PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/28838

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

Semisynthesis of Some 7-Deoxypaclitaxel Analogs from Taxine B

Peter H. G. Wiegerinck, Lizette Fluks, Jeannet B. Hammink, Suzanne J. E. Mulders, Franciscus M. H. de Groot, Hendrik L. M. van Rozendaal, and Hans W. Scheeren*

Department of Organic Chemistry, University of Nijmegen, NSR-Center, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received March 4, 1996^{*}

Abstract

Taxine B (3), isolated from the dried needles of Taxus baccata, was converted into six novel 7-deoxypaclitaxel analogs, 20, 21a,b, and 23-25, that have structural changes at C1, C2, and C4. A method for the introduction of the benzoyl function at C2, via a benzylidene acetal at C1-C2, will be revealed. All compounds showed very little or no measurable cytotoxic activity against some well-characterized human tumor cell lines, probably due to the nonacylated hydroxyl group at C4.

The diterpenoid paclitaxel (1) (Chart 1), first isolated by Wani and Wall ${ }^{1}$ from the bark of the western yew Taxus brevifolia, is a new and very promising antitumor compound. ${ }^{2}$ The structural complexity of ($\mathbf{1}$), and its unique mechanism of action, ${ }^{3}$ have stimulated extensive research toward the synthesis of paclitaxel as well as the synthesis of new analogs. Until recently, the synthesis of paclitaxel has been achieved both by semisynthesis, ${ }^{4}$ starting from 10-deacetylbaccatin III (2) (Chart 1), and by total synthesis. ${ }^{5}$
The synthesis of analogs for structure-activity relationship (SAR) studies have mostly been accomplished by structurally modifying paclitaxel itself. ${ }^{6}$ In several cases, precursors, such as baccatin III, ${ }^{7}$ brevifoliol, ${ }^{8}$ 13-acetyl-9-dihydrobacatin III, ${ }^{9}$ and $14-\beta$-hydroxy-10-desacetylbaccatin, ${ }^{10}$ isolated from the needles of different Taxus species, were used.

[^0]Chart 1

Taxine B (3), the most abundant precursor present in the needles of Taxus baccata L. (Chart 1), has had little attention paid to it as a precursor for either the synthesis of paclitaxel or for the synthesis of its analogs. To our knowledge, only one investigation ${ }^{11}$ to date has been carried out using taxine B as a starting material. This synthesis, however, did not lead to analogs that possessed the necessary β-amino acid side chain. A retrosynthetic analysis showed that the synthesis of paclitaxel itself from taxine B would require more than 20 steps. The introduction of the 7-hydroxyl group, in particular, was expected to be difficult. We concentrated our efforts on the synthesis of 7-deoxypaclitaxel analogs, when in in vitro assays it was shown that the 7-hydroxyl group had practically no effect on activity. ${ }^{12}$

From SAR studies it is known that the oxetane ring, ${ }^{13}$ the paclitaxel side chain, ${ }^{14}$ and the hydroxyl group ${ }^{15}$ at
(9) (a) Klein, L. Tetrahedron Lett. 1993, 34, 2047-2050. (b) Klein, L.; Li, L.; Maring, C. J.; Yeung, C. M.; Thomas, S. A.; Grampovnik, D. J.; Plattner, J. J. J. Med. Chem. 1995, 38, 1482-1492.
(10) Kant, I.; Farina, V.; Fairchild, C.; Kadow, J. F.; Langley, D. R.; Long, B. H.; Rose, W. C.; Vyas, D. M. Bioorg. Med. Chem. Lett. 1994, 4, 1565-1570.
(11) Ettouati, L.; Ahond, A.; Poupat, C.; Potier, P. Tetrahedron 1991, 47, 9823-9838.
(12) (a) Ringel, I.; Horwitz, S. B. J. Pharm. Exp. Ther. 1987, 242, 692-698. (b) Kingston, D. G. I.; Samaranayake, G.; Ivey, C. A. J. Nat. Prod. 1990, 53, 1-12. (c) Chaudhary, A. G.; Rimoldi, J. M.; Kingston, D. G. I. J. Org. Chem. 1993, 58, 3798-3799. (d) Chen, S.; Huang, S.; Kant, J.; Fairchild, C.; Wei, J.; Farina, V. J. Org. Chem. 1993, 58 , 5028-5029.

C2 are important for cytotoxic activity and that the functional groups at the upper side of paclitaxel, positions $\mathrm{C} 7,{ }^{12} \mathrm{C} 9,{ }^{9,16}$ and $\mathrm{C} 10,{ }^{9,12 b, 16}$ are of less importance for cytotoxic activity. The bottom side of paclitaxel, positions $\mathrm{C} 1, \mathrm{C} 2$, and C 4 , was a black box at the start of our research. In this paper, we present the synthesis of some 7 -deoxypaclitaxel analogs (20, 21a,b, and 23-25) with structural changes at C1, C2, and C4. At positions C9 and C10, all the analogs have either free hydroxyl groups or hydroxyl groups protected by an isopropylidene functionality. The introduction of the C2-benzoate functionality was not possible by earlier described methods. Therefore, a method has been developed to introduce the benzoate group via oxidation of the benzylidene acetal.

Results

Crude taxine B can easily be isolated, without chromatographic steps, from the needles of the European yew, Taxus baccata L., in yields of 12 g per kg of dried leaves, by an extraction method based on procedures described by Lucas and Graf. ${ }^{17}$ The yield of 10 -deacetylbaccatin III, the precursor used in the synthesis of paclitaxel, from these needles is at least five times less. ${ }^{18}$ Crude taxine B, therefore, seemed to be an excellent precursor for the synthesis of 7-deoxypaclitaxel analogs.

A closer investigation of isolated crude taxine B showed ${ }^{19}$ that it was a mixture of several compounds, 40% of which had a taxane skeleton ($\mathbf{4 a - f}$). No further purification was necessary, however, because the compounds with the taxane skeleton were easily separated from the other compounds by crystallization as ammonium salts after reaction with methyl iodide. The complete conversions of the crude taxine B mixture $\mathbf{4 a - f}$ into the protected 7-deoxypaclitaxel derivatives 15a-c are presented in Scheme 1. The preparation of the

[^1]intermediates 14 was carried out analogously to an approach of Ettouati et al. ${ }^{11}$ for $\mathbf{1 4 b}$, although we have made some modifications to the synthetic route. After these ammonium salts were collected by filtration, trimethylammonium iodide was eliminated by $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give a mixture of $\mathbf{5 a}-\mathbf{f}$. In the next step, the acetyl groups were removed with 1.2 equiv of sodium methoxide to give a mixture of $\mathbf{6 a , b}$. Selective introduction of the acetonide bridge at $6 \mathbf{a}, \mathrm{~b}$ using acetone and CuSO_{4} yielded a mixture of $7 \mathrm{a}, \mathrm{b}$. At this stage the first purification by chromatography was carried out. Separation of 7a and $7 \mathbf{b}$ was unsuccessful, however. The yield of $7 \mathbf{a}, \mathbf{b}$ was $\mathbf{5 5 \%}$ starting from 5a-f. Treatment of the mixture of $\mathbf{7 a}, \mathbf{b}$ with dihydropyran, acetone, or the dimethyl acetal of benzaldehyde, respectively, yielded $\mathbf{8 a}, \mathbf{8 b},{ }^{20}$ and $8 \mathbf{c}$, respectively, mixed with $\mathbf{7 b}$. At this stage it was possible to separate compound $\mathbf{7 b}$ (14%), which itself is an interesting precursor for the synthesis of 1-deoxypaclitaxel analogs, ${ }^{21}$ from compounds 8a,b,c (82, 73, and 85\%) by chromatography. In order to discriminate between the OH groups at $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 9$, and C 10 , the tetrahydro-pyranyl-protected compound 8a was prepared. We expected that the tetrahydropyranyl groups could be removed independently from the isopropylidene functionality as well as from each other. The benzylidene functionality (8c) was selected because it is possible to convert it into a benzoyl group by oxidation. ${ }^{22}$

Since all the hydroxyl groups were protected as acetals, it was possible to remove the cinnamoyl side chain ${ }^{11}$ with 20 N NaOH , yielding compounds 9a,b,c (95, 93, and 76%). Conversion of the allylic alcohol function into an oxetane ring was achieved by established methods. ${ }^{11,23}$ Dihydroxylation with osmium tetraoxide gave 10a,b,c (75, 87, and 55\%). Protection of the primary alcohol with tert-butyldimethylsilyl chloride and mesylation of the secondary alcohol gave 11a,b,c (85, 81, and 77\%). From compound 11 a we followed two routes to compound 14a. The first route (11a via 12a to 14a) had already been worked out by Ettouati et al. ${ }^{11}$ in the preparation of compound 14b from 11b. Removal of the tert-butyldimethylsilyl group with $\mathrm{Bu}_{4} \mathrm{~N}^{+-}$F, followed by ring closure with $\mathrm{Bu}_{4} \mathrm{~N}^{+}{ }^{-}$OAc, yielded 12a (75\%). Reduction of the carbonyl at C13 with DIBALH gave the α-isomer 14a (37% from 11a; the β-isomer was isolated in 11% yield). In order to find a more selective reduction of the carbonyl group at C13 by a different route (11a via 13a to 14a) this carbonyl of 11a was first reduced by DIBALH. Use of models and calculations ${ }^{24}$ indicated that the mesyl functionality at C5 is able to shield the back side of the

[^2]
Scheme 1

$7 a, b$
$7 \mathrm{a} \mathrm{R}^{1}=\mathrm{OH}$
$7 \mathrm{bR1}=\mathrm{H}$
c)

8a $R^{5}=R^{6}=$ tetrahydropyranyl
8b $R^{5}, R^{6}={ }^{\mathrm{Me}}>\mathrm{Me}^{\mathrm{Me}}$
8c $R^{5}, R^{6}=$

carbonyl at C13. The attack of a hydride, therefore, can only take place from the front side. Indeed, only the α-isomer, 13a, was formed; the β-isomer was not detected. Unfortunately, 13a was isolated in only 45%

[^3]yield. From the remaining 55%, about 30% was lost as a result of column chromatography. The other 25% consisted of several products that were not further identified. The reduction was not studied further at this stage although it may be optimized by using other (leaving) groups instead of the mesyl functionality. Desilylation with $\mathrm{Bu}_{4} \mathrm{~N}^{+}-\mathrm{F}$ followed by treatment with

Scheme 2

$\mathrm{Bu}_{4} \mathrm{~N}^{+}-\mathrm{OAC}$ yielded 14a (36\% from 11a). The yield of 14a, therefore, was about the same for both routes, although purification by column chromatography after each step appeared to be much more difficult for route 2, probably due to the early reduction step that yielded too many side products. For this reason, compounds 14b (24%) and 14 c (29%) were synthesized from 11b and 11c, respectively, by the first route. Coupling of compounds 14a,b,c with the oxazinone side chain, according to the protocol described by Holton, ${ }^{25}$ gave the protected analogs of 7 -deoxypaclitaxel, 15a,b,c ($89 \%, 66 \%$, and 70%).

Protected analog 19 was synthesized as depicted in Scheme 2. Starting from compound 12a, the hydroxyl groups at C1 and C2 were first deprotected, after which the benzoate group was introduced at C2. It appeared, however, not to be possible to hydrolyze both THP groups. Only the THP group at C1 was hydrolyzed, yielding 16 (89%), as became clear after the free hydroxyl group was benzoylated with benzoyl chloride in pyridine, yielding 17 (96%). The $400 \mathrm{MHz}^{1} \mathrm{H}$-NMR spectrum of compound 17 showed no downfield shift of the proton at C 2 as would be expected if the benzoate group is attached to C2 (4.14 ppm in 16 and 4.15 ppm in 17). In order to achieve selective reduction of the C 13 carbonyl and avoid reduc-

Scheme 3

21a $R^{5}=H_{1} R^{6}=$ tetrahydropyranyl
$21 \mathrm{~b} \mathrm{R}^{5}, \mathrm{R}^{6}=\mathrm{Me}>\mathrm{Me}$
tion of the benzoyl group, we tried several reducing agents including $\mathrm{BH}_{3}-\mathrm{THF}, \mathrm{NaBH}_{4}, \mathrm{LiBH}_{4}$, and Kselectride. The best results were obtained after reduction with $\mathrm{BH}_{3}-\mathrm{THF}$, although in this case concomitant reduction of the C11-C12 double bond could not be avoided. The obtained yield of 18 , therefore, was only 21%. Coupling of 18 with the paclitaxel side chain by the method described above yielded 19 (80%).

Deprotection of the 7-deoxypaclitaxel analogs 15a-c and 19 was performed by acid hydrolysis. Treatment of $15 a$ with a $2 / 2 / 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc} / \mathrm{THF}$ provided 20 (76%), as shown in Scheme 3. Using a $2 / 4 / 1$ mixture at $40^{\circ} \mathrm{C}$, the isopropylidene functionality at C9,C10 of 15 a and $\mathbf{1 5 b}$, respectively, was also hydrolyzed, yielding 21a (63%) and $\mathbf{2 1 b}(66 \%)$. Unfortunately, it was not possible to remove the THP group at C2 of compound 21a or to remove the isopropylidene functionality at $\mathrm{C} 1, \mathrm{C} 2$ of compound 21b without destruction of other parts of the molecule. Recently, analogous problems with the hydrolysis of the isopropylidene functionality of a related taxane compound have been reported by Nicolaou et al. ${ }^{26}$

Compound 23 was isolated in 68% yield after deprotection of compound $\mathbf{1 5 c}$ with a $2 / 4 / 1$ mixture of $\mathrm{H}_{2} \mathrm{O} /$ HOAc/THF at $40^{\circ} \mathrm{C}$, as shown in Scheme 4. Deprotection of compound 15c with a $2 / 2 / 1$ mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc} / \mathrm{THF}$ at room temperature gave $\mathbf{2 2}$ in 73% yield.

Due to the surprising acid stability of an acetal protecting functionality at C 2 , it is not possible to introduce the necessary benzoate group at C 2 via benzoylation of an OH group at the C 2 position. Taking this into account, we rationalized that the benzoate group may be selectively introduced at C 2 via oxidation of a benzylidene acetal at C1, C2. For the oxidation of the benzylidene functionality to a benzoyl group we tried several methods. ${ }^{22}$ Best results were obtained when the benzylidene functionality at $\mathrm{C} 1, \mathrm{C} 2$ of 22 was oxidized by t-BuOOH in the presence of a catalytic amount of Pd$(\mathrm{OAc})_{2}$ to yield compound $24(28 \%)$, with a 55% recovery of compound 22.

[^4]

Scheme 5

Acid hydrolysis of compound 19 to give 25 (Scheme 5) appeared to be rather difficult. In a $4 / 2 / 1$ mixture of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ at $50^{\circ} \mathrm{C}$, the isopropylidene functionality was not hydrolyzed. It was necessary to use a $12 / 2 / 1$ mixture of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ at $50{ }^{\circ} \mathrm{C}$. Under these conditions the paclitaxel side chain was split off for 32%. Nevertheless, we were able to isolate $\mathbf{2 5}$ in 61% yield.

Structure Determination of Compound 23

The structure of 23 is presumed to be as drawn in Scheme 4. The configurations at $\mathrm{C} 4, \mathrm{C}, \mathrm{C} 13$, and $\mathrm{C} 4{ }^{\prime}$ (for numbering see 23, Scheme 4) were confirmed by NOE difference experiments. The following NOE contacts were found: $\mathrm{H}(2)-\mathrm{H}(9) ; \mathrm{H}(2)-\mathrm{CH}_{3}(17) ; \mathrm{H}(2)-\mathrm{CH}_{3}(19)$; $\mathrm{H}(2)-\mathrm{H}\left(4^{\prime}\right) ; \mathrm{H}(9)-\mathrm{CH}_{3}(19) ; \mathrm{H}(13)-\mathrm{H}(14 \beta) ; \mathrm{H}(13)-\mathrm{CH}_{3}-$ (16); $\mathrm{H}(14 \beta)-\mathrm{CH}_{3}(16)$, and $\mathrm{CH}_{3}(19)-\mathrm{H}(20 \beta)$. The configuration at C13 must be the S-configuration, as no NOE contact is possible between $\mathrm{H}(13)$ and $\mathrm{CH}_{3}(16)$ in the case of the R-configuration. ${ }^{27}$ The configuration at C^{\prime} must also be the S-configuration because of the NOE contact between $\mathrm{H}\left(4^{\prime}\right)$ and $\mathrm{H}(2)$. In the R-configuration these protons are in the trans-position; such a NOE contact, therefore, is not possible. The S-configuration was

[^5]assigned at C4 and the R-configuration at C5 because of the NOE contact between $\mathrm{CH}_{3}(19)$ and $\mathrm{H}(20 \beta)$.

Biological Evaluation

All the compounds $20,21 a, b$, and $23-25$ showed no or very slight in vitro cytotoxicity against seven wellcharacterized human tumor cell lines. ${ }^{28}$ This lack of activity was first attributed to the missing benzoate group at C2, an assumption in agreement with SAR studies ${ }^{6 c, 7,7, b, 29}$ in which it was shown that the benzoate functionality at C 2 is necessary for activity.

In compounds 21a and 23 we hoped that the THP group and the benzylidene acetal functionality could be a substitute for the benzoate group at C2, due to the two acetal oxygens, which are in about the same position as the two oxygens of the benzoate group. Compound 25 could demonstrate that a benzoyl group at this position does not have the same important influence on the activity as this functionality has on C2. Also, no cytotoxicity was found for compound 24 , which has a benzoate group at C2.
Recent SAR studies on paclitaxel analogs with substituent variations at C 4 have shown that the substituent at C4 is very important for cytotoxic activity. ${ }^{9 b, 13,30}$ We suppose, therefore, that the lack of activity seen in the compounds presented here is probably due to the missing acetate group at C4.

[^6]Our future synthetic program is directed toward 7-deoxypaclitaxel analogs that possess a benzoate group at C 2 as well as an acetate group at C4. Furthermore, the conversion of compound $\mathbf{7 b}$ into 1,7-dideoxypaclitaxel analogs is now in progress. ${ }^{21 \mathrm{~b}}$

Experimental Section

Chemical shift values are reported as δ-values relative to TMS as internal standard; deuteriochloroform was used as solvent. Mass spectra were obtained with a double-focusing spectrometer. Melting points are uncorrected.
Compounds $8 \mathrm{~b}-14 \mathrm{~b}$ were prepared as reported by Ettouati et al. ${ }^{11}$ The ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{8 b} \mathbf{- 1 4 b}$ were in agreement with those reported in the literature. ${ }^{11}$
Extraction Procedure for Crude Taxine B. Dried leaves (17 kg) of T. baccata were soaked in an aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($100 \mathrm{~L}, 0.5 \% \mathrm{v} / \mathrm{v}$) for 3 days. The sulfuric acid solution was separated from the leaves and extracted (in portions of 20 L) with diethyl ether (3 L) in a continuous extraction apparatus for $1 d$, in order to remove the major part of the undesirable neutral organic compounds. The sulfuric acid solution was brought to pH 9 by addition of aqueous ammonia. This solution was extracted twice with diethyl ether (3 L) in a continuous extraction apparatus for 1 d . The combined ether layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, yielding crude taxine ($150-200 \mathrm{~g}$ from 17 kg , depending on the quality of the leaves) as a light yellow amorphous powder.
Preparation of the Mixture of 5a-f. To a solution of crude taxine B (containing 40% of $4 \mathrm{a}-\mathrm{f}$) ($25.0 \mathrm{~g}, 42.9 \mathrm{mmol}$) in ether (150 mL) was added methyl iodide (12.5 mL). After I d the pale yellow amorphous iodide salt of $4 \mathbf{a}-\mathbf{f}$ was collected, washed with ether, and dried ($13.4 \mathrm{~g}, 18.3 \mathrm{mmol}$). A solution of this salt (13.4 g) in ethanol (50 mL) was added to a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(15.0 \mathrm{~g})$ in water (750 mL). The reaction mixture was stirred for 2 h . The precipitated mixture of $5 \mathbf{5}-\mathbf{f}$ was collected, washed with water, and dried $(9.50 \mathrm{~g}, 17.7$ mmol).
Preparation of the Mixture of 5α-Cinnamoyltaxicin-I (6a) and 5 α-Cinnamoyltaxicin-II (6 b). A solution of sodium methoxide prepared from 0.49 g of sodium (0.021 mol), in methanol (550 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After addition of $5 \mathbf{a}-\mathbf{f}(9.50 \mathrm{~g}, 17.7 \mathrm{mmol})$, the mixture was stirred for 16 h at $0^{\circ} \mathrm{C}$. The reaction mixture was subsequently acidified with glacial acetic acid and concentrated, and water (500 mL) was added. This solution was extracted twice with ether (200 mL). The combined ether layers were washed with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, yielding a mixture of $\mathbf{6 a , b}(7.45 \mathrm{~g}, 15.0 \mathrm{mmol}, 85 \%$).
Preparation of the Mixture of $9,10-\mathrm{O}$-(Propane-2,2-diyl)-5 α-cinnamoyltaxicin-I (7a) and 9,10-O-(Propane-2,2-diyl)-5 α-cinnamoyltaxicin-II (7b). To a suspension of anhydrous $\mathrm{CuSO}_{4}(35 \mathrm{~g}, 0.22 \mathrm{~mol})$ in dry acetone (750 mL) was added the mixture of $6 \mathrm{a}, \mathrm{b}(7.45 \mathrm{~g}, 15.0 \mathrm{mmol})$ and a catalytic amount of p-toluenesulfonic acid were added. After 2 d at rt the solution was filtered. The filtrate was concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 2/5) to give a mixture of 7 a and $7 \mathrm{~b}(5.23 \mathrm{~g}, 9.80$ $\mathrm{mmol}, 65 \%$).

1,2-Di(tetrahydropyran-2-yl)-9,10-O-(propane-2,2-diyl)5α-cinnamoyltaxicin-I (8 Ba). To a solution of $7 \mathrm{a}, \mathrm{b}(5.0 \mathrm{~g}, 9.4$ mmol) and p-toluenesulfonic acid ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2}-$

[^7]$\mathrm{Cl}_{2}(75 \mathrm{~mL})$ was slowly added dihydropyran ($2.3 \mathrm{~g}, 27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt . After 1 d the reaction mixture was washed with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography ($\mathrm{EtOAc} /$ hexane $2 / 5$), yielding $7 \mathbf{b b}^{21}(0.68 \mathrm{~g}$, $1.3 \mathrm{mmol}, 14 \%$) and $8 \mathrm{a}(5.4 \mathrm{~g}, 7.7 \mathrm{mmol}, 82 \%): \mathrm{mp} 66^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{bs}, 1 \mathrm{H})$, $5.33(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{bs}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~m}$, 1 H), 3.09 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.67(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.59$ $(\mathrm{s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$; FAB-MS $705[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{O}_{9}$: $\mathrm{C}, 71.57$; H, 8.01. Found: C, 71.91; H, 7.95 .

1,2-O-Benzylidene-9,10-O-(propane-2,2-diyl)-5 α-cinn-amoyltaxicin-I (8c). The same procedure was followed as for 8a. Instead of dihydropyran, the dimethyl acetal of benzaldehyde ($2.8 \mathrm{~mL}, 18.6 \mathrm{mmol}$) was added. Compound 8 c was isolated in 85% yield ($4.98 \mathrm{~g}, 7.98 \mathrm{mmol}, 85 \%$): mp 108$110^{\circ} \mathrm{C} ;$ FAB-MS $625[\mathrm{M}+\mathrm{H}]^{+}, 647[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{7}$: C, 74.98; H, 7.10. Found: C, 74.63 ; H, 7.23.

Hydrolysis of 8a to 9a. To a solution of $8 \mathbf{a}(5.4 \mathrm{~g}, 7.7$ mmol) in dry THF (60 mL) was added 20 N NaOH (aq) (25 mL). The reaction mixture was stirred at reflux temperature for 2 d . The reaction mixture was subsequently diluted with water (50 mL) and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding 9a (4.20 g , $7.32 \mathrm{mmol}, 95 \%): \mathrm{mp} 66-69^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.47(\mathrm{bs}, 1 \mathrm{H}), 5.09(\mathrm{bs}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ $(\mathrm{m}, 1 \mathrm{H}), 4.58,(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{bs}, 1 \mathrm{H})$, $4.10(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}$, $1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{bs}, 2 \mathrm{H}), 2.06$ $(\mathrm{s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H})$; CIMS, $574[\mathrm{M}]^{+}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{8}: \mathrm{C}$, 68.95; H, 8.79. Found: C, 69.17; H, 8.63.

Hydrolysis of $8 \mathbf{c}$ to $9 \mathbf{c}$. The same procedure was followed as for 9 a , using $8 \mathbf{c}(4.98 \mathrm{~g}, 7.98 \mathrm{mmol})$. Compound $9 \mathbf{c}$ was isolated in 76% yield ($3.00 \mathrm{~g}, 6.07 \mathrm{mmol}$): mp $180^{\circ} \mathrm{C}$; $\mathrm{FAB}-$ MS $495[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6}$: $\mathrm{C}, 72.85 ; \mathrm{H}$, 7.74. Found: C, 72.51; H, 8.00 .

Dihydroxylation of 9 a to 10a. To a solution of 9 a (4.20 $\mathrm{g}, 7.32 \mathrm{mmol})$ in THF/H $\mathrm{H}_{2} \mathrm{O}(80 / 40 \mathrm{~mL})$ were added N-methylmorpholine N-oxide monohydrate ($900 \mathrm{mg}, 6.70 \mathrm{mmol}$) and a solution of $\mathrm{OsO}_{4}(2.5 \%$ in $t-\mathrm{BuOH}, 6.4 \mathrm{~mL})$. The reaction mixture rapidly turned red. After 20 h , Florisil (2.0 g), water (26 mL), and $\mathrm{Na}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}(256 \mathrm{mg}$) were added. The mixture was stirred for an additional 10 min and then filtered. The filtrate was diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water (100 $\mathrm{mL})$ and extracted twice with EtOAc $(150 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc), yielding 10a ($3.33 \mathrm{~g}, 5.48 \mathrm{mmol}, 75 \%$): mp $72^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55,(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{bs}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{bs}, 1 \mathrm{H}), 3.77$ $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{bs}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=$ $19.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=19.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34$ $(\mathrm{s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$; FAB-MS $524[\mathrm{M}-\mathrm{THP}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{10}$: $\mathrm{C}, 65.11 ; \mathrm{H}, 8.61$. Found: $\mathrm{C}, 64.72 ; \mathrm{H}$, 8.28 .

Dihydroxylation of 9 c to 10 c . The same procedure was followed as for 10a, using $9 \mathrm{c}(3.00 \mathrm{~g}, 6.07 \mathrm{mmol})$. Compound 10 c was isolated in 55% yield ($1.77 \mathrm{~g}, 3.35 \mathrm{mmol}$): mp 133 ${ }^{\circ} \mathrm{C}$; $\mathrm{FAB}-\mathrm{MS} 551[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$: C, 65.90; H, 7.75. Found: C, 66.26; H, 7.57.

Silylation and Mesylation of 10a to 11a. A solution of imidazole ($5.10 \mathrm{~g}, 74.8 \mathrm{mmol}$) and TBDMSCl ($4.64 \mathrm{~g}, 30.9$ mmol) in DMF (30 mL) was stirred for 15 min . Compound 10 a ($3.33 \mathrm{~g}, 5.48 \mathrm{mmol}$) was subsequently added. After 3 h the reaction mixture was diluted with a solution of 10% citric acid in water $(200 \mathrm{~mL})$ and extracted twice with EtOAc (100 mL). The combined organic layers were washed with brine,
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 2/5), yielding the silylated compound ($3.78 \mathrm{~g}, 5.23 \mathrm{mmol}, 95 \%$): $\mathrm{mp} 52^{\circ} \mathrm{C}$; FAB-MS $746[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{66} \mathrm{O}_{10} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}$: C, $63.20 ; \mathrm{H}, 9.27$. Found: C, 63.56 ; H, 8.95 .

To a solution of the silylated compound ($3.78 \mathrm{~g}, 5.23 \mathrm{mmol}$) in pyridine (50 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(2.5 \mathrm{~mL})$. The reaction mixture was stirred for 20 h at rt , after which time $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 mL) was added. The mixture was washed with a solution of 10% citric acid in water (75 mL) and with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 2/5), yielding 11a ($3.70 \mathrm{~g}, 4.63 \mathrm{mmol}, 89 \%$): $\mathrm{mp} 57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.86$ (bs, 1H), $4.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.56(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (s,3H), $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;$ FAB-MS $823[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{68} \mathrm{O}_{12} \mathrm{SiS}: \mathrm{C}, 59.97 ; \mathrm{H}, 8.56 ; \mathrm{S}, 4.00$. Found: C, $60.14 ; \mathrm{H}, 8.47$; S, $2.69 .^{31}$

Silylation and Mesylation of 10 c to 11c. The same procedure was followed as for 11 a , using 10 c ($1.77 \mathrm{~g}, 3.35$ mmol). The silylated compound was isolated in 93% (2.03 g , 3.16 mmol yield: $\mathrm{mp} 61^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS}, 665[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Caled for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 67.26 ; \mathrm{H}, 8.47$. Found: C, 67.07 ; H , 8.83 .

Compound 11c was isolated in 83% yield $(1.91 \mathrm{~g}, 2.65$ $\mathrm{mmol}): \mathrm{mp} 199^{\circ} \mathrm{C}$; FAB-MS $743[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{10} \mathrm{SiS}: \mathrm{C}, 61.64 ; \mathrm{H}, 7.83 ; \mathrm{S}, 4.45$. Found: $\mathrm{C}, 61.35 ; \mathrm{H}$, 8.09; S, 4.47.

Construction of the Oxetane Ring: 11a to 12a (Route 1). To a solution of $11 \mathbf{a}(3.70 \mathrm{~g}, 4.63 \mathrm{mmol})$ in THF (75 mL) was added tetrabutylammonium fluoride ($1.8 \mathrm{~g}, 6.9 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at rt , after which time EtOAc (150 mL) was added. The organic layer was washed with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding the desilylated compound ($3.10 \mathrm{~g}, 4.52 \mathrm{mmol}, 98 \%$); mp $89^{\circ} \mathrm{C}$; FAB-MS, 687 [M $+\mathrm{H}]^{+}, 709[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{~S}: \mathrm{C}, 59.46$; H, 7.92; S, 4.67. Found: C, 59.35; H, 7.88; S, 3.31. ${ }^{31}$

To a solution of the desilylated compound $(3.10 \mathrm{~g}, 4.52$ mmol) in butanone (75 mL) was added tetrabutylammonium acetate $(12.0 \mathrm{~g}, 39.9 \mathrm{mmol})$. The reaction mixture was stirred at reflux temperature for 17 h . The mixture was diluted with $\operatorname{EtOAc}(100 \mathrm{~mL})$ and washed with a saturated solution of $\mathrm{NH}_{4}-$ Cl in water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 2/5), yielding 12a ($2.04 \mathrm{~g}, 3.46 \mathrm{mmol}$, 77%): mp $65^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{~m}, 1 \mathrm{H})$, 4.86 (bs, 1H), $4.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.56(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ $(\mathrm{s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS} 591[\mathrm{M}+\mathrm{H}]^{+}, 613[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{9}$: C, $67.09 ; \mathrm{H}, 8.53$. Found: C, $67.04 ; \mathrm{H}$, 8.47.

Construction of the Oxetane Ring: 11c to 12c (Route 1). The same procedure was followed as for 12a, using 11c ($1.91 \mathrm{~g}, 2.65 \mathrm{mmol}$). The desilylated compound was isolated in 98% yield ($1.60 \mathrm{~g}, 2.64 \mathrm{mmol}$): mp $116-1200^{\circ} \mathrm{C}$; FAB-MS $629[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{10} \mathrm{~S}: \mathrm{C}, 61.37 ; \mathrm{H}, 6.98$; S, 5.28. Found: C, $61.06 ; \mathrm{H}, 7.08 ; \mathrm{S}, 4.63$. 31

Compound 12c was isolated in 64% yield $(0.85 \mathrm{~g}, 1.7$ $\mathrm{mmol}): \mathrm{mp} 109^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS} 533[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.15 ; \mathrm{H}, 7.64$. Found: $\mathrm{C}, 67.80 ; \mathrm{H}, 7.59$.

Reduction of 11a to 13a (route 2). To a solution of 11a $(1.00 \mathrm{~g}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was added a

[^8]solution of DIBALH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 1 \mathrm{M}, 2.0 \mathrm{mmol})$ was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h , after which time a solution of 10% citric acid in water (20 mL) was carefully added. The water layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were washed with saturated NaHCO_{3} solution and with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography ($\mathrm{EtOAc} /$ hexane $2 / 5$), yielding $13 \mathrm{a}(0.47 \mathrm{~g}$, $0.59 \mathrm{mmol}, 45 \%$): $\operatorname{mp} 49{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88$ $(\mathrm{m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H})$, $4.26(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}$, $2 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{bd}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 6 \mathrm{H})$; FAB-MS: $825[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{70^{-}}$ $\mathrm{O}_{12} \mathrm{SiS}: \mathrm{C}, 59.82 ; \mathrm{H}, 8.53 ; \mathrm{S}, 3.99$. Found: C, $59.74 ; \mathrm{H}, 8.78$; S, 3.56

2-Debenzoyl-1,2-(ditetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-9(R)-dihydrobaccatin III (14a) (Route 1). The same procedure was followed as for 13a (route 2), using 12a ($2.04 \mathrm{~g}, 3.46 \mathrm{mmol}$). Compound $14 \mathbf{a}$ was isolated in 49% yield ($1.02 \mathrm{~g}, 1.72 \mathrm{mmol}$): $\operatorname{mp} 50^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.79$ (dd, $J=8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ $(\mathrm{m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H})$, 2.43 (dd, $J=16.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$; FAB-MS $615[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.89 ; \mathrm{H}, 8.91$. Found: C, $65.25 ; \mathrm{H}, 8.83$.

2-Debenzoyl-1,2-(ditetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-9(R)-dihydrobaccatin III (14a) (Route 2). The same procedure was followed as for 12a (route 1), using $13 \mathrm{a}(0.47 \mathrm{~g}, 0.59 \mathrm{mmol}$). The desilylated compound was not further purified.

Compound $14 \mathbf{a}$ was isolated in 79% yield $(0.28 \mathrm{~g}, 0.47$ mmol): $\mathrm{mp} 49^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) was the same as for 14 a in route 1 .

2-Debenzoyl-1,2-O-benzylidene-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-9(R)-dihydrobaccatin III (14c) (Route 1). The same procedure was followed as for 13 a (route 2), using $12 \mathrm{c}(0.85 \mathrm{~g}, 1.7 \mathrm{mmol})$. Compound 14 c was isolated in 46% yield ($0.40 \mathrm{~g}, 0.78 \mathrm{mmol}$): $\mathrm{mp} 105-$ $108^{\circ} \mathrm{C}$; FAB-MS $535[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{7}$: C, 70.29; H, 7.86. Found: C, 70.27; H, 8.00.

2-Debenzoyl-1,2-(ditetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-2'-(ethoxy-ethyl)-9(R)-dihydropaclitaxel (15a). To a solution of 14 a ($1.02 \mathrm{~g}, 1.72 \mathrm{mmol}$) in toluene (50 mL) were added DMAP (210 $\mathrm{mg}, 1.72 \mathrm{mmol}$), pyridine (1 mL) and modified paclitaxel sidechain ${ }^{25}(2.75 \mathrm{~g}, 7.99 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at rt, after which time the reaction mixture was diluted with EtOAc (200 mL). This mixture was washed with a solution of $10 \% \mathrm{CuSO}_{4}$ in water (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography ($\mathrm{EtOAc} /$ hexane 2/5), yielding 15 a ($1.41 \mathrm{~g}, 1.51 \mathrm{mmol}, 89 \%$): mp $63^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}$, $1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~m}, 3 \mathrm{H})$, $4.18(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{bs}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.47$ $(\mathrm{m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.95(\mathrm{dq}, J=7.03 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ $(\mathrm{m}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}$, 3 H) , $0.92-0.85(\mathrm{dt}, J=7.03 \mathrm{~Hz}, 3 \mathrm{H})$; $\mathrm{FAB}-\mathrm{MS}, 955[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{NO}_{13} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.62 ; \mathrm{H}, 7.94 ; \mathrm{N}, 1.49$. Found: C, 67.47; H, 7.58; N, 1.90 .

2-Debenzoyl-1,2-acetonide-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-2'-(ethoxyethyl)-9(R)dihydropaclitaxel (15b). The same procedure was followed as for 15 a , using $\mathbf{1 4 b}(0.49 \mathrm{~g}, 1.1 \mathrm{mmol})$. Compound $\mathbf{1 5 b}$ was isolated in 66% yield ($0.58 \mathrm{~g}, 0.72 \mathrm{mmol}$): mp $65^{\circ} \mathrm{C}$; FAB-MS $804[\mathrm{M}+\mathrm{H}]^{+}, 826[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{61^{-}}$
$\mathrm{NO}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.20 ; \mathrm{H}, 7.74 ; \mathrm{N}, 1.70$. Found: C, $67.53 ; \mathrm{H}$, 7.70; N, 1.98.

2-Debenzoyl-1,2-O-benzylidene-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-2'-(ethoxyethyl)-9(R)dihydropaclitaxel (15c). The same procedure was followed as for 15 a , using $14 \mathrm{c}(0.40 \mathrm{~g}, 0.78 \mathrm{mmol})$. Compound 15 c was isolated in 70% yield ($0.47 \mathrm{~g}, 0.55 \mathrm{mmol}): \mathrm{mp} 73^{\circ} \mathrm{C} ;$ FAB-MS $874[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~N} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.01$; H, 7.31; N, 1.61. Found: C, 68.94; H, 6.92; N, 1.90.

Hydrolysis of 12a to 16. Compound 12a ($1.00 \mathrm{~g}, 1.69$ mmol) was dissolved in a mixture of $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(68 / 34 /$ 17 mL). After being stirred for 24 h at rt , the mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$. The organic layer was washed with saturated NaHCO_{3} solution (75 mL) and with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography (EtOAc/ hexane $1 / 1$), yielding $16(770 \mathrm{mg}, 1.52 \mathrm{mmol}, 89 \%)$; mp $67^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2), 3.07(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~d}$, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 3 \mathrm{H}), 1.93$ $(\mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;$ FAB-MS $529[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{8}: \mathrm{C}, 66.38 ; \mathrm{H}, 8.36$. Found: C, 66.79 ; H, 8.46.

Benzoylation of 16 to 17. To a solution of $16(0.77 \mathrm{~g}, 1.5$ mmol) in EtOAc (10 mL) were added triethylamine (0.62 mL , 4.4 mmol), DMAP ($1.16 \mathrm{~g}, 9.51 \mathrm{mmol}$), and benzoyl chloride $(0.32 \mathrm{~mL}, 2.8 \mathrm{mmol})$. After the mixture was stirred for 24 h at $\mathbf{r t}, \mathrm{EtOAc}(50 \mathrm{~mL})$ was added. The mixture was washed with a 10% citric acid solution in water (50 mL) and with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 2/5), yielding 17 ($891 \mathrm{mg}, 1.46 \mathrm{mmol}, 96 \%$): mp $184^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 8.04(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.60$ $(\mathrm{d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{FAB}-\mathrm{MS} 611[\mathrm{M}+\mathrm{H}]^{+}, 633[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Caled for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{9}: \mathrm{C}, 68.83 ; \mathrm{H}, 7.59$. Found: $\mathrm{C}, 69.01 ; \mathrm{H}$, 7.26

1-Benzoyl-2-debenzoyl-2-(tetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10- O-(propane-2,2-diyl)-$\boldsymbol{9}(\boldsymbol{R})$-dihydrobaccatin III (18). To a solution of $17(0.89 \mathrm{~g}$, 1.5 mmol) in dry THF (20 mL) was added $\mathrm{BH}_{3} \cdot \mathrm{THF}$ ($20 \mathrm{~mL}, 1$ M in THF, 20 mmol). After 3 h at rt, EtOAc (50 mL) was added. The mixture was washed with a 10% citric acid solution in water (50 mL) and with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding 18 ($192 \mathrm{mg}, 0.314 \mathrm{mmol}, 21 \%$): $\mathrm{mp} 127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80$ (dd, $J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ $(\mathrm{m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS} 635[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.63 ; \mathrm{H}, 8.01$. Found: C, 66.31; H, 7.96.

1-Benzoyl-2-debenzoyl-2-(tetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-2^{\prime}-(ethoxyethyl)-9(R)-dihydropaclitaxel (19). The same procedure was followed as for 15a, using $18(0.19 \mathrm{~g}, 0.31$ mmol). Compound 19 was isolated in 80% yield ($240 \mathrm{mg}, 0.252$ mmol): mp $141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}$, $9 \mathrm{H}), 7.07(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ $(\mathrm{m}, 1 \mathrm{H}), 4.94(\mathrm{bd}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H} 5), 4.65(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~m}$, $4 \mathrm{H}), 3.96(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H})$, $2.05(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}$,
$3 \mathrm{H}), 1.37$ (dd, $J=5.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26 ($\mathrm{s}, 3 \mathrm{H}$), 1.19 ($\mathrm{s}, 3 \mathrm{H}$), 0.92 (dt, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); FAB-MS, $974[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{69} \mathrm{NO}_{13} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.08 ; \mathrm{H}, 7.39 ; \mathrm{N}, 1.44$. Found: C, 67.83; H, 7.13; N, 1.44.

2-Debenzoyl-2-(tetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-9(R)-dihydropaclitaxel (20). Compound $15 a(0.25 \mathrm{~g}, 0.27 \mathrm{mmol}$) was dissolved in $\mathrm{HOAc} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(8 / 4 / 8 \mathrm{~mL})$. After 20 h at rt the reaction mixture was diluted with EtOAc (50 mL). The organic layer was washed with saturated NaHCO_{3} solution (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding 20 ($159 \mathrm{mg}, 0.205 \mathrm{mmol}, 76 \%$): mp $115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{bd}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{bd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.86(\mathrm{t}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H})$, 4.15 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{bs}$, $1 \mathrm{H}), 3.53(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=15.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS} 776[\mathrm{M}+\mathrm{H}]^{+}, 798[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{NO}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.55 ; \mathrm{H}, 7.49 ; \mathrm{N}, 1.76$. Found: C, $66.51 ; \mathrm{H}, 7.40 ; \mathrm{N}, 1.73$.

2-Debenzoyl-2-(tetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9(R)-dihydropaclitaxel (21a). Compound $15 a(0.20 \mathrm{~g}, 0.21 \mathrm{mmol})$ was dissolved in HOAc/THF/ $\mathrm{H}_{2} \mathrm{O}(12 / 3 / 6 \mathrm{~mL})$. The reaction mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc (50 mL). The organic layer was washed with saturated NaHCO_{3} solution (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/ hexane $7 / 3$), yielding 21a ($97 \mathrm{mg}, 0.13 \mathrm{mmol}, 63 \%$): mp 198 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (bd, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 4.91$ (dd, $J=8.8,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{bs}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{bs}, 1 \mathrm{H}), 3.54(t, J=5.5 \mathrm{~Hz}, 2), 2.75(\mathrm{bs}$, 1 H), $2.50(\mathrm{bs}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=15.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=15.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 5 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;$ FAB-MS $736[\mathrm{M}+\mathrm{H}]^{+}, 758[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{53}{ }^{-}$ $\mathrm{NO}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.32 ; \mathrm{H}, 7.35 ; \mathrm{N}, 1.86$. Found: C, $65.02 ; \mathrm{H}$, 7.40 ; N, 1.80 .

2-Debenzoyl-1,2-acetonide-4-deacetyl-7-deoxy-9-dihy-dro-10-deacetylpaclitaxel (21b). The same procedure was followed as for 21 a , using $15 \mathrm{~b}(0.20 \mathrm{~g}, 0.25 \mathrm{mmol}$). Compound 21 b was isolated in 66% yield ($114 \mathrm{mg}, 0.165 \mathrm{mmol}$): mp 150 ${ }^{\circ} \mathrm{C}$; FAB-MS $692[\mathrm{M}+\mathrm{H}]^{+}, 714[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{NO}_{10} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} ; \mathrm{C}, 65.15 ; \mathrm{H}, 7.31 ; \mathrm{N}, 1.95$. Found: C, 65.29 ; H, 7.22 ; N, 1.92 .

2-Debenzoyl-1,2-O-benzylidene-4-deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)-9(R)-dihydropaclitaxel (22). Compound $\mathbf{1 5 c}(0.20 \mathrm{~g}, 0.24 \mathrm{mmol})$ was dissolved in $\mathrm{HOAc} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(8 / 4 / 8 \mathrm{~mL})$. After 2 h at rt the reaction mixture was diluted with EtOAc (50 mL). The organic layer was washed with saturated NaHCO_{3} solution $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography ($\mathrm{EtOAc} /$ hexane $1 / 1$), yielding 22 ($136 \mathrm{mg}, 0.175 \mathrm{mmol}, 73 \%$): mp $99^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.71-7.15(\mathrm{~m}, 15 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (bd, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=$ $6.7 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, ~ J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{bs}$, $1 \mathrm{H}), 4.59$ ($\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.75$ ($\mathrm{bs}, 1 \mathrm{H}$) $2.45(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$; FAB-MS $802[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N} \mathrm{O}_{10} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.03 ; \mathrm{H}, 6.89 ; \mathrm{N}, 1.78$. Found: C, $69.93 ; \mathrm{H}, 6.54 ; \mathrm{N}, 2.13$.

2-Debenzoyl-1,2-O-benzylidene)-4-deacetyl-7-deoxy-10-deacetyl- $9(R)$-dihydropaclitaxel (23). The same procedure was followed as for $21 \mathbf{a}$, using $15 \mathrm{c}(0.10 \mathrm{~g}, 0.12 \mathrm{mmol})$. Compound 23 was isolated in 68% yield ($60 \mathrm{mg}, 0.081 \mathrm{mmol}$) $\mathrm{mp} 144{ }^{\circ} \mathrm{C}$; $\mathrm{FAB}-\mathrm{MS} 740[\mathrm{M}+\mathrm{H}]^{+}, 762[\mathrm{M}+\mathrm{Na}]^{+}$. Anal.

Caled for $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{~N} \quad \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C}, 68.14 ; \mathrm{H}, 6.80 ; \mathrm{N}, 1.85$. Found: C, 67.81; H, 6.57; N, 2.15.

4-Deacetyl-7-deoxy-10-deacetyl-9,10-O-(propane-2,2-diyl)- $\mathbf{9}(\boldsymbol{R})$-dihydropaclitaxel (24). To a solution of $22(0.10$ $\mathrm{g}, 0.13 \mathrm{mmol}$) in toluene (5 mL) were added a solution of t - BuOOH in decane ($26 \mu \mathrm{~L}, 5.0-6.0 \mathrm{M}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}$, 0.011 mmol). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and filtered over Hyflo. The filtrate was washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding $24(29 \mathrm{mg}, 0.036 \mathrm{mmol}$, 28%): mp $125-128^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~m}, 9 \mathrm{H}), 7.07$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (d, $J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01$ (m, 1H), $5.87(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (dd, $J=$ $6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (bs, 1H), 4.40 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41$ (bs, 1 H), 2.91 (dd, $J=15.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H})$, $1.90(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}$, 3H), 1.43 (s, 3H16), 1.19 (s, 3H); FAB-MS $796[\mathrm{M}+\mathrm{H}]^{+}, 818$ $[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{63} \mathrm{NO}_{11} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.08$; H, 6.85; N, 1.78. Found: C, 66.77; H, 6.67; N, 2.00.

1-Benzoyl-2-debenzoyl-2-(tetrahydropyran-2-yl)-4-deacetyl-7-deoxy-10-deacetyl-9(R)-dihydropaclitaxel (25). Compound $19(0.10 \mathrm{~g}, 0.12 \mathrm{mmol})$ was dissolved in $\mathrm{HOAc} / \mathrm{THF} /$ $\mathrm{H}_{2} \mathrm{O}(36 / 3 / 6 \mathrm{~mL})$. After 24 h at $50^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc (50 mL). The organic layer was
washed with saturated NaHCO_{3} solution (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by chromatography (EtOAc/hexane 1/1), yielding 25 (61 mg , $0.073 \mathrm{mmol}, 61 \%$): $\mathrm{mp} 122^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.02 (dd, $J=7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (dd, $J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{bd}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (bs, 1H), 2.66 (bs, 1 H), $2.35-1.99$ (m, 8 H), 1.68 (s, 3H), 1.58 ($\mathrm{s}, 3 \mathrm{H}$), 1.48 ($\mathrm{s}, 3 \mathrm{H}$), 1.16 ($\mathrm{s}, 3 \mathrm{H})$; FAB$\mathrm{MS}, 840[\mathrm{M}+\mathrm{H}]^{+}, 862\left[\mathrm{M}+\mathrm{Na}^{+}\right.$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{57}-$ $\mathrm{NO}_{12}: \mathrm{C}, 68.62 ; \mathrm{H}, 6.85 ; \mathrm{N}, 1.67$. Found: C, 68.38; H, 7.05; N, 1.41.

Acknowledgment. We would like to thank Pharmachemie BV and the Dutch Cancer Foundation, Nederlandse Kankerbestrijding Koningin Wilhelmina Fonds, for their financial support.

Supporting Information Available: $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data for compounds $\mathbf{8 b}, \mathbf{c}, \mathbf{9 b}, \mathbf{c}, \mathbf{1 0 b}, \mathbf{c}, \mathbf{1 1 b}, \mathbf{c}, \mathbf{1 2 b}, \mathbf{c}$, 14b,c, 15b,c, 21b, and 23. All analytical data of 2-TMS-[7b] (4 pages). This material is contained in libraries on microfiche; it immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
JO960438A

[^0]: To whom correspondence should be addressed. Phone: 31-243652331. Fax: 31-243652929. E-mail: JSCH@SCI.KUN.NL
 \otimes Abstract published in Advance ACS Abstracts, September 1, 1996.
 (1) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325-2327.
 (2) (a) Rowinsky, E. K.; Cazenave, L. A; Donhower, R. C. J. Natl. Cancer Inst. 1990, 82, 1247-1258. (b) Holmes, F. A.; Kudelka, A. P.; Kavanagh, J. J.; Huber, M. H.; Ajani, J. A.; Valero, V. In Taxane Anticancer Agents, Basic Science and Current Status; Georg, G. I., Chen, T. T., Ojima, I., Vyas, D. M., Eds.; ACS Symposium Series No. 583; American Chemical Society: Washington, DC, 1995; pp 31-57.
 (3) (a) Horwitz, S. B. Trends Pharmacol. Sci. 1992, 13, 134-136. (b) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665-667.
 (4) (a) Denis, J.-N.; Greene, A. E.; Guénard, D.; Guéritte-Voegelein, F.; Mangatal, L.; Potier, P. J. Am. Chem. Soc. 1988, 110, 5917-5919.
 (b) Denis, J.-N.; Greene, A. E.; Guénard, D.; Guéritte-Voegelein, F.; Pilard, J. European Patent 1989, EP 0336840A1.
 (5) (a) Holton, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597-1598. (b) Holton, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1599-1600. (c) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Cialborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630-634.
 (6) (a) Georg, G. I.; Ali, S. M.; Boge, T. C.; Datta, A.; Falborg, L. Tetrahedron Lett. 1994, 35, 8931-8934. (b) Roth, G. P.; Marshall, D. R.; Chen, S.-H. Tetrahedron Lett. 1995, 36, 1609-1612. (c) Georg, G. I.; Ali, S. M.; Boge, T. C.; Datta, A.; Falborg, L.; Park, H. Bioorg. Med. Chem. Lett. 1995, 5, 259-264.
 (7) (a) Chen, S.-H.; Wei, J.-M.; Farina, V. Tetrahedron Lett. 1993, 34, 3205-3206. (b) Chen, S.-H.; Farina, V.; Wei, J.-M.; Long, B.; Fairchild, C.; Mamber, S. W.; Kadow, J. F.; Vyas, D.; Doyle, T. W. Bioorg. Med. Chem. Lett. 1994, 4, 479-482. (c) Georg, G. I.; Cheruvallath, Z. S.; Vander Velde, D. G. Tetrahedron Lett. 1995, 36, 17831786.
 (8) Georg, G. I.; Cheruvallath, Z. S.; Vander Velde, D.; Ye, Q.-M.; Mitscher, L. A. Bioorg. Med. Chem. Lett. 1993, 3, 1349-1350.

[^1]: (13) (a) Kingston, D. G. I.; Magri, N. F.; Jitrangsri, C. Stud. Org. Chem. (Amstedam) 1986, 26, 219-235. (b) Samaranayake, G.; Magri, N. F.; Jitrangsri, C.; Kingston, D. G. I. J. Org. Chem. 1991, 56, 51145119. (c) Chordia, M. D.; Chaudhary, A. G.; Kingston, D. G. I.; Jiang, Y. Q.; Hamel, E. Tetrahedron Lett. 1994, 35, 6843-6846.
 (14) Parness, J.; Kingston, D. G. I.; Powell, R. G.; Harracksingh, C.; Horwitz, S. B. Biochem. Biophys. Res. Commun. 1982, 105, 10821089.
 (15) (a) Mellado, W.; Magri, N. F.; Kingston, D. G. I.; Garcia-Arenas, R.; Orr, G. A.; Horwitz, S. B. Biochem. Biophys. Res. Commun. 1984, 124, 329-336. (b) Magri, N. F.; Kingston, D. G. I. J. Nat. Prod. 1988, 51, 298-306. (c) Kant, J.; Huang, S.; Wong, H.; Fairchild, C.; Vyas, D.; Farina, V. Bioorg. Med. Chem. Lett. 1993, 3, 2471-2474.
 (16) (a) Horwitz, S. B.; Lothstein, L.; Manfredi, J. J.; Mellado, W.; Parness, J.; Roy, S. N.; Schiff, P. B., Sorbara, L.; Zeheb, R. Ann. N. Y. Acad. Sci. 1986, 466, 733-739, (b) Chen, S.; Fairchild, C.; Mamber, S. W.; Farina, V. J. Org. Chem. 1993, 58, 2927-2928. (c) Klein, L. L.; Yeung, C. M.; Li, L.; Plattner, J. L. Tetrahedron Lett. 1994, 35, 47074710. (d) Datta, A.; Vander Velde, D. G.; Georg, G. I. Tetrahedron Lett. 1995, 36, 1985-1988. (e) Kant, J.; O'Keeffe, W. S.; Chen, S.; Farina, V.; Fairchild, C.; Johnston, K.; Kadow, J. F.; Long, B. H.; Vyas, D. Tetrahedron Lett. 1994, 35, 5543-5546. (f) Rao, K. V.; Bhakuni, R. S.; Johnson, J.; Oruganti, R. S. J. Med. Chem. 1995, 38, 3411-3414.
 (17) (a) Lucas, H. Arch. Pharm. 1856, 85, 145-149. (b) Graf, E.; Bertholdt, H. Pharm. Zentralhalle Dtschl. 1957, 96, 385. (c) Graf, E. Arch. Pharm. 1958, 291, 443-449.
 (18) (a) Crude taxine B, which is isolated in 12 g per kg of dried leaves, contains about 40% (5 g) of the compounds 4a-f. Denis et al. claim to isolate 10-deacetylbaccatin III, the precursor applied in the synthesis of paclitaxel, in yields of ca. 1 g per kg of fresh leaves. ${ }^{4}$ Mostly, much lower yields, however, are reported in the literature. ${ }^{18 \mathrm{~b}}$ Furthermore, the isolation of the taxines is much less labor intensive and also less expensive. No organic solvents are required in the initial extraction procedure and no chromatographic steps are needed for the purification. (b) ElSohly, H. N.; Croom, E. M.; Kopycki, W. J.; Joshi, A. S.; ElSohli, M. A.; McChesney, J. D. Phytochem. An. 1995, 6, 149156.
 (19) Jenniskens, L. H. D.; Rozendaal van, E. L. M.; Beek van, T. A.; Wiegerinck, P. H. G.; Scheeren, H. W. J. Nat. Prod. 1996, 59, 117123.

[^2]: (20) Compounds $\mathbf{8 b} \mathbf{- 1 4 b}$ were prepared as reported by Ettouati et al. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $8 \mathrm{~b}-14 \mathrm{~b}$ were in agreement with those in the literature; also, see ref 12 .
 (21) (a) Compound 7b was difficult to purify. Therefore, the $\mathrm{C} 2-\mathrm{OH}$ of $\mathbf{7 b}$ was protected with trimethylsilyl chloride. This silylated compound was then fully characterized; see also the supporting information. (b) In a similar way as described for 8a-c in this paper, compound 7 b can be converted into 1,7-dideoxypaclitaxel analogs (to be published).
 (22) (a) Hosokawa, T.; Imada, Y.; Murahashi, S.-I. J. Chem. Soc., Chem. Commun. 1983, 1245-1246. (b) Kloosterman, M.; Slaghek, T.; Hermans, J. P. G.; Boom van, J. H. Recl: J. R. Neth. Chem. Sac. 1984, 103, 335-341. (c) Han, O.; Liu, H.-W. Tetrahedro Lett. 1987, 28, 10731076. (d) Sato, K.I.; Igarashi, T.; Yanagisawa, Y.; Kawauchi, N.; Hashimoto, H.; Yoshimura, J. Chem. Lett. 1988, 1699-1702. (e) Ziegler, F. E.; Tung, J. S. J. Org. Chem. 1991, 56, 6530-6537. (f) Murahashi, S.-I.; Oda, Y.; Naota, T. Chem. Lett. 1992, 2237-2240. (g) Bhat, S.; Ramesha, A. R.; Chandrasekaran, S. Synlett 1995, 329-330.
 (23) (a) Berkowitz, W. F.; Amarasekara, A. S. Tetratehdron Lett. 1985, 26, 3663-3664. (b) Berkowitz, W. F.; Amarasekara, A. S.; Perumattam, J. J. .J. Org. Chem. 1987, 52, 1119-1124. (c) Lin, J.; Nikaido, M. M.; Clark, G. J. Org. Chem. 1987, 52, 3745-3752.

[^3]: (24) mm^{+}-calculations were carried out with the computer program and CS Chem3D Pro (version 3.2).

[^4]: (26) Nicolaou, K. C.; Guy, R. K. Angew. Chem. 1995, 107, 22472259.

[^5]: (27) Hoemann, M. Z.; Vander Velde, D.; Aubé, J.; Georg, G. I.; Jayasinghe, L. R. J. Org. Chem. 1995, 60, 2918-2921.

[^6]: (28) (a) The determination of the cytotoxicity was carried out by H . J. Koiker, J. Verweij, G. Stoter, and J. H. M. Schellens, from the laboratory of Experimental Chemotherapy and Pharmacology, Department of Medical Oncology. Rotterdam Cancer Institute (Dr. Daniel den Hoed Kliniek). (b) For details of the in vitro assay, see: Kepers, Y. P.; Pizao, P. E.; Peters, G. J.; Van Ark-Otte, J.; Winograd, B.; Pinedo, H. M. Eur. J. Cancer 1991, 27, 897-900. (c) The seven human tumor cell lines used for the cytotoxity tests were as follows: MCF7, breast cancer; EVSA-T, breast cancer; WIDR, colon cancer; IGROV, ovarian cancer; M19 MEL, melanoma; A498, renal cancer; H226, nonsmall cell lung cancer.
 (29) (a) Chaudhary, A. G.; Gharpure, M. M.; Rimoldi, J. M.; Chordia, M. D.; Gunatilaka, A. A. L.; Kingston, D. G. I.; Grover, S.; ;in, C. M.; Hamel, E. J. Am. Chem. Soc. 1994, 116, 4097-4098. (b) Nicolaou, K. C.; Renaud, J.; Nantermet, P. G.; Couladouros, E. A.; Guy, E. A.; Wrasidlo, W. J. Am. Chem. Soc. 1995, 117, 2409-2420.

[^7]: (30) (a) Neidigh, K. A.; Gharpure, M. M.; Rimoldi, J. M.; Kingston, D. G. I.; Jiang, Y.Q.; Hamel, E. Tetrahedron Lett. 1994, 35, 68396842. (b) Chen, S.; Kadow, J. F.; Farina, V. Fairchild, C. R.; Johnston, K. A. J. Org. Chem. 1994, 59, 6156-6158. (c) Klein, L.L. L.; Li, L.; Yeung, C. M.; Maring, C.J.; Thomas, S. A.; Grampovnik, D. J.;' Plattner, J. J. In Taxane Anticancer Agents, Basic Science and Current Status; Georg, G. I., Chen, T. 'T., Ojima, I., Vyas, D. M., Eds;; ACS Symposium Series No. 583; American Chemical Society: Washington, DC, 1995; 276287. (d) Chen, S.-H.; Wei, J.-M.; Long, B. H.; Fairchild, C. A..; Carboni, J.; Mamber, S. W.; Rose, W. C.; Johnston, K.; Casazza, A. M.; Kadow, J., F.; Farina, V.; Vyas, D. M.; Doyle, T. W. Bioorg. Med. Chem. Lett. 1995, 5, 2741-2746.

[^8]: (31) This compound was not obtained completely pure and was used as such in the next step.

