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Sum m ary

To improve the convergence properties of ‘embedding’ distance geometry, a new approach was devel
oped by combining the distance-geometry methodology with a genetic algorithm. This new approach 
is called D G -O M E G A  (D G Q , optimised metric matrix embedding by genetic algorithms). The genetic 
algorithm was used to combine well-defined parts of individual structures generated by the distance- 
geometry program, and to identify new lower and upper distance bounds within the original experimen
tal restraints in order to restrict the sampling of the metrisation algorithm to promising regions of the 
conformational space. The algorithm was tested on cyclosporin A, which is notorious for its intrinsic 
difficult sampling properties. A set of 58 distance restraints was employed. It was shown that D G ft  
resulted in an improvement of convergence behaviour as well as sampling properties with respect to the 
standard distance-geometry protocol.

Introduction

The elucidation o f  biom olecular structures is the sub
ject o f  lively research, as it is generally believed that such 
knowledge is an  extremely im portan t step towards the 
understanding o f  m acrom olecular mechanisms or biologi
cal function. M ultid im ensional N M R  spectroscopy lias 
become the state-of-the-art m ethod  for the structure de
termination o f  biological molecules in solution (for reviews 
see W üthrich, 1986,1995; Clore, 1991; Wagner et al., 1992; 
Roberts, 1993).

In determining a structure  o f  a biomolecule in solution, 
one has to follow a time-consuming procedure of reson
ance assignments (W üthrich et al., 1982). Subsequently, 
on the basis o f  these assignments, a list o f  N O E  (distance) 
restraints -  sometimes com plemented with information 
from coupling constants and /o r  chemical exchange -  is 
used as input for a com puter  algorithm  that converts the 
experimental inform ation, together with knowledge about 
covalent bonds, into a three-dimensional structure. Such 
an algorithm  is generally based on the concepts of ‘dis
tance geom etry’, but a variety o f  implementations have

been developed. The structure found after applying a 
distance-geometry algorithm is often refined with the aid 
o f  molecular mechanics/dynamics and/or by a quantitative 
comparison of the refined structures with the experimen
tal data.

In order to develop N M R  towards a broadly and 
rapidly accessible tool for structure determ ination of 
proteins in solution, several com puter programs have 
been designed to assist in resonance assignment (Kraulis, 
1989; Van de Ven, 1990; Eccles et al., 1991; Kleywegt et 
al., 1991), restraint generation, distance geometry (Crip- 
pen, 1977; Guntert and Wuthrich, 1991; Havel, 1991) and 
structure refinement (Boelens et al., 1988,1989; Borgias 
and James, 1988). Although most o f  these computer 
programs still feature a strong interactive component, 
their development during the past years has contributed 
to faster and more reliable structure determination by 
N M R  spectroscopy. This paper describes a new distance- 
geometry algorithm, which is aimed to contribute to the 
development mentioned above.

One family of distance-geometry programs comprises 
algorithms based on the embedding of a distance matrix
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Original restraints

Fig. 1. Distance-geometry OMEGA (DGfl). A genetic algorithm is 
combined with distance geometry (DGII), The trial solutions (strings) 
represent a specific set of restraints. The fitness assigned to each string 
reflects the number of restraint violations of the conformer calculated 
by DGII.

and subsequent optimisation of the thus obtained Carte
sian coordinates by simulated annealing or distance-driven 
dynamics (Crippen, 1977; Havel, 1991). An alternative ap
proach uses a so-called variable target algorithm for di
rect structure optimisation in torsion angle space (Giintert 
et al„ 1991; Giintert and Wuthrich, 1991).

For some time, the distance-geometry methods have
been criticised because they appeared to have poor sam 
pling properties (Metzler et al., 1989; Havel, 1990; 
Kuszewski et al., 1992). Non-optimal sampling of the 
conformational space will lead to biased, imprecise and 
sometimes wrong structures, especially when the am ount
of experimental data is relatively poor. This criticism 
prompted additional improvements of existing strategies, 
which are often referred to as ‘second-generation distance 
geometry’.

The second-generation distance-geometry programs 
obviously have improved sampling properties. However, 
especially in the absence of sufficient N O E data, it fol
lows from the analysis of distance-geometry structures 
that the ensemble of structures may converge to the ex
perimental data  only to some extent. However, combining 
parts of these structures might result in additional conver
gence. In those cases, one is forced to apply the method 
for much more structures than is normally feasible. In 
addition, the selection of a set of good-quality structures 
is a time-consuming task, which requires careful interac
tive analysis o f  the data.

In an attem pt to improve this aspect o f  distance geom
etry, the ‘em bedding’ distance-geometry method was com
bined with a genetic algorithm. Briefly, the optimisation 
of an ensemble of distance-geometry structures is carried

out in such a fashion that in form ation  is exchanged (by 
an operator called crossover) between the structures in 
the ensemble during optim isation. The m ethod  described 
in this paper is called D G -O M E G A , or D G Q  for short. 
O M E G A  is an acronym for optimised metric matrix em 
bedding by genetic algorithms. Results obtained in apply
ing D G Q  to experimental d a ta  published for cyclosporin 
A in chloroform solution (Lautz  et al., 1987) will be 
presented. These results are com pared  to those obtained 
by the D G II program for the same da ta  set, which indi
cates that the com bination o f  D G II  and  a genetic algo
rithm substantially improves the sam pling and  conver
gence properties o f  distance geometry.

Methods

Software and hardware
D G Q  was developed on  a  20 M H z personal IRIS 

computer (Silicon Graphics, T M ) by com bining parts  o f  
GATES (Genetic A lgorithm  Toolbox for Evolutionary 
Search, v. 1.00) (Lucasius an d  K atem an , 1994a,b) with 
the D G II program distributed by Biosym (Biosym Tech
nologies, San Diego, CA, 1993). The com m unication be
tween the genetic algorithm  and the D G II  package was 
accomplished via files generated by b o th  the D G II  and 
genetic algorithm programs. In  addition, several U N IX  
shell scripts that are p a r t  o f  the D G II  program  were 
modified in order to be able to s tart D G O  instead o f 
D G II. The user interface o f  In s igh til  and  N M R chitec t 
(Biosym Technologies) was used to provide part of the in
p u t files needed by D G Q . In fo rm ation  about the D G Q  
software (genetic a lgorithm  written in A N S I C, and the 
modified U N IX  shell scripts) is available from the a u 
thors on request.

Genetic algorithms
Genetic algorithms (GAs) (G oldberg, 1989; Davis,

1991) comprise a set o f  optim isation m ethods especially 
suited in solving large and  complex problems. They derive 
their name from the fact tha t they are loosely based on 
population genetics. G A s were pioneered by John H o l
land as a possible optim isation m ethod  (Holland, 1973,
1992), and ever since m any investigations have been re
ported. M ore recently, the m ethod  raised interest as a 
tool in chemometric applications (Lucasius and Katem an, 
1991; De Weijer et al., 1994), and  as an energy minimisa
tion m ethod for m olecular m odelling and  structure deter
mination (Lucasius and  K atem an , 1991; Lucasius et al., 
1991; Blommers et al., 1992; Schulze-Kremei; 1992; 
Unger and M oult, 1993; R ing  and  Cohen, 1994; Sander
son et al., 1994; O gata  et al., 1995; V enkatasubram anian  
et al., 1995).

The G A  m aintains a popu la tion  o f  strings, where each 
string represents a trial solution. Each string denotes a set 
o f  values for the problem  param eters  o f  the optimisation
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problem, and is stored in the com puter memory. After 
initialisation, the quality o f  each trial solution is evalu
ated. For this purpose an optim isation function, generally 
called a  ‘fitness function’ in G A  terminology, is designed; 
it assigns a fitness (quality) value to each string in the 
population.

After the fitness values have been assigned, strings are 
selected from the best fraction o f  the current population 
until an equally sized popula tion  results. By selecting 
above-average strings (strings with a fitness larger than 
the average fitness o f  the population), the G A  uses infor
mation that it has built up  in the population  during the 
past iterations, i.e., the G A  exploits inform ation from the 
past,

In addition to the exploitation o f  previously gathered 
information, the G A  also explores the search space by 
looking for new inform ation (o ther solutions) in regions 
of the search space that were no t visited before. In order 
to explore the search space, modifications are m ade to the 
pre\ iously selected strings. Two operators are used to that 
end. The first one is the  crossover operator, which re
combines two random ly  selected strings, with a predefined 
probability (typically within the range 0.6-0.9). The sec
ond one is the m utation  operator, which is applied to 
each string with a predefined probability  (typically within 
the range 0.001-0.05).

If application o f  recom bination  and  m uta tion  results in 
improvement o f  a string, it will be assigned an increased 
fitness value in the next generation (an iteration in G A  
terminology), and accordingly may survive again in the 
selection process. By repeating this cycle, strings may im
prove every generation until convergence to an  optimum 
results, whereupon the G A  is term inated.

D G -O M EG A (DGQ)
The structures resulting from  a D G II  calculation should 

normally converge with the experimental data. However, 
if  the latter are incom plete and  imprecise (as often is the 
case), the individual structures are usually o f  poor qual
ity: they only partially m atch  the structura l properties of 
the true structure, i.e., the best possible solution to the 
problem. This may be ascribed to  the fact that D G II  does

The flowchart of D G Q  is presented in Fig. 1. The 
main idea behind this new approach is to ‘optimise’ the 
values of lower and upper bounds in such a way that 
after metrisation, embedding, and refinement, structures 
finally emerge that obey the original restraints to a larger 
extent than those generated with D G II. In D G Q , a com 
plete set of modified restraints is encoded on each string, 
which thereby represents a trial structure and replaces the 
original set of experimental restraints as input for the 
D G II  algorithm. After the D G II  calculation and the fit
ness assignments, the strings are recombined by the cross
over operator (i.e., recombination of lower and upper 
bounds), and the restraints are adjusted by the m utation  
operator (i.e., the lower and upper bounds are tightened 
and centered about the corresponding distance calculated 
from the structure). As a result, the conformational space 
will shrink towards a region that includes (nearly) optimal 
structures. Therefore, this process will limit the sampling 
o f  the metrisation algorithm to very specific ranges lo
cated within the original bounds, and hopefully allows the 
structure to obey a larger fraction of the experimental 
input data. It is likely that, within the bounds of the 
original restraints, several ranges can be identified, which 
result in different (nearly) optimal structures.

Although is seems that self-consistency is illegally 
forced between the data (restraints) and the model (DGQ),
i.e., that the data are adjusted to fit the model, this is no t 
the case. The new bounds are only generated to guide the 
sampling of the metrisation algorithm to promising re
gions of the conformational space, which were already 
included by the original restraints. In other words, the 
new set of bounds is a subset o f  the original bounds, and 
therefore does not include new information.

This principle of making modifications to a set o f  re
straints based on a resulting structure can superficially be 
compared to the R ED A C  algorithm (G untert and Wiith- 
rich, 1991), where new bounds on the torsion angles are 
obtained after inspecting the torsion angle variation in an 
ensemble of structures.

Encoding o f  the restraints
The encoding o f  the restraints on the G A  strings is

not systematically search for s tructures obeying all experi- shown in Fig. 2, where Lf and Uf indicate the modified 
m ental data, but instead sem i-random ly scans the confer- bounds, and each parameter is encoded as a real value, 
m ational space, and  therefore too  m any structures must The range assumed by each param eter is dictated by the 
be generated to include the true  structure. A  good sol- values of the original restraints, denoted as Lj and U h 
ution to this shortcom ing seems to be combining the good 
parts o f  the structures generated by D G II  by using an 
evolutionary optim isation strategy. In order to  achieve 
this, a G A  was im plem ented, which is capable o f  effec
tively merging parts  o f  solutions (D G II  structures) in 
order to m ake the desired improvements. In  this way, the 
search characteristics o f  D G II  are enhanced from  semi
random ly to  a guided search for improved structures 
based on previously calculated structures.

L u Lv1 M \ /
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Fig. 2 . Example of a trial solution (string). Each restraint is encoded 
on the string by using the real values of the lower and upper bounds. 
Each lower and upper bound is constrained by the corresponding 
original bounds.
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Fig, 3. The compound selection method used by the genetic algorithm 
in DG£l. Rank-based threshold selection is combined with elitism for 
selection of above-average solutions.

Furtherm ore, Uf > Lf, which condition is imposed by the 
initialisation procedure and mutation operator. This con
dition is no t imposed by the crossover operator, which 
does operate on the individual values, and therefore the 
string is repaired (i.e., the lower and upper bounds are 
switched) whenever this constraint is violated.

Initialisation o f  the restraints
The initialisation o f  each lower and upper bound on 

the string cannot be accomplished at random  because this 
will very likely give rise to inconsistent bounds, i.e., to 
violations of the triangle inequality. Therefore, a proce
dure was developed which initialises the bounds in such 
a way that they will represent only small modifications 
from the original restraints, i.e., each parameter is initial
ised by:

Lf = Lj + |N(0,1)| x l de
( 1)

Uf = U; -  |N(0,1)| x Idev

where N(0,1) denotes the standard normal distribution 
with zero mean and unit standard deviation* The initiali
sation param eter Idev is used to control the deviation from 
the original restraints. A  small Idev will ensure only small 
changes from the original restraints; a potential drawback 
of this approach resides in the fact that the search space 
is not spanned optimally, but this turned out not to be a 
problem in practice. During the initialisation, it is checked 
whether U f > Lf. If that is not the case, the bounds are 
switched; otherwise no further action is undertaken.

The fitness function

every string. Subsequently, one distance m atrix  is gener
ated from each b o u n d  m atrix , which again results in an 
ensemble o f  distance matrices. Once the structures are 
obtained, the assignment o f  the fitness is straightforward:

[fitness,] 1 = erroi'i =  2  (restraint violation^)2 (2)
j=i

where N  is the num ber o f  restra in t violations and i de
notes the index o f  the string. To calculate the restraint 
violations, the corresponding  distances dj are calculated 
from the coordinates o f  the structure:

N

. . .  . Lj -  dj, when & < L: 
restraint violation; = {

J 1 dj ~ Uj, when d j> U j
(3)

Given the fact that D G II  is p a r t  o f  the evaluation func
tion, the G A  may be regarded as a m eta-optim isation 
method: the simulated annealing (SA) procedure within 
D G II  optimises the em bedded  structures by minimising 
the violations o f  the covalent constraints, experimental 
restraints, and  chirality constraints, whereas the G A  op ti
mises the resulting structures by ju s t  minimising the re
straint violations. Leaving SA ou t o f  the D G II  calcula
tion, and instead m inim ising all restraints and constraints 
by adding the co rrespond ing  e rro r  terms to the fitness 
function o f  the G A , would severely degrade the perfo rm 
ance of D G Q  because the structures after em bedding 
would then be too d is torted  to  be assigned a meaningful 
fitness value.

It is also im portan t to realise that the evaluation func
tion is noisy. This noise is the result o f  the stochastic 
effects implied by the D G II  algorithm : the m étrisation 
algorithm  uses ran d o m  perm uta tions  o f  the distances to 
provide for a good sam pling o f  the  distance space (Bio- 
sym Technologies, 1993); the em bedding  algorithm  uses 
Tchebychev polynomials s tarting  from  a random  vector 
to accelerate convergence (Biosym Technologies, 1993); 
and finally, simulated annealing  is a stochastic optim isa
tion m ethod (K irkpatrick  et al., 1983). As a result o f  the 
noise, each string m ay evaluate to a range of structures o f  
which the fitness values m ay (strongly) overlap, depend
ing on the m agnitude o f  the noise. I f  this effect is large 
com pared to the im provem ents m ade by the crossover 
and m utation  operator, the selection process of the G A  
m ay be severely hindered. However, the results presented 
in this paper suggest th a t  this is no t the case, a lthough  
the noise can clearly be observed in the erro r curves.

Selection o f  strings
In D G Q  a  rank-based threshold  selection (Lucasius and

The evaluation of the strings (trial solutions) requires K atem an, 1994c) is used, which is based  on  the rank  o f
a complete D G II calculation, followed by a fitness assign- the strings according to their fitness (Fig. 3). A threshold
ment of the strings. N ote  that in contrast to D G II, where is chosen defining the  be tte r  fraction o f  the  popula tion
an ensemble of distance matrices is generated from one and, subsequently, only strings from  this fraction are
bound matrix, D G Q  first generates a  bound matrix from selected a t ran d o m  to be p a r t  o f  the new popula tion . In
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a

! t

Fig. 4. The uniform crossover operator for real encoded parameters. 
Each block denotes a specific parameter. In DG£2, each parameter 
represents a lower or upper bound of a distance restraint.

order to increase the G A  perform ance even further, the 
rank-based m ethod  was com bined w ith elitism selection, 
which provides for the best strings always to be selected. 
An elitism fraction is chosen th a t  defines the num ber o f  
best strings that are copied to the new population.

Crossover
In D G Q  the so-called uniform  crossover was applied, 

which selects a predefined num ber o f  param eters (real 
param eter encoding) at rand om , and  exchanges these with 
the corresponding param eters  on the paired string. From 
this operation, show n in Fig. 4, two new strings result*

The mutation operator
A  new m utation  o p era to r  was designed, which, on 

average, centers and  tightens the bounds, subject to con
finement to the original range. F o r each specific string 
(structure), application o f  this m uta tion  opera to r implies 
the following (Li9 U ; define the original restraints; Lf, Uf 
define the modified restraints):

(i) Calculate the distance d| corresponding to restraint 
i (L?jU?)

(ii) W ith probability  Pcenlen center restraint i about d{:

L new = j*  _ [(1* +  (U* __ L^)/2) _  ^

U"ew -  U? -  [ ( I * -4-(U ? - Lf)/2) -  dj]
(4)

N ote that bo th  the lower and  upper bound  are shifted in 
the same direction, which is the reason that all signs in 
these two form ulas are identical;

(iii) Check modified restraints:

If ( L p v>U i) or (Ujiew < Lj), then L|iew= Lf, U |iew = Uf 

If  ( L T  < Lj), then  L™v = Lf (5)

If  (Urcw> U i)s then

(iv) Generate stochast x =  |N ( 0 , l ) |x D ,  where D  is used 
to  control the m agnitude o f  the  tightening, and  then, with 
probability P tighten, tighten restra in t i as follows:

L
ur

new __
i
new _

L"cw + x
Ujiew _  x (6a)

else (expand restra in t i):

L new _ t  new v
j —  L j  A

U!iew = U™v + x (6b)

This mutation is applied to a random  subset S of the 
restraints. By adjusting PL.enter, Ptighten> D and th e size of 
subset S, it is possible to control the performance o f  this 
operator to some extent. It is im portant to note that the 
effect of the mutation depends on the quality of the struc
ture generated, as distances from this structure are used 
to define new restraints. Ill-defined structures might de
ceive this operator, i.e., the bounds may converge to non- 
optimal values.

Configuration o f  DGQ
For the experiments described in this paper a popu la

tion of 75 strings was used. Each lower and upper bound

TABLE 1
CONFIGURATION OF DGII

Smooth Triangle smoothing On
Triangle violation tolerance 20.0
Tetrangle strategy None

Embed Uniform probability density On
Probability coefficient 0.5
Eigenvalue iterations 100
Eigenvalue criterion 0.001
Métrisation Prospective
Embed dimension 4

Majorise Guttman transform 10
Linear conjugate gradient iterations 100
Linear conjugate gradient criterion 0.001
Scale centroid Off
Calculate Moore-Penrose inverse On
Moore-Penrose inversion criterion 0.001
Weighting scheme Constant
Overwrite structures On

Optimise Dimension weight 0.20
Chirality weight 0.1
Lower maximum 10.0
Contact maximum LOO
Dimension scaling 0.30
Upper weight limit LOO
Error function form Sparse matrix
Extra radii LOO

Simulated Initial temperature 1,00
annealing Maximum heating 2.00

Maximum number of steps See Results
Calculate initial energy Off
Initial energy 1000.0
Maximum temperature 200.0
Fail level LOO
Atom mass 1000

.. • Step size 2e-13

Conjugate Maximum iterations 250
gradient rms gradient 0.001

Global Generate database On
setup Number of structures

»

75 (Popula
tion size)

Omega wobble 10
Increment files On

(v) Check the modified restraints described in step iii.

The table lists the configuration of all parameters used within DGII, 
For a detailed explanation of these variables see the DGII User Guide 
(Biosym Technologies, 1993).
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was encoded with a precision of 0.001 A. By considering 
the ranges that are assumed by the 58 restraints of cyclo
sporin A, together with the given precision, it can easily 
be derived that the size of the search space comprises 
approximatly 1034 states. The initialisation parameter Idev 
was set to 0.05. Threshold rank-based selection was used 
with a threshold fraction of 0.25 (19 strings) and an  eli
tism fraction of 0.02 (2 strings). Uniform crossover was 
used, applied with a probability of 0.80, The number of 
parameters to swap was set to 2. The mutation operator 
was applied to all restraints encoded on the string (S = 
58). Furthermore, Pshifl=1.0, Pcenter= 1*0» and D = 0.05.

The values for all parameters of D G II are listed in 
Table 1. For a m ore detailed explanation of these vari
ables, one has to consult the user guide of D G II (Biosym 
Technologies, 1993). N ote  that the number of structures 
in the global setup determines the population size o f  the 
GA. The number of SA iterations depends on the experi
ment and therefore is given in the Results and Discussion.

Results and Discussion

The performance o f  D G Q  was compared with that of 
D G II, using cyclosporin A (CPA) (Lautz et al., 1987, 
1989; Kessler et al., 1990) as the target molecule for struc
ture elucidation. The aim of this research was to present 
the principles underlying D G Q  and to demonstrate that 
the approach can be used to generate improved struc
tures. The objective was not to reveal the structure of 
CPA, as the details thereof are already known from other 
publications.

CPA, an im portant drug applied during treatment sub
sequent to organ transplantation because of its unique 
immunosuppressive properties, is a cyclic undecapeptide, 
cyclO"(MeBmt1~Abu2-Sar3-M eLeu4-Yal5~MeLeu6-Ala7“D-

Ala8-M eLeu9-M eL euI()-M eVaIl!) (see Fig. 5), with 49 
dihedral angles. A n X-ray structure is known (Loos'li et 
al., 1985) and, in addition , a  structure in apolar solution 
has been derived on the  basis o f  N M R  data  (Kessler et 
al., 1985) by applying static m odelling techniques (Lautz 
et al., 1985). W hereas the cyclic peptide adopts many 
conformations in equilibrium  in p o la r  solvents such as 
DMSO, no m ajor conform ational heterogeneity is o b 
served in chloroform. Therefore, the da ta  set involving 
CPA measured in chloroform  represents an ideal test 
case.

For the present experiments, a set o f  58 distance re
straints from L au tz  et al. (1987) was used. Because o f  its 
inherently difficult sam pling properties, this da ta  set has 
been used in the past to  validate new structure op tim isa
tion algorithms (Lautz  et al., 1987; Schaik et al., 1992).

Using this da ta  set, distance-geometry calculations 
were perform ed using the D G Q  algorithm. T he D G II  
algorithm was applied in similar experiments for com pari
son purposes. T he experim ents are summarised in Table
2. A lthough the D G II  calculations were carried ou t with 
the original set o f  restraints and  no t with a set o f  tighter 
restraints (e.g., generated by D G Q ), the com parison be
tween these two algorithm s can be considered to  be fair. 
From practice it appeared  that the sampling o f  the con
formational space is be tte r  when the bounds are loose 
(especially in the SA protocol). Consequently, using tighter 
bounds for D G II  would likely reduce the quality o f  the 
resulting structures.

The num ber o f  steps o f  simulated annealing may criti
cally affect the  quality o f  the structures. Therefore, it 
seems im portan t to investigate to what extent the length 
o f  the SA refinement can be reduced in the D G Q  ap
proach; such in form ation  can be obtained from the refer
ence experiments involving D G II .
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COMPARISON OF THE N U M BER OF FUNCTION EVALUATIONS FOR DGII AND DGU
TABLE 2

Exp. Algorithm No. of structures No. of generations SA No. of evaluations

1 DGII 50 — 1000 50 000 (75 000)
2 DGII 50 — 5000 250 000 (375 000)
3 D G n 75 18 1000 1 350 000
4 DGQ 75 13 5000 4 875 000

The number of function evaluations calculated from the size of the structure ensemble, the number of generations (for DG£3) and the number of 
steps of simulated annealing (SA) are given. The values within brackets indicate the number of evaluations if 75 structures would be calculated
with DGII.

D G Q  calculations were perform ed with a population 
size o f  75 structures and  were set up for either 1000 or 
5000 steps o f  SA. The reference experiments using D G II  
were perform ed with 1000, 5000 and  10 000 steps of SA. 
It appeared tha t the structures are converged within 5000 
steps o f SA, and  therefore only the results for the first 
two experiments are depicted in Table 2. W hen one com 
pares the optim isation by SA (D G II) with th a t  by G A  
and  SA (D G Q ), it would be fair to  specify the to ta l num 
ber o f  iterations, i.e., the num ber o f  times tha t the error 
function o f  SA is evaluated. This is calculated by the 
product o f  steps SA, the num ber o f  structures, and the 
num ber o f  generations (where for D G II  the num ber o f 
generations is set to 1). T he  values given between brackets 
(Table 2) represent the num ber o f  function  evaluations if 
75 structures would be calculated with D G II ,  which al
lows for direct com parison  with D G Q . N ote  that the 
num ber o f  generations listed in Table 2 corresponds with 
the point after which no m ore improvement was observed. 
T he  C PU  times spent in assembling the input files for 
D G II  from the strings, calculating the fitness values, and 
application o f  the genetic operators  were not being con
sidered. Consequently, the com parison  o f  the num ber o f 
function evaluations was n o t  based on  C P U  times. H ow 
ever, the C P U  time involved for these steps was negligible 
com pared to a complete D G II  calculation, i.e., an  evalu
ation of the strings. Table 2 shows that the num ber o f 
evaluations required by D G Q  is larger than  for D G II, 
which is o f  course due to the fact tha t in D G Q  the D G II 
algorithm  is iterated by the G A .

From  each ensemble o f  structures resulting from one 
o f  the four experiments the m in im um , m axim um , and the

average number o f  violations were calculated (Table 3); 
it is obvious from this that D G Q  performs better than
DGII.

In addition, for each individual structure in the en
semble the average magnitude of the restraint violations 
was calculated. From  this, the structure with the m ini
m um  and maximum average restraint violation was deter
mined; these values, together with the corresponding 
number of violations, are also shown in Table 3. These 
quantities allow the calculation o f  the sum of violations 
via multiplication. U pon comparing the minimum and 
maximum average violations it is again clear that D G Q  
performs better than  D G II. Because the sum of violations 
for the tabulated structures significantly decreased, it 
seems fair to conclude that application o f  D G Q  results in 
a better convergence com pared to D GII. From the aver
age magnitude of violations o f  all structures, an overall 
average and standard deviation have been calculated. 
Comparison of these values reveals a slightly better per
formance for DGQ.

Figure 6 illustrates the distributions of the average 
restraint violations and the number o f violations for the 
ensemble of each experiment. Upon comparing the dis
tribution reflecting the average violations, it is clear that 
increasing the number of SA iterations decreases the 
deviation o f  the distribution and  shifts the distribution 
towards smaller restraint violations, i.e., the structures 
were found to converge to a larger extent. However, when 
comparing the differences between D G Q  and D G II ,  no 
pronounced effects are observed, although, as already 
pointed out, the distribution for D G Q  includes structures 
with decreased average violations. The distributions in-

TABLE 3
COMPARISON OF NUM BER A N D  M AGNITUDE O F  RESTRAINT VIOLATIONS FOR DGII AND DGQ,

Exp. Algorithm No. of violations Magnitude of violations

.1
2
3
4

DGII
DGII
DGQ
DGH

Min

8 
8 
2 
3

Max

23 
21
14
15

Avg

16 
14 
9 
7

Min (#)

0.077 (12) 
0.069 (19) 
0.046 (2) 
0.02  (3)

Max (#)

0.275 (8) 
0.143 (15) 
0.230 (5) 
0.2140 (3)

Avg

0.176
0.0997
0.1420
0.0877

Std

0.041
0.0188
0.0413
0.031

For each ensemble, the minimum (Min) and maximum (Max) number of violations, and minimum (Min (#)) and maximum (Max (#)) average 
violations are depicted. For the latter the corresponding number of violations are given in brackets. The average number of violations, average 
violation (Avg), and standard deviation (Std) denote statistics over the complete ensemble.

I
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Fig. 6 . The distributions of the ‘magnitude of violations’ and the 
‘number of violations’. Experiments 1 and 2 comprise the DGII calcu
lations for 50 structures. Experiments 3 and 4 comprise the DGQ 
calculations with 75 structures. A decrease in the number of violations 
can be clearly observed for DGO.

volving the number o f  violations clearly disclose that 
D G Q  generates structures with a smaller number o f  re
straint violations than D G II, i.e, there was a clear shift to 
conformers with less violations in comparison to D G II.

Figure 7 illustrates a superposition o f  seven structures. 
The average rms deviation of the backbone atoms is 2.2 
À. These structures represent the seven best structures of 
the ensemble. Each structure has only one, two or three 
violations of 0.1 to 0.3 À and the sum of violations is less 
than  0.6 À. From a similar selection of the ‘best’ D G II  
structures the average rms deviation o f  the backbone is 
1.3 Â. This clearly indicates that apart from the conver

gence properties, the sam pling properties o f  D G Q  are 
superior to those o f  D G II .  There is m uch  m ore variation 
in structures satisfying the applied restraints to the same 
extent. In  bo th  cases the structures h ad  an average back 
bone rmsd of 1.5 Â to the previously published structure, 
which was obtained with restrained m olecular dynamics. 
This indicates that in bo th  cases the resulting family o f  
structures fluctuates ab o u t the energy-refined structure.

Figure 8 depicts the error curves for experiment 3 
(these are similar to the error curves for experiment 4). 
They clearly reflect the noise caused by the evaluation 
function, i.e., despite the use o f  elitism selection the error 
of the best string in each generation occasionally increases. 
Interestingly, the graphs shown in Fig. 8 reveal tha t the 
optimisation can be characterised by a very steep optim i
sation profile during  the  first 10 generations. Then, within 
say five generations, there is still significant improvement, 
but thereafter the error curve fluctuates about the optim al 
value. These results suggest that, if C P U  time is a critical 
factor, the use o f  only few generations (i.e., a limited 
application o f  the G A ) already adds to  the convergence 
of the structures.

Figure 9 shows the  evolution for an arbitrary  selection 
of four restraints for 25 generations. This is a clear illus
tration o f  the shrinking properties o f  the m utation  oper
ator (see M ethods). The values tha t are plotted corre
spond to  the upper an d  lower bounds  o f  the best s truc
ture generated so far. A fter  initialisation (generation 0), 
these bounds are close to  their original (experimental) 
value. In the next few generations, the bounds rapidly 
converge to the sam e value. A fter convergence, the lower 
and upper bounds becom e ab o u t equal, and consequently, 
the m utation  opera to r  can only continue by centering the 
restraints. Furtherm ore , at this stage the similarity be
tween the strings was found  to  increase to such a level

Fig. 7 . Selection of the seven best structures generated by D G Q . Each structure has a maximum of three violations, which amount to less than 
about 0.3 A.
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Generation

Fig, 8 . The performance of the GA is reflected by the evolution of the 
error values. The curves reflect the median error of the population at 
each generation, the lowest error found so far and the smallest error 
of the population at each generation. The noise on the error values 
can be clearly observed for the smallest error of the current popula
tion.

that the effect o f  crossover largely declined. Accordingly, 
the fluctuations after convergence m ay be ascribed mainly 
to the stochastic effects in D G II ,  i.e., the best strings 
evaluate to a different s tructure  and  as a  result the re
straints are recentered. T he  effect o f  this on  the error was
also observed in Fig. 8. .......

As shown above, the num ber o f  function evaluations

required by D G Q  to derive the final set o f  structures was 
much larger than for D G II. D G Q  needed up  to 18 gener
ations, which is comparable to 18 D G II calculations. To 
make the comparison between D G II and D G Q  more fair, 
a D G II  calculation was performed, which generated 1350 
structures (18 generations x 75 structures). This experi
ment showed a similar performance of D G II compared to 
the calculation with 75 structures, i.e., no structure o f  
comparable quality of DGÍ2 was found.

An im portant shortcoming of D G II resides in the fact 
that the optimisation strategy used, i.e., simulated an
nealing, is trajectory based. In other words, the optim isa
tion is started from one conformation and is proceeded 
by progressive changes towards a conformation that fits 
better to the experimental data. The G  A, on the other 
hand, seems superior in that it inherently combines partial 
solutions (substructures) by means of the crossover oper
ator. To investigate the effect of the crossover operator 
and the use of a population-based search strategy, a D G Q  
experiment was performed in which the size of the popu
lation was reduced to one. Consequently, no crossover and 
selection could be applied, and any outcome should thus 
be caused by the m utation operator alone, i.e., through 
adjustment of the restraints. The results obtained with 
this experiment were very poor, because very distorted 
structures resulted and no improvement o f  the error values 
(restraint violations) during subsequent generations was 
observed. This indicates that both  crossover and the use 
of a population o f  trial solutions in combination with a
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Fig. 9. Evolution of a selection of four restraints for 25 generations. (A) T H R n J:F l“-ALA__2:HN; (B) LEU_6 :H?-LEU_6 :CN; (C) VAL_5 :HJ-
VAL_5.H , (D) VAL_5.H -VAL__5;H|). The lower and upper bound (lower and upper line, respectively) rapidly converge to an identical value. 
This may be ascribed mainly to the mutation operator.
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selection method contributes significantly to the perform
ance of D G Q , which justifies the use of the G A  m ethod
ology.

A lthough the use of G A  is supported by the previous 
experiment, it may seem possible to use the concepts of 
D G Q  in a more effective way by only using SA, i.e., 
without re-embedding o f  modified bounds. However, after 
adjustment o f  the restraints, the present set of structures 
might not represent an adequate starting set for the next 
SA iterations. Furthermore, the changes made by SA 
might be too local to be o f  value for the D G Q  principles. 
These problems will, almost certainly, increase the num 
ber o f  SA iterations needed to derive equally good struc
tures as in the current implementation.

A part from the improvement o f  convergence and sam 
pling properties, the G A  offers the possibility to further 
develop the quality and efficiency of the structure-deter- 
m ination process. By means of sharing and crowding 
(Goldberg et al., 1987; Goldberg, 1989) or the use of 
multiple populations (Stender, 1993), it becomes possible 
to search more effectively for multiple solutions (struc
tures) with an increased rms value. Another improvement 
can be obtained by designing an interactive crossover 
operator. In that case the user would a priori define a 
most likely 'b a d ’ part o f  the structure, e.g., a part with 
many restraint violations. Subsequently, crossover could 
be applied only to the corresponding bounds, hopefully 
resulting in better substructures. As a result, the complete 
protein might converge to a better solution. Another 
development that makes application of the GA attractive, 
is direct coupling of structure-quality criteria such as 
calculated energy or covalent restraint violations, to the 
fitness function, which should optimise the quality o f  the 
conformational pool. The selection process may be fur
ther enhanced by using information obtained from the 
relation between the maximum pairwaise rmsd and the 
maximum restraint violation error (Widmer et al., 1993). 
In this way, the sampling that is perceived by D G Q  may 
be controlled to some extent. In order to increase the 
convergence rate o f  D G Q , the fitness function can be 
extended with an additional term reflecting the quality o f 
the distance matrix. This term could be determined by 
calculating the difference between the distance matrices 
before and  after embedding, and the difference between 
the matrices before and after SA. The former would 
reflect the extent to which the matrix is embeddable, 
whereas the second difference would reflect the quality o f 
the structure directly after embedding with respect to the 
restraints and covalent geometry. This improvement of 
the fitness function might lead to a reduction of the num 
ber of SA iterations. These improvements are currently
under investigation.

As is shown in this paper, D G Q  amounts to an im
provement over D G II, even without optimisation o f  the 
algorithm 's configuration and  therefore optimisation

within this method (especially o f  the m utation  p a ram e
ters) will very likely fu rther enhance performance.

The integration with the D G II  package o f  Biosym 
software makes D G Q  an easy to use algorithm. P art  o f  
the input files can be set up by using the excellent user 
interface o f  Insightll. A dd itiona l input files can be ob
tained with the aid o f  a text editor.

Conclusions

A new distance-geom etry approach , D G Q , was pres
ented, which is based  on a com bination  o f  "embedding’ 
distance geometry and  a genetic algorithm . Application o f  
D G Q  to CPA dem onstra ted  an enhancem ent o f  bo th  the 
convergence and sam pling  properties with respect to the 
standard distance-geometry protocol. D G Q  is open for 
many modifications and  extensions that may further 
improve the sampling and  convergence properties, reduce 
the C PU  time required for doing a calculation, or enlarge 
its applicability.
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