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Tilapia are able to withstand long-term exposure to low 
environmental pH, judged by their energy status, ionic 

balance and plasma cortisol

V. J. T. VAN GlNNEKEN*, R. VAN HERSEL*, P. BAI.Mf, M. NlbVEEN* AND 
G. van den T hill art*

* Animal Physiology, Institute o f  Evolutionary and Ecological Sciences (E E W ),  
University o f  Leiden, Gorlaeus Laboratories, Einstein weg 55, P. O. Box 9502,

2300 RA Leiden, The Netherlands and  f  Department o f  Animal Physiology, Faculty o f  
Science, University o f  Nijmegen, Toernooiveld 1, 6525 ED Nijmegen , The Netherlands
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Tilapia Oraochromis mossambicus were exposed to water at pH 4-0 for 37 days. The water was 
acidified slowly over 6  h enabling the animals to acclimate and preventing damage of the gill 
epithelium. Additional stressors, e.g. aluminium ions and handling stress, were avoided. No  
mortality or decreased food consumption was observed during the exposure period. No  
significant changes were observed between the control and acid exposed groups for the energy 
rich compounds and related parameters, i.e. Lhe adenylate energy charge, the pool of tota! 
adenine nucleotides, and the IMP load of white muscle and liver, indicating maintenance o f  
homeostasis. Moreover, there were no significant differences between control groups and 
acidified groups at 3, 17 and 37 days for plasma sodium, chloride, cortisol and glucose, 
implying that ionic balance was maintained and that there was no activation o f  the pituitary- 
interrenal axis. It is concluded that tilapia can acclimate to water at pH 4*0 when the 
acidification rate is slow and additional stressors are avoided.

(Ç) 1997 The Fisheries Society o f  the British Isles
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INTRODUCTION

Acid precipitation (acid rain, snowfall), primarily a consequence of emissions of 
industrial sources, is now prevalent in many parts o f the world. The m ajor 
acidifying components are S 0 2, (NO)x and oxidation products of N H 3. As a 
consequence of the acidification, fish populations are vanishing, especially in 
poorly buffered areas like Scandinavia, Canada and the north-eastern U.S.A. 
(Beamish, 1976; Leivestad & Muniz, 1976). The main causes for the d isappear­
ance of fish populations are osmoregulatory stress, disturbances of the acid-base 
balance, increased gill diffusion distance resulting in hypoxia, reduced reproduc­
tive capacity, changes in predator-prey interactions, impaired growth, and an 
accumulation of aluminium and heavy metal ions in the acidified waters 
(Fromm, 1980). The resulting physiological and endocrinological changes 
observed in fish after exposure to water acidification can be studied systemati­
cally only in the laboratory. Exposure to sub-lethal acidity causes aberrant 
physiological functioning which can be indicated as the low pH  syndrome, which 
includes: (1) recruitment of erythrocytes from spleen (Neville, 1979; Milligan & 
Wood, 1982); (2) increase of the size of the red blood cells (M cDonald & W ood,
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1981); (3) increased level of haemoglobin (Nieminen et al. ,  1982; Audet et al., 
1988); (4) temporarily increased level of lactic acid in plasma due to hypoxic
stress (Murthy et a i ,  1981; Ultsch et al., 1981; Nieminen et al., 1982); (5) 
hyperglycaemia (Nieminen et al., 1982; Brown et al., 1983; Lee et al., 1983; 
Audet & Wood, 1988; Audet et a l ,  1988; Tam et a i,  1987; Waiwood et al., 1992) 
and increased levels of glycogen in the liver indicating stimulation of 
gluconeogenesis (Murthy et al., 1981; Lee et al., 1983); (6) increased levels of 
cortisol (Brown et al., 1983, 1990; Tam et al., 1987) or increased cortisol turnover 
rate (Balm, unpublished); (7) changes in the concentrations of 
adenosinetriphosphate (ATP), adenosinediphosphate (ADP), phosphocreatine 
(PCr), the adenylate energy charge (AEC) and the pool of total adenine 
nucleotides (TAN) in different tissues (Macfarlane, 1981; Haya et al., 1985; 
Waiwood et al., 1992). However, in a recent study on rainbow trout 
Oncorhynchus m ykiss (Walbaum), exposure to pH 4-0 caused no major changes 
in several parameters which were presumed indicators of acid stress (Balm & 
Pöttinger, 1993).

Balm & Pottinger’s (1993) approach was different from other acidification 
studies. First, the water pH was lowered gradually enabling the animals to adapt 
to the acid conditions. Second, additional stressors like handling stress and high 
concentrations of aluminium, were avoided. The study of Balm & Pöttinger
(1993) was a semi-field study over a period of 2 weeks with rainbow trout 
concentrating on histological parameters, ionic balance, and indicators of the 
pituitary-interrenal axis. The new aspect of the present study is the additional 
measurement of the energy status of white muscle and liver tissue as indicators of 
stress under chronic acid conditions (37 days) at a low Ca2+ content of the water. 
In three previous studies, large differences were observed in energy status after
acid exposure (Macfarlane, 1981; Haya et a l ,  1985; Waiwood et al., 1992). It 
was expected that when the acidification rate was slow and additional stressors 
were avoided, no effects would be observed on the energy status of tissues. The 
adenylate energy charge (AEC) is an indicator of the metabolic energy available 
to an organism from the adenylate pool at the time of sampling (Atkinson, 1968, 
1972, 1977). In multicellular organisms as well as microorganisms in culture, the 
AEC lies within three ranges: between 0-8 and 0-9 for optimal conditions; 
0-5-0-75 for limiting or perturbed conditions; and <0-5 for severe conditions 
(Ivanovici, 1979, 1980), and has been useful as an indicator of temperature and 
salinity stress (Ivanovici, 1980). This study uses the AEC as an indicator for acid 
stress.

This paper describes the effects of acidification on energy status, ionic balance, 
and plasma cortisol in tilapia chronically exposed to acid conditions (pH 4-0, low 
Ca2+), and demonstrates that under very low additional stress levels no 
significant changes occur at pH 4 0.

MATERIALS AND METHODS
FISH

Mozambique tilapia Oreochromis mossambicus (Peters) with an average weight of 
approximately 60 g were held in 100-1 aquaria, seven animals per aquarium, at the 
University of Nijmegen. Six groups were used, three control and three acid-exposed
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groups. The following conditions were applied: 26° C, normoxic oxygen levels of 80-90% 
AS (air saturation), a 12 : 12 h light : dark regime, and daily feeding with Tetramin at 2% 
body weight day" l, in a separate quiet room, where the fish observed human activity 
only twice a day for feeding. The fish were adapted to artificial soft water (pH 7-4) for 6 
weeks prior to the experimental period. Artificial soft water was prepared by adding 
0*44 mM NaCl, 0-86 mM NaHC03, 0*13 mM MgCl^, 0*04 mM KC1, 0-2 mM CaCl2 to 
demineralized water. Altotal was below the detection limit of 130 nmol 1~ l. Water pH of 
the acid groups was reduced gradually to pH 4*0 over a period of 6 h. The pH of the 
water was maintained at pH=4-0 for 37 days with 1 mol 1 ” 1 H2S04 by a titration system 
consisting of a pH meter (Consort P514) connected to a special low conductivity pH 
electrode (Russell CTL/LCW) and a Gilson peristaltic pump. The aquaria were aerated 
rigorously to eliminate C 02 and to prevent hypercapnic conditions. On the sampling 
days the fish were anaesthetized in a solution of 3-amino-benzoate ethyl ester 
methanesulphonate (MS-222; Sigma, St Louis, MO, U.S.A.) buffered with N aH C 03 at a 
final concentration of 200 ppm. To avoid handling stress, the solution of buffered 
MS-222 was pumped within 1 min with a peristaltic pump into the aquaria.

EXPERIMENTAL PROTOCOL AND SAMPLING PROCEDURE
A control and acid-exposed group were anaesthetized at the same time and sampled 

alternately. The time from anaesthetizing to blood sampling was 5 min while the time 
from start to finish blood sampling for control and acid exposed groups was 12 min. 
Blood was collected in EDTA/aprotinin (1*5 mg 3000 K IU ~ l ml” 1 blood; Sigma). 
Immediately afterwards the fish were killed by decapitation. White muscle (within 
10-15 s) and liver tissue (within 30-40 s) was sampled and freeze-clamped between 
aluminium tongs, and cooled and stored in liquid nitrogen at — 180° C until analysis. 
Frozen tissue was powdered in a grinder (type RMO; Retsch) with liquid nitrogen and 
4-0 vol of perchloric acid (8%, v/v) in ethanol (40%, v/v) containing 4 mM NaF and 10 m M  
EDTA. The powder was stored for 10 min at — 20°C in a centrifuge tube and then 
homogenized on ice with a high-speed mixer (type X 1020; Salm & Kip BV, Döttingen, 
Germany). The homogenate was stored for 30 min on ice and was further centrifuged 
(Sorvall RC-5B) for 20 min at 30.000 g, The extract was neutralized to pH 7*0 with 3 m  
potassium carbonate in 0'5 m triethanolamine. Finally, the extracts were separated into 
Eppendorf tubes and stored at — 180° C (liquid nitrogen) until analysis.

ANALYTICAL METHODS 
Metabolites

Haemoglobin content was measured in 20 jil blood using the cyanmethaemoglobin 
method (Boehringer Mannheim, Germany). Directly after blood sampling the blood was 
centrifuged (10 000 rpm for 5 min). The plasma was divided in Eppendorf tubes (10, 60 
and 70 [i\ for cortisol, glucose, sodium and chloride respectively) and stored at — 80° C 
for further analysis. For glucose measurements, 60 (il plasma were mixed with 540 pi 3% 
trichloric acid solution to precipitate plasma proteins and stored at — 80° C. Glucose 
was determined by colorimetric assay (Sigma). Cortisol was measured by radio­
immunoassay (Balm et al., 1994). Plasma sodium and chloride levels were measured 
by flame photometric and colorimetric procedures (Technicon) respectively (Balm & 
Pöttinger, 1993). Lactic acid was detected enzymatically according to the method of 
Hohorst (1970).

HPLC-analysis o f  nucleotides
Nucleotide analysis in the tissue extracts was based on the HPLC-method of Harmsen 

et al. (1982). The HPLC configuration consisted of a LKB 2248 pump with a Pharmacia 
LKB low pressure solvent mixer. The separation was performed on an an ion-exchange 
column (200 x 4*6 mm) packed with lOjum Partisal SAX (Whatman, Clifton, U.S.A.) 
operating at room temperature. A gradient elution system was used consisting of eluent 
A as 0*01 m  H3PO4 adjusted to pH 2-85 and eluent B as 0*75 m KH2P 04 adjusted 
to pH 4*40. The gradient profile was 0% of B during the first 5 min followed by a
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T a b l e  I. Parameters (means ± s.d .) measured in blood of tilapia groups sampled at 3, 17 and 37 days
after exposure to pH 4 0; control groups (pH 7-6) were sampled at the same time

3 days, 
control

3 days, 
pH=4*0

17 days, 
control

17 days,
pH>4*0

37 days, 
control

37 days, 
pH=4-0

Hb (m M ) nd nd 4*70 ±  1*04 4*40 ±  0*55 4*55 ±0*28 4-71 ± 0-33
(n=7)
Cortisol (ng/ml) 157*4 ±25*8 131*7 ± 27*7 101-6 ±37-9 122*1 ±50*9 155*3 ±60*2 174-0 ±46-7
(n=7)
Glucose (m M ) 3*08 db 1*35 3*92 ± 1*35 2*81 ±0-95 2-66 ± 1*21 3*83 ± 1-38 3-68 ±  1-64
(n = 6)

^Significant difference with the corresponding control group (P<0*05). 
nd, No data available.

linear gradient from 0 to 100% B for /=5-35 min, 100% B for t= 35-40 min and 100% to 
0% B for t-40-45  min. Detection was performed using an ultraviolet dual wavelength 
detector (LKB 2141 monitor) set at 256 for nucleotides and 210 nm for PCr detection. 
Quantification was performed using external standards,

STATISTICS AND CALCULATIONS
Data are presented as means ± s.E. Differences between groups were assessed by 

analysis of variance (ANOVA) against time. Per sample point differences of the 
treatment (acidification) were compared with a one-way ANOVA. Normality of the data 
and homogeneity of variances were checked by Kolmogorov-Smirnov and Fmilx tests, 
respectively. P<0*05 was considered as statistically significant.

From the nucleotides, the following parameters were calculated:

(1) total adenine nucleotides: TAN= [ATP] + [ADP] + [AMP];
(2) adenylate energy charge: AEC=([ATP]+^[ADP])/([ATP] + [ADP] + [AMP]);
(3) IMP load: IL=[IMP]/([ATP] + [ADP]+[AMP])*

RESULTS

N o mortality, nor decreased food consumption was observed throughout 37 
days in control and acid-exposed groups. Food was eaten within 1 min for both 
groups throughout the experimental period. No significant differences were 
observed between control and acid exposed groups for haemoglobin, cortisol, 
glucose (Table I) sodium and chloride (Fig. 1).

In white muscle the [phosphocreatine] (PCr) varied between 13 and 19-5 mM 
(Table II), the [adenosinetriphosphate] (ATP) was approximately 5 mM , while 
the adenylate energy charge (AEC) was in all cases 0-93 (Fig. 1). The 
[adenosinediphosphate] (ADP) was around 0*85 mM (Table II, [adenosine 
monophosphate] (AMP) remained below the detection limit of 3 |iM, while the 
total adenine nucleotide pool (TAN) remained between 5*75 and 6*14 mM. The 
[inosinemonophosphate] (IMP) varied between 0*08 and 0-26 mM and the 
IM P-load (IL) between 0*01 and 0-04.

In liver tissue, the [PCr] was below the detection limit of 7 |lim . The [ATP] in 
liver tissue was approximately eight times lower compared to white muscle, 
varying between 0*42 and 0*71 mM  while the AEC varied between 0*67 and 0*79 
(Fig. 1). The [ADP] was lower compared to white muscle, 0*41-0*60 mM  while
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Fig. 1. The effect of long-term exposure to pH 4 oil the adenylate energy charge (AEC) of white muscle 
and liver, and on the N a+ and Cl ~ plasma levels of tilapia. The exposure periods were respectively 
3, 17, and 37 days. Shown are the values of the controls. (□ )  and experimental groups (£3) ±  s . e . 
[n — 5 for each group); no statistically significant differences were observed between groups.

the [AMP] was between 0*79 and 0*83 mM (Table II). The TA N  was fivefold 
lower compared to white muscle, varying between 1*03 and 1*30 mM. Finally, the 
[IMP] was lower in liver tissue compared to white muscle, in the range of 
0*09-0*13 mM while the IMP-load showed a large variance between 0-07 and 
0*29.

For all energy-rich compounds, notably the [ATP], [PCr] and the AEC, there 
were no significant differences between control and acid exposed groups for all 
the three sample points, 3, 17 and 37 days respectively (Table II, Fig. 1). Only 
for lactic acid in liver was there a significant difference between the control 
groups at days 3 (0*27 niM ) and 37 (0*65 m M ) (Table II). For all the other 
parameters no significant differences were observed between the three control 
groups.

DISCUSSION

There were no significant differences between any of the control or acidified 
groups, indicating that tilapia can adapt and survive acidified water conditions 
(pH 4*0) during 37 days and that no time effect was operative. There were no 
signs of a disturbed or impaired physiological condition resulting from acid 
exposure and no significant changes in haemoglobin, glucose, cortisol, sodium, 
chloride, and energy status in liver and white muscle. This is in contrast to most



T a b l e  IL Nucleotides (means ± s .d .)  in white muscle and l iv e r  of tilapia groups sampled at 3 ,1 7  and 37 days after exposure to pH 4*0; control
groups (pH 7-6) were sampled at the same time

3 days,
control

3 days, 
pH 4-0

17 days,
control

17 days, 
pH 4*0

37 days,
control

37 days, 
pH 4-0

White muscle
PCr 17-55 ±5-37 19-52 ±4-01 12*80 ±2*48 17-94 ±4*82 16-10 ± 2-01 15*72 ±3-52
ATP 5-12 ±0-47 4*92 ± 0-4Ö 4*88 ± 0*46 4*92 ± 0-24 5*24 ± 0*32 5-18 ±0-41
ADP 0*88 ± 0*16 0-83 ±0*11 0*88 ± 0*12 0*83 ±  0*06 0*90 ±0*12 0-85 ±0*06
AMP <3 |IM <3 jim <3 JIM <3 JIM <3 JIM <3 JIM
IMP 0-26 ± 0-24 0-14 ± 0-10 0-24 ±0-15 0-08 ± 0*05 0-14 ±0*08 0-14 ±0*09
TAN 6-00 ± 0-59 5-75 ± 0*48 5-76 ± 0-49 5-75 ± 0*28 614 ± 0*42 6 02 ± 0*44
IL 0-04 ±0-04 0*02 ± 0-02 0*04 ± 0*03 0-01 ± 0-01 0-02 ± 0*01 0*02 ± 0-02
Lactic acid 2-60 ± 0-75 2-33 ±1-40 3*83 ± 0-93 2*35 ± 0-79* 3*47 ± 0*87 3-43 d= 1-58

Liver
PCr <7 \iU <7 JIM <7 JIM <7 |IM <7 JIM <7 JIM
ATP 0*71 ±0-35 0-66 ± 0*25 0-61 ±0*34 0*62 ± 0-25 0*47 ± 0-24 0*42 ±0*19
ADP 0-49 ±0-14 0*60 ± 0*10 0-54 ±0-11 0-41 ±0*11 0*56 ±0*11 0*53 ±0*30
AMP 0-82 ±0-16 0-79 ± 0*12 0-81 ± 0*11 0*83 ±0-14 0-81 ±0*18 0*79 ±0*16
IMP 0*09 ± 0*07 0-09 ± 0-04 0-09 ± 0-07 0-12 ± 0' 12 0-13 ± 0*12 0-13 ± 0-13
TAN 1-23 ±0*44 1-30 ±0-20 1*21 ±0-41 1 -03 ± 0*28 1-10 ± 0*18 1*04 ±0-34
IL 0-09 ±0-07 0*07 ± 0-03 0*09 ± 0*08 0 06 ± 0*06 0*17 dz 0-11 0*29 ± 0*36
Lactic acid 0-27 ± 0-03 0*33 ±0-15 0*48 ± 0-23 0-32 ±0*18 0*65 ± 0*291 0*49 ± 0-38

*Significant difference with corresponding control group (P<0-05); fsignificant difference with control group 3 days.
Each group contained five animals. All values are expressed in mM, except for PCr in liver, AMP, EC and IL which are without dimension.
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studies which report a general impairment of the physiology of fish by water 
acidification (Fromm, 1980; McDonald, 1983; Wood, 1989). An explanation for 
this discrepancy has been given recently by Balm & Pöttinger (1993). They 
observed that rainbow trout exposed for 14 days to pH 4-0 survived without 
decreased food consumption: haematocrit and plasma protein were not affected 
and the pituitary-interrenal axis was not activated.

Only from electron microscopic examination of gill tissue was there evidence 
for an increased turnover rate of chloride cells and leucocyte infiltration in gills 
of acid-exposed fish (Balm & Pöttinger, 1993). Lowering the pH  gradually had 
enabled the trout to adapt to the acid conditions, preventing the gill damage 
which occurs at higher acidification rates (Stuart & Morris, 1985; Balm et a l , 
1987; Wendelaar-Bonga et a l , 1990). This approach corresponds to the situ­
ation in nature (Henriksen et a l , 1984). Balm & Pöttinger (1993) had avoided 
handling stress or additional stressors like aluminium ions and they confirmed 
that under these experimental conditions no significant activation of the inter- 
renal axis or ion losses would occur. The present study confirms their hypothesis 
for tilapia after 37 days exposure to acidified water, for energy status, ionic 
balance and cortisol.

ENERGY STATUS
There are two major advantages for the AEC as a general index for stress. 

First, it is nonspecific and is generally applicable: and second, its response to 
environmental changes is rapid, from minutes for microorganisms (Wiebe & 
Bancroft, 1975) to 24 h for a mollusc (Wijsman, 1976). Changes of the A EC 
have been observed in several studies with perturbations in environmental 
conditions (salinity, temperature, exposure to hydrocarbons, and lack of oxygen) 
or with growth state. In the gastropod Pyrazus ebeninus, the A EC dropped 
below 0*8 when the external salinity was < 17%o at 20° C (Ivanovici, 1980): when 
the temperature was increased from 20 to 29° C the AEC dropped by 20% 
independent of salinity (Ivanovici, 1980), In both Pyrazus ebeninus and the 
bivalve Trichomya hirsuta, the AEC dropped significantly from control levels of 
0’8-0-9 to 0*65-0’55 under reduced salinity, increased temperature and exposure 
to hydrocarbons (Ivanovici, 1979). In fish white muscle, the AEC remained 
stable or dropped little after hypoxia or anoxia exposure due to the buffering 
capacity of the PCr pool present (van den Thillart et a l , 1976; van den Thillart, 
1980; Jorgensen & Mustafa, 1980; van Waarde et a l , 1983; van der Boon et a l , 
1992; Caldwell & Hishaw, 1994). In liver, the situation is different due to the 
absence of the PCr pool. As a consequence, the ATP pool cannot be buffered via 
the creatine kinase reaction. Moreover, AMP conversion to IM P via the enzyme 
AMP desaminase is probably not operative in liver tissue (van den Thillart, 
1980), which is supported by the high values of AM P found in liver tissue (Table 
II). Hence, AEC values were lower in liver tissue, and liver is more sensitive than 
is muscle to environmental stressors. In the present study, the A EC of white 
muscle and liver was unaffected, despite the sensitivity of the liver, so it is 
concluded that acidification has no direct or indirect effect (e.g. hypoxia) on this 
parameter.

It is reported that for the first 2-3 weeks exposure fish adapt to acidified 
conditions while after 37 days they reach a new steady state with respect to ionic
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balance (Wendelaar-Bonga et al., 1987; Audet et al., 1988) and haematology 
(Audet et al., 1988). However, at 3, 17 and 37 days in the present experiments 
there were no differences in the AEC between control and acid exposed groups.

As regards energy status, Macfarlane (1981) noted large changes in the AEC 
and TA N  in Gulf Killifish Fundulus grandis Baird & Girard, after exposure to 
pH  5 and 4 for 96 h. Both parameters decreased in brain, gill, liver and muscle. 
Moreover, a decrease of [ATP] was observed in all tissues. Exposure of Atlantic 
salmon Salmo salar L., to pH  4*6 for 112 days resulted in an increased [ADP] and 
T A N  in liver tissue (Waiwood et a l , 1992). AEC and PCr were lower in Atlantic 
salmon muscle after 15 days at pH 4*7 while ATP and TAN in muscle were lower 
after 62 days of exposure compared to controls (Haya et a l , 1985). However, 
additional stressors may be effective like smolting (Haya et a l , 1985; Waiwood 
et a l , 1992), handling stress (Macfarlane, 1981; Haya et a l , 1985) and large 
fluctuations in environmental conditions (Waiwood et a l , 1992). The latter 
stressor may have synergistic effects. Synergism was also observed in a recent 
in vivo 3IP-N M R  study when Mozambique tilapia were exposed to acidification 
combined with hypoxia (van Ginneken et a l , 1996). Exposure to pH 4-0 for 12 h 
as a single stressor had no effects on phosphocreatine levels and the intracellular 
pH  (pHi) o f  the white muscle (as found by van Waarde et a l , 1990) while a 
combination of hypoxia and acidification had deleterious effects: 50% of the fish 
died during reoxygenation while the survivors showed a delayed recovery (van 
Ginneken et a l , 1996).

IONIC BALANCE
The observed values for chloride and sodium fell within the range of other 

studies (Balm & Pöttinger, 1993; van Dijk et a l , 1993; Wendelaar-Bonga et a l , 
1987). However, when Audet et a l (1988) exposed rainbow trout to pH  4-8, 
plasma sodium dropped slowly from 140 to 120 meq 1~ 1 after 30-52 days and 
plasma chloride fell from 140 to 110meq l " 1 after 84 days. Probably the 
acidification rate was too abrupt or additional stressors were operative.

In Balm & Pottinger’s (1993) study of acid exposed trout, chloride cells 
showed apoptosis, physiologically controlled cell death as described for tilapia 
(Wendelaar-Bonga et a l , 1990). There were, however, no indications for tissue 
necrosis in acid exposed animals (Balm & Pöttinger, 1993), and it was suggested 
that the increased turnover rate of chloride cells in gill tissue (Wendelaar-Bonga 
et a l  5 1990) was part of the adaptive regulatory response to acidified conditions 
enabling the fish to maintain ionic homeostasis (Balm & Pöttinger, 1993). It is 
possible tha t such a response was also operative in our study.

GLUCOSE AND CORTISOL
In the acid-exposed groups, no hyperglycaemic response was observed: plasma 

glucose levels at 2’7-3*9 mM corresponded with previous reports for this species 
at 3*1 mM (van Waarde et a l , 1990). Hyperglycaemia has occurred upon water 
acidification in rainbow trout (Brown et a l , 1990), and in response to exogenous 
cortisol administration in roach Rutilus rutilus L. (Müller & Hanke, 1974) and 
eel Anguilla japonica Temminck & Schlegel (Chan & Woo, 1978). Therefore, it 
could be argued that the lack of a glycaemic response in the present fish reflected 
the lack o f difference in cortisol levels between experimental groups. However,
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these cortisol levels can hardly be considered basal. This was unexpected, since 
MS-222 anaesthesia was used partly to avoid the rapid sampling-associated 
elevation of cortisol (Balm et a l , 1994). It is suggested that either the animals 
perceived the MS-222 addition to the aquarium, or the interrenal stress response 
to sampling also occurs in anaesthetized animals. Consequently, conclusions 
regarding basal cortisol in the experimental groups would be tentative at best. 
Evidently though, the low pH treatment did not influence the magnitude o f the 
sampling-associated cortisol response. Because stress responses are influenced 
by previous chronic stressful experiences associated with water quality (Barton 
et a l , 1985; Pickering & Pöttinger, 1987), the data suggest that exposure to 
pH 4-0 for up to 37 days was not experienced as stressful by these fish. This is 
consistent with the measured metabolic and ionoregulatory parameters, which 
were in the control range in the acidified groups.

CONCLUSION
The study confirmed and extended the hypothesis of Balm & Pöttinger (1993) 

that fish can acclimate to acidification alone if: (1) the acidification rate is slow, 
enabling the animals to mobilize adaptive mechanisms, such as a higher turnover 
rate of branchial chloride cells; and (2) additional stressors like handling and 
aluminium are eliminated. In the presence of additional stressors (biotic or 
abiotic), synergism may occur, explaining the results obtained with field studies.

VJTvG was supported by a grant of the Life Sciences Foundation (SLW), which is 
subsidized by the Netherlands Organization for Scientific Research (NWO), SLW-project 
no. 427024.
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