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A discrete dipole model has been developed to describe Surface Second Harmonic Gener­
ation by centrosymmetric semiconductors. The double cell method, which enables the linear 
reflection problem to be solved numerically for semi-infinite systems, has been extended for the 
nonlinear case. It is shown that a single layer of nonlinear electric dipoles at the surface and 
nonlocal effects allows to describe the angle of incidence dependent anisotropic SHG obtained 
from oxidised Si(001) wafers. The influence of the linear response, turns out to be essential to 
understand the anisotropic SHG-process.
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In recent years Surface Second Harmonic Generation 
(SSHG) has become a widely usedsurface and inter­
face probe. Its sensitivity to the symmetry of crys­
talline surfaces has been particularly successful1-4. To 
describe SSHG, commonly use is made of macroscopic 
continuum models, with a  strong emphasis on symmetry 
arguments5’6. Purely microscopic models have as yet not 
been capable to trea t SSHG, although a few authors have 
used partially microscopic models7,8 in order to take into 
account local field effects.

In this paper we show the first results of an alterna­
tive approach to describe SSHG, the nonlinear discrete 
dipole model. This model is strictly microscopic and goes 
as such beyond what macroscopic continuum models can 
treat. It yields the microscopic sources and microscopic 
electric fields in the surface region, both for the funda­
mental and second harmonic frequency. Nonlocal elec­
trodynam ic interactions, including retardation, are rig­
orously taken into account and demonstrate how local 
fields play a role in the SSHG process. The nonlinear be­
haviour of the discrete dipole theory was already studied 
by us for th in  slabs9, but the configuration relevant for 
experiment, is the semi-infinite one.

By means of the linear double cell method the local 
electric fields can be obtained for arbitrary semi-infinite 
crystalline systems10,11. This m ethod requires the sys­
tem, represented by lattice planes of dipoles, to be subdi­
vided into a semi-infinite bulk region and a (thin) surface 
region on top of it. The response of the bulk region is gov­
erned by a finite number of normal modes. The double 
cell m ethod makes the coupling between the surface and

the bulk regions using those normal modes. Off-normal 
incidence cases benefit particularly of the incorporation 
of retardation.

In this paper we give the nonlinear extension of the 
double cell method, which enables the description of 
the angle of incidence dependence and the rotational 
anisotropy of SHG for semi-infinite crystals. To demon­
strate the potential abilities of such an appproach, we 
will apply the m ethod to the Si(001) surface, and make 
a comparison with experiment. The crystal and surface 
symmetry, as revealed by the anisotropy of the nonlinear 
response, is taken into account in the present analysis. 
We will also investigate the relative contributions of sur­
face and bulk to SHG.

The crystal and its surface are represented by a cor­
responding semi-infinite crystalline lattice of point-like 
dipoles, which are induced by the local electric fields. 
Each lattice plane is spanned by the lateral basis vectors 
S] and s2. The z-direction is normal to the surface, point­
ing to the crystal interior. Parallel translational symme­
try requires tha t all dipoles within a lattice plane i paral­
lel to the surface are equivalent, and can be represented 
by a single characteristic dipole p*, positioned at r,. The 
local fields are superpositions of the externally applied 
electric field and the electric fields produced by all dipole 
sources in the system. The incident light has an electric 
field given by the real part of

E ca:i( r , i)  =  £ 0êexp(i[kr -  ut]), (1)

where Eo is the amplitude and ê the direction of po-
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larisation. The wave vector is k and the frequency uj. 
The fields produced by the dipoles are obtained through 
the transfer-tensors which are derived from the mi­
croscopic Maxwell equations (SI-units). Techniques to 
calculate them  efficiently can be found in10,11. The in­
teraction equations for the characteristic dipoles follow 
from the linear induction principle:

_____ *—*

Pi =  & i^ L ,i  =  “h f  i jP j i i (2)

where a¿ is the linear polarisability tensor and E l ,í the 
local field at r¿.

In the double cell method the solution of the collective 
response of the interacting dipoles to the externally ap­
plied field sta rts by finding the normal modes. They 
make up the collective oscillations of the bulk region 
which can be w ritten as:

M

Pi =  vmUm exp(z[k|| +  gTOz]r¿). (3)

M s s M s b Pi Eezt(rj)
M b s M b b Eo(t ■ ê)

Here is the normal mode strength. The normal mode 
polarisation Um and the (complex) normal mode wave 
number qm are entirely determined by the bulk properties 
and obey the bulk secular equation10,11. For bulk silicon 
only two normal modes (gTO,u m) are needed at optical 
frequencies for each wave vector k.

The individual dipole strengths p¿ of the surface re­
gion, and the two normal mode strengths vm of the bulk 
region are the only unknowns left, and they can be found 
by solving the double cell interaction equations:

(4)

The sub-matrix M s s  is a composite m atrix of trans­
fer tensors coupling the surface dipoles, and the sub­
m atrix M b b  is a simple 2x2 complex m atrix coupling 
the two normal modes. The off-diagonal matrices con­
nect the surface and the bulk regions, which shows that 
for the bulk region only the normal mode strengths vm 
are affected by the surface region. The bulk part of 
the inhomogeneous vector corresponds to the s- and p- 
components (generically t)  of the incoming light. From 
the microscopic sources the microscopic and macroscopic 
fields can be obtained. The t  polarised component of the 
reflected field E  is obtained from the superposition of all 
fields produced by these sources:

E ‘ =
i k 2/ 2e0 

|s i X s2||fcz
^  t  • Pi exp(-i[k || -  fc2z]r¡ 

L*=i
• (5)

The dipole strengths for the bulk region have to be ob­
tained from Eq. (3).

For a linear bulk the extension of the double cell 
m ethod to  the nonlinear optical response can be made 
without much difficulty. The nonlinear behaviour is re­
stricted to the surface region only, where the induction 
principle for the dipoles is given by9

Pi(2ui)  =  a i (2o ))E £ j i (2w ) +  /?<(2 w )E ¿ i¿ (w )E £ ij(a )). (6)

In the bulk we keep the linear induction principle. As 
a result all normal modes can be obtained in the usual 
way10. We found by direct calculation tha t beam deple­
tion can be neglected. Therefore the linear double cell 
m ethod can be used in an unabridged way to solve for 
the local fields in the surface region at the fundamental 
frequency. W ith these fields at hand, the nonlinear term 
at the right hand side of Eq. (6) can be calculated. That 
the same equation will generate all higher harmonics, due 
to local fields, will be ignored however. The nonlinear 
sources p¿(2w) and vm (2ui) can now be obtained by solv­
ing the interaction equations for the double frequency, 
after modifying the inhomogeneous vector by omitting 
the bulk part and replacing the surface part by9:

E e a i ( 2 u )ß i ( 2 u ) E i ti(w)EL'i(u>). (7)

W ith the sources known at both frequencies, the linear 
and nonlinear reflected fields can be obtained by Eq. (5).

For the dipole model of the unreconstructed Si(OOl) 
surface we used a bulk truncated geometry where each 
dipole represents two atom s12. The atomic diamond lat­
tice then corresponds to an fee dipole lattice, with dipoles 
positioned at (0 ,0 ,0) and ( |a ,  0, |a ) ,  in the elementary 
cell, and lattice vectors S! =  (o, 0,0), s2 =  ( |a ,  | a ,  0) and 
s3 =  (0,0, a), a is the lattice parameter. The value for the 
isotropic bulk polarisability is obtained from the dielec­
tric constant using the Clausius-Mossotti relation. We 
used for the lattice param eter a =  5.43.Ä, and for the di­
electric constant e =  17.2241 +  ¿0.4296 at 2.33eV and 
e =  -16.2864 +  i 16.4968 at 4.66eF13.

The (001) surface of the implemented dipole configu­
ration has the 2mm symmetry of a bulk truncated di­
amond lattice, w ith two mirror planes (110) and (1Ï0). 
This symmetry is reflected in the (hyper)polarisabilities 
of the surface dipoles. This restricts the polarisability a  
to three independent elements

«= aùo(iê) + «!!(« + ÿy) + Q!L(*ÿ + ÿ*)> (8)
and the hyper-polarisability tensor ß  to five14 

ß  =  /3¿¿"L(iM ) +  / j H 1 ( ü z  +  i ê i  +  ÿ ÿ i  +  m )  +

Æito'(»** + zÿÿ) + /̂ ¡'(âxÿ + zÿx) +
ÆiW® + + y™ + y¿i)- (9)

The upper indices || and _L refer to the orientation rel­
ative to the surface. Isotropic parts are invariant under 
rotations about the surface normal. The two isotropic 
elements in a  have bulk values. The hyper-polarisability 
and the anisotropy in the polarisability are assigned only 
to the topmost layer of dipoles. The rest of the system is 
bulk-like.

The macroscopic 4mm symmetry observed in experi­
ments is a result of the simultaneous presence of two dif­
ferent domains2’16, which have their orientations rotated 
by 90° about the surface normal. W ith the 2mm sym­
metry of the dipole model, the macroscopic 4mm sym­
metry is restored by the superposition of the coherently 
reflected fields of both  domains. This, however, does not 
result in the exclusion of the anisotropic elements in a
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and ß,  as is the case for the macroscopic response tensor 
X used in phenomenological models.

In order to  apply this model to  an experimental case, 
we measured the p-polarised anisotropic SHG by Si(OOl) 
in air for s- and p-polarised excitation at angles of in­
cidence between 15° and 75°. For the excitation the 
frequency-doubled output at 532 nm of a seeded Q- 
switched Nd-YAG leiser was used. The fluence of the
8 ns pulses was limited to 30 m j/c m 2, well below the 
damage threshold, and stable within 2%. The sample 
was an optically flat standard Si wafer, cut within 0.5° 
to the (001) axis, and with a thin natural oxide. For the 
oxidised surface we used a bulk truncated geometry and 
the oxide will only affect the absolute values of the linear 
and nonlinear surface polarisabilities.

The discrete dipole calculations performed on this 
model system gave, in agreement with the macroscopic 
4mm sym m etry2’15, isotropic linear reflection coefficients 
and anisotropic s- and p-polarised second harmonic fields, 
which have azimuthal dependences according to:

E ^ (Ö ,n )  =  a 1(Ö)sin(40) (10)
E 5 J 0 , n )  =  bo(0) +  6i(0) cos(4f2). (11)

Here fl  is the azimuthal angle between the plane of in­
cidence and the in-plane (100) direction, 9 is the angle 
of incidence and the complex numbers a j, 60 and bi are 
linear combinations of the ß  tensor elements, depending 
on the excitation polarisation. Anisotropy is required 
for both polarizability a  and hyperpolarizability ß  of the 
surface layer, to  get agreement between theory and ex­
periment. For an isotropic a  already an anisotropy in 
the SHG signal is obtained, but the value is too weak (4 
orders smaller than  the isotropic part of the p-polarised 
signal), to explain the experiments. For a wide range of 
a an¿ we can 8et excellent agreement with experiment by 
fitting the elements of ß  to the p-polarised intensities, 
which can be described by:

|E(2ii>)|2 =  A(9) +  B(0)cos(4O) +  C(0)cos(8fi). (12)

Here A, B and C are real numbers obtained from Eq (11) 
with A =  |&o|2 +  f|& i|2, B =  2Äe(&i&o) and C =

«O
FIG. 1. Azimuthal dependence of the p-polarised SH inten­

sity for Si (100). s/p-polarised excitation, (6 = 45°). Lines: 
calculation (in units of i f ) ,  dots: experiment (arb. units)

It has been shown th a t the anisotropy present on a dimer 
reconstructed Ge(001) surface was removed by exposure 
to molecular oxygen, but th a t also some anisotropy re­
mained if atomic oxygen was used instead16. We used 
a aL = 1% th e bulk value for both  frequencies, which 
results in an anisotropy of the linear reflection from a 
single domain of 3 x  10—6, well below their experimental 
resolution. Fig. (1) shows the full anisotropy for a 45° 
angle of incidence.

In Fig. (2) the angle of incidence dependence of the co­
efficients A and B is shown for p-polarised SHG under s­
and p-polarised excitation. The dots sire measurements 
and the curves are results of the theory for the fitted ß  
(listed in table (I) in units of ßo). A, B and |E(2ui)|2 are 
given in units of =  ( | Eo 12/3o/ 47reoa3 )'2. All experimen­
ta l data for s- and p-polarised excitation have the same 
scaling.

Table (I) shows th a t a small anisotropy in the linear 
polarisability of the topmost layer (1%) requires a large 
anisotropy in the nonlinear coefficients (ßanilßuo ~  30). 
For the SHG response, this leads to a strong anisotropic 
response (~  10%, see Fig. (2)), whereas this anisotropic 
linear surface term  leads to a fully isotropic linear reflec­
tion for a multi-domain sample of 4mm symmetry.

For p-polarised excitation the moduli of the second 
harmonic dipole strengths (in units of ßol-EoP) are shown 
in Fig. (3) as a function of layer index i. The figure shows 
also the modulus of this dipole strength, obtained from 
the normal mode expansion Eq. (3) extrapolated up to 
the surface, and the modulus of the difference between 
the two types of vectors. W ithin our approach this is

0 15 30 45 60 75 90en
FIG. 2. Coefficients A  (isotropic part) and B  (anisotropic 

part) as a function of 9 for Si(001). s/p-polarised excitation. 
Lines: calculation (in units of i f ) ,  dots: experiment (arb. 
units)
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TABLE I. elements of ß  for aj! 0.01a 1

value (x/3o) value (x/3o)

ß t .o X 0.2783
0 m
^ t i O -0.9940 - i 1.869 ß M\\\

“ a m 24.591 + i 45.170
ß\\M\
r - 't to -0.6142 - i 0.5516 “am 15.106 - i 0.4844

a good way to separate bulk and surface contributions 
for bulk terminated surfaces, although any such distinc­
tion has to be arbitrary6. It can be seen immediately 
from Fig. (3), that both components have an exponen­
tial decay. They also have about the same contribution 
in absolute value to the reflection. The second harmonic 
response of the bulk is caused by the second harmonic 
local fields and the linear polarisability of the bulk. The 
only source o f nonlinearity is the outerm ost dipole layer. 
Since the linear induction term can never be eliminated, 
surface and bulk can have no independent second har­
monic behaviour.

In this paper we have made a microscopic model cal­
culation of the SSHG produced by a Si (100) surface. We 
have shown the possibility to fit the results to experimen­
tal data. Since there is no one to one correspondence be­
tween microscopic and macroscopic models, it is not pos­
sible to compare our results directly with those obtained 
by other authors17’18. Our major conclusions however do 
not depend on the particular Si (100) case given as an ex-

^L a yer

FIG. 3. Calculated nonlinear dipole strength |pj|(2oj) (in 
units of |Eo|2/3o) as a function of layer-index for p-polarised 
excitation, (6 =  45°, Í2 =  0°), total strength (total), normal 
mode part (bulk) and difference of those (surface)

ample. Purely microscopic models, as treated here, show 
clearly that linear and nonlinear responses, as a result of 
second harmonic local field effects, are tightly interwo­
ven. Anisotropy showed this dependence, but we have 
intentionally assigned the nonlinearity to a single dipole 
layer, to demonstrate clearly the occurrence of second 
harmonic sources produced by a linear bulk. Phenomena 
going beyond the simple model description of this paper, 
will be subject of future work.
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