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Ribonucleoprotein complexes as autoantigens 
Walther J van Venrooij and Ger JM Pruijn 

University of Ni jmegen, Nijmegen, The Netherlands 

Many intracellular proteins and nucleic acids, that are involved in important 
biosynthetic pathways, are targeted by autoantibodies occurring spontaneously 
in the sera of patients with systemic autoimmune diseases. Frequently, the 
autoantigens are assembled into multicomponent complexes containing both 
nucleic acid(s) and proteins. Recently, progress has been made in the study 
of autoantigenic ribonucleoprotein complexes, the most important of which 
are spliceosomal ribonucleoproteins, nucleolar ribonucleoproteins, Ro/La 
ribonucleoproteins and complexes of aminoacyl-tRNA synthetase and tRNA. 
In addition to new structural and functional information, important results 
have been obtained on epitope spreading, as well as on a potential role for 
apoptosis during the development of an autoimmune response against these 

complexes. 

Current Opinion in Immunology 1995, 7:819-824 

Introduction 

In a number of  rheumatic diseases, the presence of  the 
so-called antinuclear antibodies is a dominant feature. 
These diseases include systemic lupus erythemato- 
sus (SLE), mixed connective tissue disease (MCTD), 
polymyositis, scleroderma and Sj6gren's syndrome. The 
autoantigens that are targets of such autoantibodies 
are often large cellular complexes that contain protein 
and nucleic acid components. Many autoantigenic 
complexes localize in the nucleus (reviewed in [1]), but 
autoantibodies directed to cytoplasmic organelles, such 
as mitochondria, centrioles and the Golgi system, have 
also been described. The list of  interesting autoantigens 
targeted by antibodies found in patients with rheumatic 
diseases is steadily growing. Some autoantigens that have 
been cloned recently include one of the components of  
the Mi-2 autoantigen, a large dermatomyositis-specific 
antigenic complex [2], 56K/Annexin XI [3], PCM-1, 
a 228 kDa centrosome autoantigen [4], and CENP-A, a 
histone-like centromere autoantigen [5]. 

The types of autoantibody that occur most frequently, 
however, are directed to DNA-protein complexes 
(DNPs) or RNA-protein complexes, ribonucleoproteins 
(RNPs). Anti-DNP antibodies can be directed to 
double-stranded DNA, as well as to a large variety 
of  proteins involved in DNA metabolism, and in- 
clude targets such as histones, DNA topoisomerase 
I, proliferating cell nuclear antigen (PCNA), Ku and 
centromere proteins [1,6,7]. The anti-RNP antibodies 

can be directed to a variety of  RNAs (28S rRNA, 
U1 snRNA or tRNA [8]), as well as to proteins 
associated with these RNAs (ribosomal proteins, U 
snRNP proteins and tRNA synthetases [6]). 

These autoantibodies have two striking, and most 
interesting, characteristics. First, a large number of  them 
are disease specific (reviewed in [7]); therefore, the 
presence of  a certain 'marker' autoantibody in a patients' 
serum may help the clinician considerably in reaching 
a diagnosis. Second, some autoantibody specificities 
appear to be present very early in disease, long before 
a clinical diagnosis has been reached. In such cases, an 
antibody profile can be helpful in differentiating the 
future development of a certain type of  disease (reviewed 
in [9]). 

In this short review, we will discuss primarily recent 
findings concerning the R N P  autoantigens in order 
to provide insight into the recent progress of  this field. 
For additional information, the reader is referred to some 
complementary reviews on autoantigens [1,6,7]. 

Spliceosomal RNPs 

Spliceosomes, large nuclear complexes involved in the 
processing ofpre-mRNA, have been shown to contain a 
set of  so-called small nuclear ribonucleoprotein particles 
(snRNPs), which contain both RNA and protein 
molecules, as well as non-snRNP proteins in addition 
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to the pre-mRNA. Most of  the snlZNPs, and several 
additional proteins, have been shown to be targeted 
by autoantibodies in patients with rheumatic diseases 
[10]. Autoantibodies directed against snRNPs occur 
predominantly in sera of  patients with SLE or MCTD. 
One particular prevalent antibody in MCTD is called 
anti-U1 snRNP, which is directed to one or more of  the 
specific proteins, UIA,  U l C  and U1-70K, contained in 
the U1 snR.NP complex. A related antibody is found 
predonfinantly in SLE patients, and is called anti-Sin 
after the code name of  the patient serum used in the 
study that first described this antibody system. Anti-Sin 
antibodies are directed to the common (or Sin) proteins 
B' /B and DI_ 3 present in all major U snlkNP complexes. 
The proteins B ' /B and DI_ 3 share at least one Sin-anti- 
genic epitope, as demonstrated by the cross-reaction 
of  anti-B'/B antibodies with the D proteins, and vice 
versa. Sequence comparison has revealed that all the 
known Sm proteins share two evolutionarily conserved 
structural sequence motifs, which might explain their 
inmmnological cross-reactivity [11",12"]. Although the 
most important autoinmmnizing Sm epitopes are yet 
to be identified, the fact that both polyclonal and 
monoclonal anti-Sin antibodies cross-react with various 
core proteins suggests that they share common structural 
elelnents. It is thus possible that the Sm motifs comprise, 
at least in part, one or more Sm B-cell epitopes [12°]. 

Other major antigenic components of  spliceosomes are 
proteins contained in heterogeneous nuclear ILNP (hn- 
ILNP) complexes. In particular, autoantibodies directed 
to the abundant hnRNP-A1 and hnP,.NP-A2 proteins 
can often be found in sera from patients with rheumatoid 
arthritis (1LA), SEE and M C T D  [13]. 

Nucleolar RNPs 

The nucleolus contains a large nuinber of  autoantigens 
that are targeted by autoantibodies that are produced 
by patients with a connective tissue disease, mostly 
scleroderma [1,6,7]. A dynanfic and expanding field 
of  research is the study of  the growing number of small 
nucleolar ILNAs (snoRNAs), each of  them presumably 
associated with connnon proteins (e.g. fibrillarin) and 
specific, as yet unidentified, proteins. Although some 
of  these RNAs are coded for by independent genes 
transcribed by tLNA polymerase II (e.g. snoRNAs U3, 
U8 and U13) or 1<NA polymerase III (7-2/M1LP 
ILNA), most are encoded within introns of  mlLNA 
coding genes (U14-U22, and more to colne [14]). 
The major autoantigen in these snoRNP particles is 
fibrillarin, a common protein indirectly associated with 
most of  these snoRNAs. Autoantibodies directed to 
fibrillarin are found in patients with scleroderma, but can 
also be induced in certain strains of  1nice by treatment 
with mercuric chloride (HgC12). The epitope regions 
in fibrillarin recognized by the spontaneous human 
and toxin-induced murine autoantibodies appear to be 

the same, and included amino- and carboxy-terminal 
regions [15"]. Given these striking similarities, it is to 
be expected that the nmrine HgC12 model may teach 
us what is actually happening in the patient when 
autoantibody production is initiated. 

P,.Nase P is an endoribonuclease that processes precursor 
tR.NA transcripts to generate their mature 5' termini. 
Many patients with an autoimmune disease produce 
antibodies against a 40kDa protein (referred to as the 
Th40 antigen), which is one of  the components of 
eukaryotic R.Nase P, as well as nucleolar 7-2 P, NP, 
which is identical to the mitochondrial R N A  processing 
(MRP) R.NP. Reddy and coworkers [16] mapped the 
R.NA-binding site of  the Th antigen (presumed to 
be Th40) to nucleotides 20-75 near the 5' end of 
human RNase P R.NA. It was previously shown that the 
same antigen(s) bound to a non-homologous sequence 
at the 5' end of  7-2/MP, P RNA. Both sequences, 
however, are capable of  assunfing a similar secondary 
structure that corresponds to a 'cage' like structure, 
indicating that the major determinants for binding of 
Th40 are conformational and not contained in the 
primary structure of  the tkNAs. 

Ro/La RNPs 

Two of  the main targets of autoantibodies from patients 
with SLE and Sj6gren's syndrome are the La (SS-B) 
and iko (SS-A) ribonucleoproteins (reviewed in [17]). 
ILecently, interest in the biological and inmmnological 
properties of  the La and 1ko RNPs has grown markedly. 
The first indications of  a biological function for a 
Ro  protein have been obtained, and although La was 
previously only known to act in termination of  R NA 
polymerase III transcription, evidence has also been 
obtained for additional function(s) of this protein m the 
cell. 

The evolutionarily conserved 60kDa Iko protein con> 
portent (ILo60) was found complexed with certain 
variant 5S rlkNAs in Xenopus laevis oocytes and was 
proposed to function in the quality control or discard 
pathway for 5S rRNA precursors [18"]. In agreement 
with such a function, part of  Ro60 was shown to reside 
in the cell nucleus, in contrast to the Ro60 contained in 
1ZoP,.NP complexes, which is localized exclusively in the 
cytoplasm [19-21]. The recent identification of  a Ro60 
homolog in Caenorhabditis elegans [22"] will further aid 
to unravel the function of  Ro60 via genetic approaches. 
The 52 kDa Ro protein (Ro52) was also found in both 
the nucleus and cytoplasm [19,21] but the majority 
of  this protein is cytoplasmic, which is substantiated 
by the cytoplasmic accunmlation of Ro52 observed in 
transfected cells that overexpress this protein [23]. The 
association of  Ro52 with Ro RNPs remains a matter 
of  controversy. Although Ro52 could not be detected 
in partially purified Ro  RNPs [24,25"], the results oJ 
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Peek et al. [26"] indicate that only a restricted number of 
I<o52 epitopes is accessible in P.o P.NPs, implying that 
the recognition of p`o P`NPs by anti-P.o52 antibodies is 
highly dependent on the specificity of the antibodies. In 
any case, although present in the cytoplasm, the majority 
of P.o52 does not seem to be stably associated with 1<o 
1<NPs. 

A variant P.o52 protein resulting from alternative 
splicing (exon skipping) has recently been identified 
([27]; wJ  van Venrooij, GJM Pruijn, unpublished data) 
but the physiological relevance of this variant, which 
appears to be ubiquitously expressed, still has to be 
established. 

The role of the La protein in the termination of 
transcription by P`NA polymerase III was further 
elaborated by Maraia et al. [28]: La was shown to 
mediate transcript release and to facilitate multiple 
rounds of transcription reinitiation by P`NA polymerase 
III. Although La is believed to be localized mainly 
in the nucleus, several observations suggest that La 
may also be involved in some aspects of  translation, 
which may be related to its stable association with the 
cytoplasmic Y P`NAs and to a redistribution (cyto- 
plasmic accumulation) under certain stress conditions, 
such as viral infection. The binding and unwinding 
of double-stranded 1<NA by La was shown to inhibit 
the double-stranded p`NA-dependent activation of the 
protein kinase PKP` in vitro [29]; PKR is known to 
be involved in the phosphorylation of the 0t subunit 
of protein synthesis initiation factor elF-2. A more 
specialized role for La has been denmnstrated in the 
translation of some viral mp`NAs. La binds to the 5' 
untranslated region of  poliovirus mp`NA and promotes 
(internal, cap-independent) initiation of translation at 
the correct AUG [30]. The La protein also binds to 
the HIV-1 leader P`NA, the trans-activation response 
element (TAP.), and alleviates translational repression by 
this element (cap-dependent initiation) [31"]. 

La proteins from Drosophila melanogaster and Saccharomyces 
cerevisiae have also recently been identified and character- 
ized [32-34]. The gene encoding the yeast homolog of 
La appeared to be dispensable for viability, but at presentl 
it can not be excluded that additional La homologs exist 
in yeast. 

Many studies have addressed the characterization of  
the epitopes on the P.o and La proteins that are 
recognized by autoantibodies. In summary, multiple 
epitopes appear to be present on each of  these proteins. 
Striking features of these epitopes are the discontinuity 
of the major P.o60 epitope(s), the apparent absence 
of important epitopes in the carboxy-terminal half of 
1<o52 [26",35,36], and the presence ofa conformational 
epitope in the 1<NA-binding domain (1<NP motif) of 
La [37]. Maternal anti-La antibodies that cross-react 
with laminin have been proposed to contribute to the 
pathogenesis of congenital heart block [38]. Recently, 
novel antibodies that target deproteinized hY5 P`NA 

have been identified in the sera of patients with anti-1<o 
antibodies [39]. 

Aminoacyl-tRNA synthetases 

These enzyxnes perform an essential function in protein 
synthesis by catalyzing the esterification of an amino acid 
to its cognate t1<NA. Histidyl-tp`NA synthetase is the 
most frequent target of autoantibodies in patients with 
an idiopathic inflammatory myopathy (polymyositis or 
dermatomyositis), but autoantibodies directed to other 
members of  this family (alanyl-, glycyl-, isoleucyl- and 
threonyl-tp`NA synthetase) have occasionally also been 
found in myositis patients [1,6,7]. The autoantibodies 
directed to His-tp`NA synthetase, also called anti-Jo 1 
antibodies, precede the clinical illness, and the immune 
response bears the hallmarks of  a typical secondary 
immune response. Why these particular proteins are 
selected as targets in myositis remains unclear. Plotz and 
coworkers [40] mapped the B-cell epitope region that 
is predominantly recognized by the anti-Jo 1 antibodies 
and found it to be contained in the amino-terminal 60 
amino acids, a region of the protein with a high et 
helical content. This finding provides further support 
to the hypothesis that long, charge-rich 0t helices 
(coiled-coils) are found more frequently in (epitope 
regions of) autoantigens than in other proteins. 1<ecently 
[41], the cDNA sequence of human glycyl-tp`NA 
synthetase was published. As patient antibodies directed 
to this autoantigen were also able to inhibit Gly-t1<NA 
synthetase activity, just like the anti-Jo 1 antibodies 
inhibit His-tp`NA synthetase activity, it would be 
interesting to see whether the B-cell epitope of  this 
autoantigen includes a coiled-coil region as well. 

Why autoantibodies to RNP autoantigens? 

Additional evidence for a B-cell epitope spreading 
mechanism has been published by a series of  elegant 
papers from the laboratories of  Mamula and Craft (see 
[42"']), McCluskey (see [43"]) and Harley (see [44"']). 
The latter paper especially points to the intriguing pos- 
sibility that autoimmune diseases could be accompanied 
or induced by immune responses to relatively simple 
antigenic structures. In 1989, Habets et al. [45] showed 
that proline-rich sequences are cross-reacting targets 
of anti-Sin and anti-p`NP autoantibodies. Harley and 
coworkers [44"'] immunized rabbits with PPPGMP`PP 
or PPPGI1<GP (single-letter code for amino acids) and 
observed that the animals developed high titers not only 
against these peptides, but also to other parts of  the 
molecules from which these peptides were derived (i.e. 
the Sm-B/B' proteins) as well as against a variety of other 
spliceosomal components, including the U1-70K, UIC,  
U1A and Sm-D proteins. 
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The structural association of  the La and R.o proteins 
in t<o IkNP particles in the cell might also be related 
to the frequent co-occurrence of  autoantibodies against 
these proteins in patient sera. In a recent study, Topfer 
et al. [43 °°] examined whether immunity to La and 
Ro60 autoantigens can be triggered by immunization 
with recombinant antigen. The data demonstrate the 
incomplete nature of  T-cell and B-cell tolerance to 
these polypeptides in normal, healthy mice and reveal 
not only intramolecular spreading of  the immune 
response, but also intermolecular spreading. Although 
the mechanism of  intra- and intermolecular spreading is 
not known, it is tempting to speculate that endogenous 
La /Ro  R.NP complexes are involved. A potential role 
for microorganism infection in the etiopathogenesis of  
SLE and other related autoimmune diseases has been 
proposed in the past. Interestingly, immunization of  
rabbits with vesicular stomatitis virus N-protein, which 
had previously been shown to share sequences with 
peptide epitopes of  R.o60, not only led to an immune 
response to the N-protein, but also to an anti-R.o60 
autoimmune response, which is not restricted to the 
sequences shared with the N-protein [46]. 

One very interesting study published last year called 
attention to the possible association of  apoptosis and 
autoantibody production. Casciola-Rosen et al. [47"'] 
showed that UV irradiation of  cultured human ker- 
atinocytes could induce changes consistent with apop- 
tosis and that certain autoantigenic complexes (Ro 
R.NPs, tmcleosomes, snlkNPs) accumulate in apoptotic 
blebs and apoptotic bodies in these dying cells. Even 
more interestingly, they showed in a subsequent study 
[48 °] that one of  the more important autoantigens, the 
U1-70K protein, is specifically cleaved in apoptotic cells. 
The possible implication of  this work is that massive 
apoptosis in a genetically susceptible individual might 
be a mechanism via which appropriate M H C  class II 
molecules might capture and present self-peptides that 
were previously cryptic. The immune response to this 
self-peptide may subsequently spread to other areas of  
the self-molecule to which the organism was previously 
tolerant. Indeed, such a sequence of  events might explain 
why autoantibodies in a particular disease are directed at 
multiple antigens contained in the same P,.NP, DNP or 
protein-protein complex [48°]. 

Conclusions 

Autoantibodies occurring in patients with rheumatic 
diseases can be directed to a large variety of  cellular 
complexes, either in the nucleus or in the cytoplasm. 
Thanks to the availability of  patient antibodies, we are 
now able to elucidate the structure and function of  these 
complexes in the cell. The results of  many studies have 
clearly established that most of  these autoantibodies arise 
as a consequence of  an antigen-driven response. Never- 
theless, the autoimmune response may be triggered by 

the presence of  a certain antibody that was originally 
raised against a foreign microorganismal invader but that 
displays some self reactivity. Spreading of  the anti-self 
response may occur under certain conditions that are 
still undefined, but the finding that various antigenic 
IkNP complexes, probably modified in some way [48°], 
seem to cluster in apoptotic structures like blebs near the 
membrane ofapoptotic cells, which might enhance their 
availability to the immune system, certainly provides 
an attractive and testable explanation. The specific 
relation between the presence of  a certain autoantibody 
specificity and a disease that is developing might thus 
be related to and dependent on at least three factors: 
first, the type of  microorganism leading to cross-reactive 
anti-self antibody; second, the circumstances that lead to 
spreading of  the anti-self response; and third, the fate of  
intracellular complexes during apoptosis. 
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