M —1). Both methods converge to the same
ground state energy with rather few basis functions. The
embedding results have been obtained with a confining
potential of V = 1.8 x 10 a.u. so that there is negligible
error due to leakage. Again they converge uniformly from
above, unlike the estimates obtained by Brownstein.

To conclude, we have shown how the embedding
method can be used to find the eigenstates of confined

TABLE I. Ground state energy (in a.u. ) of a H atom dis-

placed 0.5 a.u. ofF center in a spherical cavity, radius 3 a.u.
The embedding method results are calculated using Brown-
stein's basis set (Ref. 7), with M = N so that the nuinber of
basis functions is N . V in Eq. (5) is taken to be 1.8x10 a.u.
The number in brackets after the eigenvalue is the position of
the eigenvalue as ordered by size.

Method
Embedding
Brownstein

N=2
-0.31730(1)
-0.44906(1)

N=4
-0.41323(1)
-0.41013(4)

N=6
-0.41389(1)
-0.41389(7)

quantum systems. Like the method due to Brownstein,
in the embedding approach there is no need to construct
basis functions which implicitly satisfy the boundary con-
ditions which can be difIicult or impossible for cornpli-
cated geometries as the boundary condition is imposed
as a variational constraint. In contrast to the method
due to Brownstein embedding represents a true minimum
principle, but, in addition to requiring the evaluation
of similar volume integrals, also requires a sometimes
tedious surface integral over S. Interestingly enough,
in the case of the Neumann boundary condition on S
( &

~ ——0), Brownstein's result is the same as embed-

ding [i.e. , (1) with Go ——0].
Finally, we would point out that ideal confinement

is invariably a theoretical approximation, and that the
embedding method can equally well handle less severe
boundary conditions (e.g. , those used in Ref. 8).
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