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Adaptive resonance theory based neural 
networks - the ‘ART’ of real-time pattern 
recognition in chemical process monitoring? 

Dietrich Wienke *, Lutgarde Buydens 
Nijmegen, The Netherlands 

The family of artificial neural networks based 
on Adaptive Resonance Theory (ART) forms 
a collection of distinct mathematical pattern- 
recognition methods. The classification of 
sensor signals, process data analysis, spec- 
tral interpretation, and image analysis are 
discussed as applications of ART outside 
and within chemistry. The advantages of ART 
are considered. They include its use as a 
built-in detector for outliers, its rapid training 
speed, self-organizational behaviour, full 
chemical interpretability, and real-time and 
on-line applicability. A glossary of terms 
used in ART is given at the end of the article. 

1. Introduction 

Adaptive Resonance Theory (ART) based neu- 
ral networks were introduced by Grossberg [ 1,2] 
as rather theoretical neural models, describing 
selected aspects of the classification behaviour of 
biological brains. However, ART models are also 
capable of solving technical and chemical pattern 
recognition tasks. The research on, and application 
of pattern recognition methods (PARC) in analyt- 
ical chemistry, spectroscopy and chemical process 
monitoring was mainly initiated by the pioneering 
work of Jurs, Kowalski and Isenhour in 1969 on 
the classification of mass spectra using the Linear 
Learning Machine [ 31. Implicitly, via a cross-ref- 
erence (Ref. [ 21 in [ 31) the authors had already 
made a link between their PARC method and the 
term ‘artificial neural network’. Explicitly, this 
term was used in 1975 by Stonham et al. [ 41 within 
their method called the ‘Adaptive Digital Learning 
Network’, which also has been applied for classi- 
fying mass spectra. However, the PARC methods 
most used in chemistry in the seventies and the 

* Corresponding author. e-mail: wienke@sci.kun.nl. 

eighties were techniques based on statistical and 
graph theory, such as cluster analysis, discriminant 
analysis, principal component analysis and regres- 
sion models [ 51. The development and application 
of these classical pattern recognition methods dom- 
inated research in chemometrics. This found its 
expression in a number of contributions to text- 
books for chemists [ 6-91. It took another fourteen 
years before the term ‘artificial neural network’ was 
again used in chemometrics in connection with 
chemical pattern recognition [ lo]. Then, within a 
very short time, an enormous number of studies 
appeared on the application of artificial neural net- 
works in chemistry, spectroscopy and process anal- 
ysis. These studies dealt mainly with the 
‘Multilayer Feedforward Network’ based on 
Rumelhard’s back-propagation of error based 
learning rule (MLF-BP) and have also been 
inspired by Kohonen’s self-organizing feature 
map, which was reflected in the book by Zupan and 
Gasteiger [ 111 and other reports [ 12,131. Parallel 
with the interest of chemists in the theory of arti- 
ficial neural networks PARC methods became 
increasingly applied in daily analytical practice in 
industry for chemical process monitoring, in rou- 
tine quality control, in multisensor technology and 
in routine environmental analysis. The food and 
pharmaceutical industries are representative of this 
trend -by the use of remote rapid-scan near-infra- 
red spectroscopy combined with a PARC method 
such as PCA, final and intermediate products can 
be checked continuously by their spectroscopic fin- 
gerprints to guarantee the company and its custom- 
ers the consistently highest quality. However, this 
trend to the application of classical PARC methods 
in industry has also provided critical evaluation of 
the existing PARC methods. The present authors 
have often been told that there is a need for alter- 
native PARC methods with the following proper- 
ties: 
0 a higher speed of classification, 
0 a higher power of discrimination and prediction, 
0 ease of chemical interpretation, with no need of 

‘black boxes’, 

0 1995 Elsevier Science B.V. All rights reserved 
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Fig. 1. Cluster formation in the features space during 
training an ART neural network. 

that they should be robust against outliers, and 
extra-and interpolations 
be simple to recalibrate and to configure for other 
applications, and 
be able to fulfil on-line and real-time classifica- 
tion tasks in production processes and in auto- 
mated analytical systems. 
The general theoretical interest in artificial neu- 

ral networks and the critical evaluation of existing 
PARC methods by practical chemists, encouraged 
chemometricians to advance their research in 
PARC. In this, the study and application of artificial 
neural networks based on ART represent a trend of 
increasing importance. 

2. The basic ideas of ART 

The starting points in ART are y1 multivariate- 
described samples X (dimension y1 X m), each 
given by measurements taken of m different fea- 
tures. A typical example is a set X of II spectra (or 
chromatograms or sensor data), whereby each xi 
has a length m. The quantity y1 stands for different 
samples, mixtures or process stages, and m for dif- 
ferent wavelengths, retention times, or sensor 
diodes, etc. Each multivariate measurement Xi is 
thus a directed vector in the m-dimensional space 
of m features. Some of the y1 vectors can be closer 
to each other in this space, forming groups if their 
m values are more similar to one another (Fig. 1) . 
The aim of ART networks is to find groups with 
similar sample vectors x among the y1 vectors, 
whereby their number, c, is not a priori known. 
Classically expressed, ART is a multivariate data- 
clustering method. The clustering process, called 

399 

‘network training’, starts with a random selection 
of an arbitrary i-th sample, xi, out of the entire set 
of training samples X and copying it to a future 
‘long-term memory (LTM)’ of ‘weights’. In the 
easiest case, this will be simply a new vector w of 
length m representing a raw estimate of a first 
(new) cluster (Fig. 1 ). In other cases, several 
scaling operators follow this copy step. Anyway. 
the weights in ART are thus also vectors describing 
the direction of the clusters in the features space. 
After the initialization of a new (or first) cluster. 
another xj is randomly selected and compared 
mathematically with all the hitherto existing kclus- 
ters, W ( ‘network weights’). During such a com- 
parison, a virtual image x,* of Xj is generated 
internally within the network. This virtual image 
either fits to the original or it significantly deviates. 
Both cases will be discussed later. Simultaneously, 
xJ* also forms a kind of temporary short-term mern- 
ory (STM) for x,~. After comparison with all clus- 
ters (‘weights’), a ‘winner’ among them can be 
found, providing a virtual image XI .w”‘l’eT having 
the highest similarity (lowest dissimilarity) to x,. 
Dissimilarity is expressed in ART as p’“” via dis- 
tinct formulae. One may think in the simplest ver- 
sion about a Euclidian angle between xi and each 
w,. At this point, classical cluster analysis would 
stop with further similarity comparison. But in 
ART, the highest similarity between sample xi and 
cluster Wwinner IS not the only satisfying criterion 
for their future fusion. In a second crucial step there 
is a check to find whether the virtual image 

xi * Winner generated by the network is similarenough 
to the original actual input, xi. In other words, the 
network asks itself (as we would do ourselves): 
“Did I ever see this input (e.g., this person). or do 
I not know it (e.g., him) yet ‘?“. Technically, this 
is achieved by comparing the numerically calcu- 
lated dissimilarity pG’&,,,, between xi and w~““‘~I’, 
using a constant, defined in advance, called a ‘vig- 
ilance’ parameter, p”‘““. This p”‘“’ forms a fixed 
spatial limit around each cluster. Thus, if 

$$;,& 5 p “‘:‘x (1) 
then x.; .winner . IS similar enough to xi, or classically 
expressed, xi falls inside the borders of the existing 
cluster wwinncr. For simplicity, p$,‘,,,, and p”“‘” are 
always given values O-l (achieved by suitable 
scaling procedures within ART). A value of p”“lx 
close to unity, means a high dissimilarity. Even a 
small deviation between w”‘~“““~ and xi is reason 
enough for opening a new separate cluster. High 
dissimilarity will thus provide many new clusters 
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with small diameter. In the reverse case, where p”“” 
is chosen close to zero (low dissimilarity), only a 
few, but large, clusters will be generated. If Eq. I 

is fulfilled, one says that the network came into 
‘resonance’ with this type of input, or it already 
‘knows’ this phenotype. 

In the other case, if 

(2) 
the network discovered a ‘novelty’. Here, x,~,~‘““~~ 
is not close enough to the closest wwinner. 

After the resonance check according to Eq. 1 and 
Eq. 2, the third crucial step follows -called ‘adap- 
tation’. In the case that Eq. 1 is fulfilled, the network 
changes the weights of the winning cluster by a 
small step, given by a step width called v (the 
‘learning rate’), towards the spatial position of the 
actual input vector Xi. The entire calculation for- 
mula for adaptation of the weights containing r~ is 
called a ‘learning rule’. In practice, 77 can be chosen 
between 0 and 1, whereby a value of q close to 
zero will provide only small changes in the weights. 
In this way, an ART network stores a weighted part 
of the present input vector in the LTM, just as any 
other artificial neural network does. If Eq. 1 is not 
true but Eq. 2 is fulfilled, the network does not 
adapt its weights but adapts its structure to the 
discovered novelty. ‘Structure adaptation’ means 
simply adding a new cluster to the existing ones. 
The novelty is immediately stored in the additional 
weights. This is another unique idea of Grossberg: 
ART neural networks not only use their weights 
but also their structure for information storage and 
for data fitting. After this step of adaptation, another 
input vector is randomly selected from training 
data, and the entire process of ‘resonance’ and 
‘adaptation’ is repeated, whereby the former con- 
tent of the STM is repeatedly overwritten by new 
virtual inputs, as happens in the biological brain. 
Random sampling of y1 times the training data 
matrix X is called one ‘epoch’ of training. Simul- 
taneously, the contrast between clusters in the LTM 
increases ( ‘generalization’). The process con- 
verges within a few epochs of training, with the 
formation of c clusters, whereby the previously 
chosen constants of learning rate, 7, and vigilance 
parameter, p, determine how many clusters c are 
formed (Fig. 1). In other words, by a suitable 
choice of 7 and p the data cloud, X, can be approx- 
imated by (or resolved to) a number, c, of clusters 
(Fig. 2). In this way, a variation of q and p can 
serve for active data exploration of X. As in clas- 
sical pattern recognition, it becomes clear also for 

X 
2 

t 

x1 
Fig. 2. The methods FuzzyART and FuzzyARTMAP 
approximate data clouds in the features space by 
distinctly numbers of distinct shaped hyperrectangu- 
lars. ART-l, ART-2, ART-2a, ARTMAP and ART-3 
use distinct numbers of equally sized hyperregulars. 

ART, that the more compact, point-shaped and 
well-separated the sub-clusters are, that are hidden 
in the M data vectors, the less important the ART 
user’s choice of 7) and p will be. In this situation, 
ART will always find the true number, c, of hidden 
clusters. However, the more the data are scattered, 
or the more they form a continuous hypersurface 
of equidistant points, the higher the influence of 7 
and p on the clustering result, and on the number 
c. will be. 

3. Unsupervised working of ART for 
clustering 

Historically, various unsupervised ART meth- 
ods (ART-l [ 1,2,14],ART-2 [ 15],ART-2a[ 161, 
ART-3 [ 171 and FuzzyART [ 181) were devel- 
oped before the supervised ART techniques (ART- 
MAP [ 191, FuzzyARTMAP [ 201) . ‘Unsuper- 
vised’ means that the dissimilarities among the n 
sample vectors are only considered in their meas- 
urement space X (X-space) for clustering. After 
clustering this X-space, the formed clusters can be 
assigned by the chemist to distinct process situa- 
tions, product qualities, material types, etc. ART- 
1 only tolerates binary ( ‘0’ or ‘ 1’ coded) numbers 
within an input vector xi. ART-2, ART-2a, ART-3 
and FuzzyART can process any real number, 
scaled to the continuous range between 0 and 1. 

In unsupervised ART, the II samples are not com- 
pared pairwise with each other with respect to their 
dissimilarity as they are in hierarchical cluster anal- 
ysis or in the k-th nearest neighbor method, which 
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INITIALIZE: .- 
1. fix desired duster size 
2. fix training spaed 
3. set all weights to 

PREPROCESS IT 
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~Fliiii rt,NtiNG w: 
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ADAPT STRUCTUR$ 
( among wl, w2,..., that ( 
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RiS~NA+NE-CHECC 
x inside winning w ? 

1-i A&WElGHT~ (LEARNING): 
~_ -.- ~~ ~~ 

move winning w a step towards x 

1-1 if weEAnverged j 

Fig. 3. Calculation steps during training of a 
FuzzyART (or an ART-2a) neural network. 

require the calculation of a rapidly growing dis- 
tance matrix of size (n” - n) /2. In ART, the y1 
samples have to be compared only with c clusters, 
keeping the number of computational steps grow- 
ing only linearly for increasing ~1. Thus, unsuper- 
vised ART is attractive for rapid clustering of data 
sets with a large number, II, of multivariate sam- 
pies. 

The unsupervised ‘training’ of ART- 1, ART-2, 
ART-2a. ART-3 and FuzzyART finally provides 
three results that are interesting for the chemist. 
First, is the number, c, of clusters for a certain 
chosen size of p and r~. This cluster structure says 

Table 1 
Resealed weights matrix from a trained ART-2a neural net- 
work 

Body feature Weight vector 

Wl W2 W W4 

Body length/cm 167.6 177.3 187.5 184.7 
Body weight/kg 59.9 73.1 73.1 85.9 
Footsizeia.~. 38.5 41.6 44.4 43.6 
Stomach/cm 73.4 86.5 86.5 100.7 
Neck/cm 33.9 37.6 37.6 41.5 

The 47 male and female participants in courses of chemo- 
metrics were asked for their m=5 body measures ‘weight 
(kg)‘, ‘length (cm)‘, ‘shoe size (a.u.)‘, ‘stomach (cm)’ and ‘neck 
(cm)‘. The obtained 47 x 5 data matrix has been clustered with 
ART-2a using the parameter settings pm”“= 0.11 and 77 = 0.1. 
After ten training epochs, the network had stabilised dividing 
the 47 persons in c= 4 clusters, given by theirfourcorrespond- 
ing weight vectors w,, each of length m= 5. 

something about the heterogeneity of the data cloud 
X. The number of clusters can often be related to 
different material types, process stages, product 
qualities, or environmental pollution situations, for 
example. Note that because of the unit-sized diam- 
eter of the c formed ART clusters, fixed via the 
previously defined vigilance constant, ptnnx, dis- 
tinctly sized and shaped data clouds are approxi- 
mated by distinct numbers of equally sized ART 
clusters. This is a very different approach from 
classical methods which try to model a single data 
cloud by a single, but distinctly shaped cluster. 
Second, the weight matrices W for most of the 
unsupervised ART methods can simply be resealed 
and decoded again to the numerical level of the 
original input data, X. The weight vectors can be 
considered as the centroid of a cluster reflecting in 
its m values the m main properties for this particular 
cluster. This opens the possibility of understanding 
the chemical nature of a cluster. Third, a trained 
ART-l, ART-2, ART-2a, ART-3 or FuzzyART 
neural network can always continue with the clas- 
sification and learning of new samples. Thus, an 
unsupervised trained ART network can always be 
used as a supervised classifier, too. It requires that 
the nature of the formed network clusters can be 
assigned by the chemist to some distinct classes 
(material types, process stages, product qualities. 
etc.) after training and before network testing with 
unknown samples. 

Because of their high speed and their algorithmic 
simplicity, ART-2a and FuzzyART are the most 
interesting unsupervised ART methods for chem- 
ical applications (Fig. 3). After the training proc- 
ess, each of their c clusters is given by a directed 
weight vector in the m-dimensional X-space, thus 
in total providing a c. m-dimensional weight 
matrix, W, as LTM (Fig. 1). There are only two 
differences between ART-2a and FuzzyART. The 
first is in their measures of dissimilarity to estimate 

P “” between xj and wI (Euclidian angle or inter- 
section operator from fuzzy set theory). The sec- 
ond is in the way they preprocess their data (scaling 
of X). The intersection operator based on fuzzy set 
theory in FuzzyART requires ‘complement coded’ 
input data between 0 and 1. Because ‘complement 
coding’ is also necessary for the supervised 
FuzzyARTMAP method, it will be separately 
explained later, in a special section. 

An illustrative example for ART-2a, taken from 
Wienke [ 211, is given in Table 1. This weights 
matrix, W, gave the result that the data cluster of 
male persons splits into three subclasses, w4 of 
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‘large heavy men’, w3 ‘tall slender men’ and w2 
‘normal men’, with significant distinct measure- 
ments of neck, shoe size and stomach: women form 
one homogeneous cluster wi. However, between 
wl and wZ a particular overlap was observed, 
caused by a few mutual mis-classifications of men 
and women into both clusters. The reason for this 
was that some tall women from northern European 
countries were quite similar in the five body mea- 
surements taken to small male participants from 
southern Europe. 

4. Supervised working of ART for 
classification 

Recently, Carpenter et al. [ 19,201 introduced 
two supervised-working ART methods, called 
ARTMAP and FuzzyARTMAP. During their train- 
ing phase these classifiers need for each sample 
two input vectors, Xi and yi, where Xi again contains 
measurement values (a spectrum, a chromatogram, 
or multivariate process data). The additional vec- 
tor, yi, containsp ‘desired outputs’ orp ‘given class 
memberships’. An example is the membership of 
a spectrum, xi, in a particular molecular structure 
class coded by yi. Another example is a vector xi 
of measured material properties (hardness, color, 
etc.), obtained by setting p process parameters yi 
(e.g., pressure and temperature) for the chemical 
reactor in which the product is synthesized. The 
ARTMAP (or FuzzyARTMAP) now consists of 
three partial ART networks (Fig. 4). Each of these 
three partial networks (including the ‘mapfield’) 
needs its individual, previously fixed learning rate, 
q, and vigilance parameter, pm”“, giving in total 
3 X 2= 6 parameters. Changing the size of these 
parameters allows a further data exploration with 
distinct (fine or raw) cluster resolutions, but now 
of the two coupled variable-spaces X and Y simul- 
taneously. For example, by choice of suitable 
parameter sizes many small clusters in the X-space 
can be linked via the mapfield to only a few large 
clusters in the Y-space, or vice versa. For chemical 
applications FuzzyARTMAP is more interesting 
than ARTMAP, because it tolerates not only binary 
coded input data, as ARTMAP does, but also any 
other real coded data in X and Y. 

5. Complement coding as data 
preprocessing 

Before complement coding a vector, its elements 
have to be scaled to the range between 0 and 1. 

Fig. 4. One of the three partial neural networks in the 
FuzzyARTMAP algorithm clusters the n vectors X,, 
in their m-dimensional X-space. The second oneclus- 
ters the n Y,, vectors in their pdimensional Y-space. 
Both processes run parallel and are watched, 
monitored and controlled (‘supervised) by a third neu- 
ral network having the special name, ‘mapfield’. After 
training, this mapfield is finally nothing else then a 
data array, W,, of size cx 6. It contains numbers, 
called ‘inter-networks weights’, that describe the 
strength of the link between the k= 1 . . . c clusters in 
the X-space to the I= 1 . . . b clusters in the Y-space. 

‘Complement coding’ then means that each input 
vector, Xi, is doubled in length, m, by appending its 
complement vector, l- Xi, before offering it to the 
ART neural network. We illustrate this by the fol- 
lowing example. Assume an arbitrarily chosen 
five-element input vector 

xj= [O.l, 0.7,0.2,0.1,0.8] 

After complement coding, the ten-element input 
vector 

XT’= [O.l, 0.7,0.2,0.1,0.8,0.9,0.3,0.8,0.9,0.2] 

is obtained. In the case of the supervised-working 
FuzzyARTMAP, the desired output, yi, is comple- 
ment coded, too, by its corresponding vector 1 - yi. 
For example, assume a two-class problem, coded 
by a binary one-element output vector y I) whereby 
y, = 1 is defined f or a sample from the desired out- 
put class 1 and y1 =0 as the desired output for a 
sample of class 2. After complement coding, the 
following binary coded two-element vectors yc’ are 
obtained 

[y,,l -y,] =y;‘= [ 1, 0] for class 1 

and 

[y,,l-yl] =yy= [0, l] for class 2 

are obtained. 
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Complement coding gives ‘absent features’, 
having low values of their data, high contributions 
in the fuzzy-set-theory-based measures for dissim- 
ilarity just as ‘present features’ that usually have 
higher values. Complement coding can also be con- 
sidered as a technique that substitutes a single 
sharply defined feature by a ‘feature range’ with an 
uppe.r and a lower limit. In this way, for two or 
more features hyperrectangular-shaped boxes are 
obtained for each cluster instead of single directed 
vectors. The boxes grow during training, from a 
,<mall point vector to large hyperrectangular ones. 
Thus, an experimental data cluster will be approx- 
imated by FuzzyART (or FuzzyARTMAP) by a 
sequence of overlapping hyperrectangulars. The 
outer limits of such a hyperrectangular are called 
in the present work ‘upper fuzzy bounds’ and 
‘lower fuzzy bounds’. After resealing, a cluster 
position, obtained from a FuzzyART network run 
(or FuzzyARTMAP), is given by ‘fuzzy ranges’ 
for all m features instead of single sharp values as 
given by ART- 1, ART-Z, ART-2a and ART-3 and 
ARTMAP. 

6. Qualification versus quantification 

Summarizing the former theoretical discussion, 
it became obvious that ART networks are more 
applicable for pattern recognition (qualification) 
than for function fitting (quantification). This is 
because each ART cluster (or class) describes a 
limited local area in the features space. In this way, 
complicated irregular shaped data clouds can be 
approximated, in principle, by a sequence of over- 
lapping ART hyperclusters (radial or rectangular). 
It has been shown [ 19,20,22,23] in theoretical 
studies that FuzzyARTMAP can approximate data 
clouds that are located within each other or are 
formed from twisted spirals. MLF-BP networks, 
for example, were less able to model such data. 
However, the more a data set forms a continuous 
function in the variables space, the more new sin- 
gle-weight vectors are required. Function fitting is 
thus always possible with ART, but the cost one 
has to pay for this is a rapid proliferation of an 
enormous number of new single clusters. 

7. Applications of ART outside chemistry 

Grossberg, Carpenter and their co-workers 
tested their ART algorithms mostly with simulated 

data sets of their own or from other authors. How- 
ever, in their paper introducing ARTMAP [ 19 ] 
they used a large database of mushrooms for a 
classification. A first application of ART-2 to auto- 
mated identification of written characters has been 
reported by Gan and Lua [ 241. Burke [ 251 com- 
pared ART with the k-means clustering method. 
Caudell presented the use of ART-l in combination 
with parallel operating opto-electronic multichan- 
nel detector arrays for commercial and military 
remote control tasks [ 261. This study is interesting 
for developers and researchers dealing with rapid, 
parallel data processing for chemical multisensor 
arrays. Real-time processing of sensor data 
becomes an increasingly serious problem in proc- 
ess control and environmental monitoring. Optical, 
opto-electronic and electronic hardware imple- 
mentations of ART- 1 and ART-2 were reported by 
Kane and Paquin [ 271, Wunsch et al. [ 28,29 J and 
by Ho et al. [ 301. These hardware implementations 
by optical lenses make ART extremely fast and 
very attractive for high-speed pattern recognition 
tasks. In fact, an optical realization of a neural 
network is mostly faster than an implementation 
via a microelectronic neural chip. 

An application of ART-2 to pattern recognition 
with image data was reported recently by Resch 
and Szabo [ 3 11. Benjamin et al. [ 321 found that 
MLF-BP neural networks have a better discrimi- 
nation power than ART-2, in a study using 
economic data on the optimal location of future 
industrial facilities in the USA. Hohenstein [22] 
studied the applicability of FuzzyARTMAP in 
medical data analysis. He performed a supervised 
off-line classification of electromagnetic field pat- 
terns taken experimentally from the brains of indi- 
vidual patients, and found that FuzzyARTMAP 
discriminates at least as well as the MLF-BP neural 
network. Willems [23] has given a theoretical 
overview of all ART methods, from the point of 
view of information science. 

8. Applications of ART in chemistry 

During last two years, chemists have started to 
study and apply a variety of ART methods. Lin and 
Wang [33] fitted process-analytical time series 
data by an autoregressive model. The characteristic 
pattern vectors of autoregressive function para- 
meters which were obtained were successfully 
classified using ART-2. Whitley and Davis 
[ 34,351 proposed to use a trained ART-2 network 
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Fig. 5. Classification of airborne particles with respect 
to their origin using an unsupervised trained ART-2a 
neural network as a future supervised classifier. The 
scanning electron microscopy image and the spectral 
X-ray fluorescence emission of the particle are com- 
bined to a common features vector as input to the 
ART-2a network. In this particular application, ART is 
very useful because it can give a signal if an ‘unknown 
particle’, originating from a ‘new, unexpected’ air pol- 
lution source, is detected. 
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Fig, 6. A trained FuzzyARTMAP neural network as a 
real-time classifier has been implemented in a remote 
optical sensor device for rapid sorting of post-con- 
sumer plastic waste. 

for monitoring and control of chemical reactors by 
real-time interpretation of sensor data taken from 
a reactor. They demonstrated that the ART network 
correctly predicted ‘normal’ and ‘not normal’ sit- 
uations of the reactor during the running chemical 
reaction. 

Wienke and Kateman [ 361 used ART- 1 to clas- 
sify UV/VIS-and IR-spectra for spectral interpre- 
tation. They showed the quantitative chemical 
interpretability of the ART weights after a suitable 
back-transformation in terms of the spectral peaks. 
Wienke, Xie and Hopke [ 37,381 applied ART-2a 
in environmental monitoring (Fig. 5). 

A comparison of ART-2a versus methods based 
on principal component analysis, the SIMCA clas- 
sifier and MLF-BP neural networks, has been given 
by Wienke et al. [ 391. They applied ART-2a to the 
rapid sorting of post-consumer plastics by remote 
NIR spectroscopy. By a large cross validation 
study with distinct training and test data sets it was 
shown quantitatively that ART-2a classifies better 
than SIMCA but less well than MLF-BP neural 
networks. However, the advantages of ART-2a 
against MLF-BP networks are the much higher 
training speed, built-in detector against outliers, 
and full chemical interpretability. A comparison of 
FuzzyARTMAP with MLF-BP networks and the 
partial least squares method for rapid sorting of 
post-consumer plastic waste (Fig. 6) has been 
reported by Wienke et al. [ 40,411. After careful 
data preprocessing by scaling and feature-selection 
it was found that FuzzyARTMAP was able to train 
much faster and to classify significantly better. 
Additionally, the trained neural network could be 
fully interpreted in spectroscopic terms. 

9. Software and computers 

ART neural networks can be trained using per- 
sonal computers if the training data set, ~1, and the 
number of features, m, per sample are of moderate 
size. In the present study, data sets of y1= 500 and 
m = 256 and more caused no trouble. For signiti- 
cantly larger data sets, a Unix workstation is rec- 
ommended. The software for ART-l has been 
written in MATLAB. ART-2a was developed in 
TurboPascal and FuzzyARTMAP in C-language 
(Borland-C, C for Unix-gee-compiler) . 
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IO. ART Glossary 

Artificial Neurul Networks: empirical algo- 
rithms that try to model the way in which biological 
neural networks perform pattern recognition. 

Ncjtuwrk training: stepwise, very often repeated, 
fitting of a set of parameters (see ‘weights’) to 
experimental data. 

Stcrhili~-Plctstic,it~~-~~ilemnzn: a fundamental 
question in machine-assisted learning is, “how can 
a network have enough plasticity and simultane- 
ously enough stability to be able to adapt to ‘new 
knowledge’ and also to ‘distinct, very new knowl- 
edge’ “‘I 

ART: Adaptive Resonance Theory, solves the 
stability-plasticity dilemma by offering two alter- 
native ways of network learning (see 
‘adaptation’ ) . 

Weights in ART: a set of numerical fitting para- 
meters which model the locations of clusters in the 
data space. 

Adqtation: concerns two distinct types of ART 
network learning, by changing either the ART 
weights alone, or by changing the ART network 
structure towards the offered training data. 

R~SOIZIIIZC~: a trained ART network identifies 
certain data offered to it (new knowledge) as 
belonging to an already ‘known’ phenotype. It 
learns these data by weights adaptation. 

NO r~wmmce: implies strongly deviating data 
( very new knowledge) that do not fit into theexist- 
ing network structure. These identified novelties 
require from the network an adaptation of its struc- 
ture. 

Vigilcmce purumeter: models the outer spatial 
border line of an ART cluster. It serves as adecision 
limit defining whether additional training data rep- 
resent novelties or not. 

STM: Short Term Memory means, the way ART 
reflects in its ‘mind’ a presented input pattern (as 
temporary. abstract or virtual mirror image of the 
original ) 

LTM: Long Term Memory, is the stored, 
weighted contribution of the present input data in 
the form of weights in an ART network 

Fart ART lecrrnirzg: if weights are changed with 
a large step size towards the present input data 
(reached by a high learning rate, r). The content 
of the LTM will closely follow the usual rapid 
oscillations of the content of the STM (almost no 
LTM will be formed by training). 

S’lo~~ ART Ieurning: after their initialization, 
weights are almost unchanged in subsequent train- 
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ing steps (reached by a learning rate, 7, close to 
zero). The contribution of subsequent training data 
to the content of the LTM will thus be almost neg- 
ligible. 
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