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Elasticity theory of smectic and canonic mesophases
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(Received 7 January 1994; revised manuscript received 18 July 1994)

The general theory of elasticity for smectic and canonic mesophases is formulated, starting from
the assumption that the equilibrium state is spatially periodic. The various surface terms appearing
in the deformation free energy density are considered as well. The efFective description of the elastic
behavior of a general nonchiral smectic mesophase involves one positional elastic constant, 16 bulk
orientational elastic constants, and six surface orientational elastic constants. One additional bulk
orientational elastic constant is required for the description of a general chiral smectic mesophase.
The efFective description of the elastic behavior of a general nonchiral canonic mesophase involves six
positional elastic constants and three bulk orientational elastic constants. In this case the property
of chirality does not introduce additional orientational elastic constants. The elastic constants for
some relevant smectic and canonic mesophases are given, including the elastic constants for the
antiferroelectric Sm-C& and ferrielectric Sm-C' and Sm-C~ phases.

PACS number(s): 61.30.—v, 03.40.Dz

I. INTRODUCTION
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The interdependence of the positional and orientational
deformation variables is formulated in terms of con-
straints on these variables. These constraints express
mathematically the nature of the smectic and canonic

The present work deals with the description of the
elastic behavior of smectic and canonic mesophases, or
shortly smectics and canonics. Smectics are solid in one
dimension and Quid in the other two dimensions, i.e. ,
they have a broken continuous translational symmetry
in one direction. The only possible axis of continuous
rotational symmetry coincides with this preferential di-
rection. Canonics, on the other hand, are solids in two di-
mensions and Quid in the other dimension, i.e., they have
a broken translational symmetry in two independent di-
rections. Here, axes of continuous rotational symmetry
are absent.

The elasticity theory of smectic and canonic
mesophases must take into account the interdependence
of the positional and orientational deformation variables.
The breaking of continuous translational symmetry is de-
scribed in terms of a displacement field u(v'), which de-
scribes the deviation of a material point situated at v'

&om its equilibrium position r —zs(r). The breaking
of continuous rotational symmetry is described in terms
of an orientational field consisting of three orthonormal
vectors a(r), b(r), and c(r), which are attached to each
material point. Equivalently, the local orientation is de-
scribed by the orthogonal transformation matrix, that
connects the local body-fixed frame and the space-Axed
frame. The matrix elements B, with i = 1, 2, 3 and
o, = x, y, z are given by

mesophases.
The theory of elasticity is concerned with expressions

for the deforInation free energy density, i.e., the excess
free energy density of a deformed state with respect to
the state with uniform displacement and orientational
field. This deformation free energy density is a function
of the spatial derivatives of the deformation variables. In
smectics and canonics positional as well as orientational
elasticity must be taken into account. For the sake of
clearness the essential features of the theories of both
positional and orientational elasticity are summarized.
A detailed exposition of these theories can be found in
references [1] and [2], respectively.

The general expression of the free energy density due
to positional elasticity is given by

1
f~ = &-p~sU-pU~s—

2

where A p~p = A~p p is the elasticity tensor and where
the strain tensor U p is de6ned by

1
U~p = —(0~up + Bpu~ —O~tL&Bpu&) .

2

Terms linear in U p do not appear, as the undeformed
state is assumed to be the equilibrium state. Terms of
higher than second order in U p are neglected, as the
strain tensor is assumed to be small. The symmetry of
the strain tensor leads to the symmetry relations:

The positional part of the deformation free energy den-
sity f„does not contain surface terms, i.e., terms that
can be written as divergences and consequently only con-
tribute to the surface free energy. The proof is given in
the Appendix.

The elasticity tensor can be expressed as
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A~P~a ——R,~R~P Rk~RtgA;

~ijkl = ~jikl = ~ijlk = ~kli j (6)

The general expression of the positional deformation free
energy density involves 21 independent elastic constants.

As to the deformation free energy density due to ori-
entational elasticity, the general expression is given by

fo = kij Dij + 2 +ij kiDij Dki + ~ij kSij k 1

1

where

D'~ = —,&~k «'~«kP~RiP,1

S;~y = S~;k = 0 (R, D~i, + R, D, i, ), .
(8a)
(sb)

and k;~, K,~kr
——Kkl;~ and L;~k ——L~;k are the elastic

constants. It appears that there are 9 elastic constants
k,~, 45 elastic constants K;~k~, and 18 elastic constants
L;~k. The invariants D;~ can be writ ten in terms of the
usual vector notation as

Dii ——-' [c.(V x c) + a (V x a) —b (V x b)]
Di2 ———c (V x b),
Dis ———a (V x b),
D2i —— b(V x—c),
D22 ——

2 [a. (V x a) + b (V x b) —c (V x c)]
D2s ———a (V x c),
Dsi = b(V—x a),
Ds2= —c (Vxa),
D3$ —i [b . (V x b) + c (V x c) —a (V x a)]

(9a)
(9b)
(9c)
(9d)
(9e)
(9f)
(9g)
(9h)

(9i)

As opposed to the case of translational elasticity the
orientational deformation free energy density does in-
volve surface terms. These surface terms are the 18 terms
S;~k, the three chiral terms,

S; = 0 R; = —e;~kD~k,

and the six nonchiral terms,

S;, = 0 (R;pBpR~ —R; OpR p).
= (sx'msi~~ —eh~sr. &~)Di~Di.~.

where the scalars A,~k~ are the elastic constants. It fol-
lows directly that the elastic constants must satisfy the
symmetry relations:

II. ELASTICITY THEORY OF SMECTIC
MESOPHASES

A. Deformations in smectics

The orientational field in a smectic is chosen such that
the vector a(i') is normal to the fluid layers, which conse-
quently are spanned by the vectors b(i ) and c(v ). Smec-
tic mesophases are characterized macroscopically by two
properties.

The first property is the broken continuous transla-
tional symmetry in the direction of the vector a(v ),
whereas the continuous translational symmetry is unbro-
ken in the surface perpendicular to a(v'). The starting
point of the present analysis is the assumption that the
equilibrium state is the state with spatial periodicity,
i.e. , the undistorted srnectic layers are Hat. Then the
distorted layer is described by the requirement that the
function 4?(v') = k . [v' —u(v )], where Ie is perpendicular
to the undeformed planes, must equal a constant. The
function 4'(v) is the so-called layer phase function [3].
Choosing k = e it, follows that

4(v.) = z —u, (7).

Clearly u (v') and u„(v ) do not enter the theory.
The second property relates the orientational variables

to the positional variable u, (r). As the unit vector a(i')
is perpendicular to the Quid layers this second property
can be expressed mathematically as

a(i.) = VC(v)
IV@(&)I

(—8 u„—B„u„1—B,u, )

V'(~*u. )' + (~.u. )' + (1 —~.u. )'

Using the representation in Eulerian angles:

ity theory of smectic and canonic mesophases. The ex-
plicit expressions, however, must take into account the
macroscopic definition of these mesophases in terms of
the interdependence of the positional and orientational
variables.

The paper is organized in the following way. In section
II, the interdependence of the deformation variables of
smectics is formulated and expressions for f„and f are
given. In Sec. III, an analogous procedure is followed for
canonics. Finally, the results are discussed in Sec. IV.

f~ = fp+ fo. (12)

The expression (12) is the starting point of the elastic-

It can be shown that the surface terms S, , S,z, and
S;~i, are all possible surface terms [2]. Clearly, a further
reduction of the number of bulk terms is not possible.

Mixing terms proportional to D,.~U p do not appear
in fd, as the state with uniform displacement field is as-
sumed to be the equilibrium state. Consequently, the
deformation &ee energy density is the sum of the posi-
tional and the orientational contribution:

cos0 = 1 le u

/V4/

[v~e[

a = (sin 0 cos P, sin 0 sin P, cos 0),
b = cos(g) (cos 0 cos P, cos 0 sin P, —sin 0)

+ sin(g) (—sin P, cos P, 0),
c = —sin(g) (cos 0 cos P, cos 0 sin P, —sin 0)

+ cos(g) (—sin P, cos P, 0),
it follows di.rectly that

(15a)

(15b)

(15c)

(16a)

(16b)
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and

where

cos

sin

Bx~z

By Q,z

(17a)

(17b)
1 ~ 1f„= —&ssss & + —(&1122 + &2222) &P 2 2

1+ (~1111+ ~2222 + 2~1122).
8

(24)

Substitution of this expression for the strain tensor in
the general formula (2) for the positional deformation
free energy density gives

Vgl = (—O~u„—Oyu~, 0).

Expressions for the axes 6 and c can now be easily found:

( —0 u, (1 —O, u, ), —Oyu, (1 —0, u),V4 V'~C

—(~*u.)' —(~&u.)')

( —8 u, (1 —O, u, ), —Oyu, (1 —0,u, ),VC Vi@
-(~-u. )' —(~.u. )')

cos g+
~ ~

(Byu~, B~u~—) 0).

(19a)

(19b)

The Eulerian angle vP corresponds to the only indepen-
dent angular variable, describing the rotation around the
local normal a. Clearly, the orientational field is a func-
tion of 0 u, and g.

The term linear in e is forbidden for reasons of stability.
Leaving out the irrelevant constant term and defining

A = A3333,

the positional deformation free energy density of a smec-
tic appears to read,

1 2f„=—A (a apU p)2

=1 2= —Ae.
2

= —A
~

O, u, ——((0 u. )' + (Oyu, )' + (B,u, )')
~2 ( 2

(26)

This term which is the only contribution to positional
elasticity in smectics can be ascribed to the compression
of the smectic layers. It should be noted that it is im-
perative to use the full strain tensor, U p instead of the
usual linearized strain tensor,

B. Positional elasticity U'p ———(0 up + Bpu ),

The strain tensor can be expressed as

1
U p = —[h p

—8 @~cjp@~],
2

(20)

in order to ensure that the positional deformation free
energy density is invariant with respect to rigid rotations
of the smectic. See for a further discussion of this point
Ref. [4] on the elasticity of Sm-A.

B4 =BC= VCa

the strain tensor of a smectic is found to be

U p = —I8 p
—iV'@i a ap]

1—(6~6p + c~cp) + s' asap ) (22)

where a is given by

where 4(v ) = v —u, (v ) gives the position of a mate-
rial point in the undeformed state as a function of its
position in the deformed state. The nature of the smec-
tic state imposes a constraint on the general form of the
strain tensor (20). Because of the fluid character of the
smectic layers only the component of 4 perpendicular
to the undistorted layers is relevant for the strain, i.e. ,

appears in the strain tensor. Both other components do
not contribute. Using (14), i.e. ,

C. Orientational elasticity

Bp@

B BpC BpCB 46 B 4

(8p —apa )8 B„C

blab„+ chic (28)

Expressions for the orientational invariants D,.~ in
terms of the spatial derivatives of ct u and g can be de-
rived using equations (14) and (19). The spatial deriva-
tive of the local normal can be expressed as

~ = —(1 —iV ei')
2

= ci. , ——1(8 .)'+ (&„.)'+ (Ci. .)') . (23)

Six invariants D,z follow now directly:

1D l]:6~CP B~QP: 6~ CP B~l9P 'll z ) (29a)
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1
cx p cx p z 1

1
D3q ——a~ cp 0~ap ——— a~cp B~Bpu»

1
Di2 ———b bpO ap —— b bpB Bpu,

1
c~bpB~Bpu~ )

1
bpB Bp

D2j ——c~cpO~ap =—

D22 = —c~bpB~ap

D32 = —a bpO ap =

(29b)

(29c)

(29d)

(29e)

(29f)

bp B cp = —cos(0)B P —B vP. (30)

Next B P is expressed in terms of the derivatives of the
displacement field. Consider to that end:

tang = Byuz

xuz

In order to obtain the three remaining invariants the
vector bpO cp is expressed in terms of Eulerian angles:

fvei =1. (35)

be seen as follows. Both invariants only appear in case
of a deformation that involves layer compression. Con-
sider such a deformation with wave vector of magnitude
q, where the wavelength of the distortion is much larger
than a molecular length as required by continuum theory.
The contribution to the deformation free energy density
due to positional elasticity is then of order Aq, whereas
the contribution due to orientational elasticity is of order
Kq, as follows from the proportionality of the invariants
D,~ to the second order derivatives of the displacement
field. Empirically, it appears that the length gK/A is
of the order of a molecular length, as also follows from
considerations concerning the molecular constituency of
smectics. Consequently, the ratio Kq /A of the two con-
tributions is much smaller than one, i.e. , the inHuence of
the invariants D3q and D32 can be neglected.

The invariants D3i and D32 vanish automatically as
soon as the smectic layers are required to be incompress-
ible [3]. This requirement can be put in mathematical
terms in the following way:

Then it follows that

1
B (tang)1+ tan2

1
(B~u~ BC„Byu~ —By u~ B~B~u~ )

1
[sin(vP)bp + cos(g)cp]B Bpu,vgc

Then, it holds according to Eq. (14) that

V'xa=0.

Dsg —— b(V—x a) = 0,

Ds2 ———c (v x a) =0.
(37a)
(37b)

This irrotationality condition was introduced for the first
time by Oseen [5]. It entails the exact result (34) and

Consequently, the remaining three invariants D;~ can be
written as

Di3 ——b bpO cp
1 —B,u

[cos(g)b cpB Bpu,v@ vg@
+sin(g)b bpB Bpu ]

—b B @,
D23 cnbp Ocx cp

1 —Ozu
[cos(g)c cpB Bpu,v4 v~4

+sin(@)c bpB Bpu, ]
—c B g,

D33 —a~ bp B~cp
1 —Bzuz—

~ve~ ~v. e~
['"(~'-'pB-Bp".

+sin(@)a bpB Bpu, ]
—a B g. (33c)

It follows immediately from (29) that

a (V x a) =Dqq+D22 ——0. (34)

This relation can also be derived more directly with the
aid of Eq. (14) [3].

The specific character of a smectic thus reduces the
number of rotational invariants from nine to eight. Prom
an experimental point of view, however, a description in
terms of six invariants sufBces, as the inHuence of the
two invariants D3q and D32 can be neglected. This can

Equivalently, it can be said that the elastic constants
associated with the three invariants D~i+ D22, D3~, and
D32 are infinite.

Summarizing, the deformations of the orientational
field in smectics can be eBectively described by six in-
variants. Consequently, 21 elastic constants K;~A, ~ appear
in the orientational deformation free energy density for
general smectics, satisfying the irrotationality constraint.
This requirement of incompressibility also reduces the
number of surface terms 8;~. , given in equation (11), from
six to five. Thus, 16 elastic constants sufFice for a general
description of the bulk of general incompressible smec-
tics.

The number of chiral terms is further limited by the
assumption that the equilibrium state is the state with
spatial periodicity. This means that terms linear in the
derivatives of the displacement field do not appear in the
deformation free energy density, i.e., chiral terms propor-
tional to the the second order derivatives of the displace-
ment field are not allowed to be present. Consequently,
only the chiral elastic constant k33 appears, as the at-
tendant term does not contain second order derivatives
of the displacement field. As to the remaining surface
terms S,~I„only the term S333 is relevant for the de-
scription of smectic elasticity, for the other terms are
forbidden by the requirement of incompressibility or by
the assumption concerning the nature of the equilibrium
state. Finally, it should be realized that the correctness
of the assumption concerning the equilibrium state must
be decided experimentally.
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III. ELASTICITY THEORY OF CANONIC
MESOPHASES

A. Deformations in canonics

Cp = V@2
ve,

(—cj~uy, 1 —Byuy, —
B~uy )

Q(1 —cj„u„)'+(8 uy)'+ (O, uy)'
(39b)

eg(r) = x —u (v), (38a)

The orientational field in a canonic is chosen such that
the solid layers are spanned by the two vectors b(r) and
c(r). Consequently, the vector a(v ) is directed along the
Quid columns. Canonic mesophases are also character-
ized macroscopically by two properties.

The first property is the broken continuous transla-
tional symmetry in the surface perpendicular to a(t'),
whereas the continuous translational symmetry is unbro-
ken in the direction along a(v'). Starting point of the
analysis is also here the assumption that the equilibrium
state is the state with spatial periodicity, i.e., the undis-
torted canonic columns are straight. Then the distorted
column is described by the requirement that the func-
tions eg(v ) = kg [v —u(v )] and 4 2(v ) = kg . [v —u(v )],
where Ie» and k~ are two linearly independent vectors
perpendicular to the undeformed columns, must equal a
constant. The functions eq(v ) and e2(r) are the general-
ization of the layer phase function for smectics. Choosing
Ie» ——e~ and k~ ——e» it follows that

V@g x V@2

Ql Veg I2
I

V'4'2
I

2 —(V'eg ve2) 2

The other two axes can be chosen as

(40)

1 bp+ cp
2 41 + bo . co
1 6p+cp

C =
2 gl+ bo co

1 6p —cp+
2 gl —Qo co'
1 bp —cp
2 j/1 —bo co

(41b)

This choice is not unique, as a rotation around a gives
an equivalent set of local axes. ln contrast to the smectic
case an additional angular variable to specify the local
orientation is not needed, as the broken continuous ro-
tational symmetry around the a axis is not an indepen-
dently broken symmetry. Clearly, the orientational field
is a function of O~u~ and O~u„.

Hence, the second canonic property can be mathemati-
cally expressed as

bp X Cp

l~o x col

e2(v ) = y —uy(v ). (38b) B. Positional elasticity

Clearly, u, (r) does not enter the theory.
The second property relates the orientational variables

to the positional variables u (r) and u„(v ). As the unit
vector a(r) is parallel to the Quid columns it is perpen-
dicular to the plane spanned by the two unit vectors

V@(
Ivegl

g.e. = a.e, = Ivc, lb...

0 e„=0 e2 ——IV'e2lco

the strain tensor of a canonic can be written as

(42a)

The nature of the canonic state curtails the general
form of the strain tensor (20). Only the components of
4 perpendicular to the Quid columns are relevant, i.e.,

appear in the strain tensor. Using (39), i.e. ,

(1 —0 u, —B„u,—O, u )

Q(1 —8 u )2 + (B„u )2 + (O, u )~
(39a)

U p = — b p
—IV'e]

I
b hoop

—IV'e2I co cop . (43)

Rewriting the strain tensor in terms of 6 and c gives

U p = — b p
——

g I gl + Iv'e2I + 1 — (lvegl —lv'e2I ) & b bp
2

-
2

——
& lve~l'+ lv'e21' — 1—,, (lv'eel' —lv'e2I') ~ c cp

2

1 V@» . V@2
ve

I

(lve. l'+ lv'e2I') (b..P+ c-bP) .
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This expression implies immediately that the positional
part of the deformation free energy density of a canonic
must read,

f& ——A1111 (b~bpU~p) + A1112 (b~bpU~p) (b~cpU~p)=1 2
P 2 implies that

V@i . VC2 —= 0,

(50a)
(50b)
(50c)

1 2+ A2222(ccxcpUnp) + A2212(c~cpUnp)(bncpU~p)
2
1 2+ A1212(b cpU p) + A1122(b bpU p)(c cpU p),2

(45)

=B u ——iVu f,2

e, = -(1—)Ve,
~ )

=1 2

2

(46a)

= Byuy ——[Vuy
/JJJJ

1
~3 ————VCi VC2

2

(46b)

i.e., six elastic constants are required to describe the po-
sitional elasticity of a canonic. With the aid of

(1 —IVe11 )
=1 2

2

Vx 6=0,
Vxc=o.

(51a)
(51b)

Consequently, the effective description of canonic elastic-
ity only involves the two invariants:

D31 —— b—(V' x a),
D32 ——c (V x a).

(52a)
(52b)

The number of two relevant invariants implies that there
are three quadratic first order terms. All three terms are
bulk terms, as the surface terms S;j are all zero. The two
chiral terms asociated with the two remaining invariants
are forbidden, as the state with zero displacement field
is, by assumption, the equilibrium state. There are no
relevant surface terms of the kind S,jA, .

1 1= —(B uy+ B„u ) ——V'u V'uy,
2 " " 2

(46c)
XV. DISCUSSION AND CONCLUSION

the three relevant positional invariants can be expressed
in terms of B~u~ and O~u„as

The relevant elastic constants for a particular phase
are derived &om the symmetry requirements:

1
b bpU p = —(e1+ e2)

2
1

+—(e1 —e2) gl —4e3 /(1 —2e1) (1 —2e2),
2

(47a)

~ijA, l = TirnTjnTkpTlq~~npqr

k;j =TTi Tj„k
~i jul —+in' Tjn TIcpTlq~m, npq )

L;jg ——T T, T~„TypL

(53a)
(53b)
(53c)
(53d)

c~cpU~p = —(e1 + e2)
2

1——(e1 —e2) Ql —4e3 /(1 —2e1)(l —2e2))
2

(47b)
E'3

b cpUp= (1 —e1 —e2).
(1 —2e'1) (1 —2e2)

(47c)

6 bpU p
——ci,

c~cp Unp —82

6 cpU p
——e3.

(48a)
(48b)
(48c)

C. Orientational elasticity

Expressions for the nine invariants D;j in terms of the
B Bpu and B Bpu„can be derived from equations (40)
and (41). It follows from (40) that

a. (Vxa) =0.
The additional requirement that the canonic columns are
incompressible, i.e.,

For small deformations, only the terms of order e are
relevant. This means that the three relevant positional
invariants can be replaced by

which hold for all elements Tj of the symmetry group of
the phase. The quantity T = +1 is the determinant of
the symmetry transformation T;~.

The orientational elastic constants for a general smec-
tic and for the Sm-C (monoclinic 2/m symmetry), Sm-
C', Sm-C', Sm-C' ( all monoclinic 2-symmetry), Sm-
C& (orthorhombic 222-symmetry), and Sm-A (uniaxial
D g symmetry) phases are given in Table I. The result
for Sm-C can be shown to be equivalent to the result
of Leslie, Stewart, and Nakagawa [6] and to the result of
the Orsay group [7]. However, the treatment of the Orsay
group is less general as it holds only for small displace-
ments. Agreement is found with the result of Dahl and
Lagerwall [8] and Dahl [9] as well as with the result of
Carlsson, Stewart, and Leslie [10] for Sm-C'. Agreement
is also found with de Gennes in case of small displace-
ments [11].However, opinions regarding the nature of the
equilibrium state di8'er. Dahl and Lagerwall oppose the
assumption that the equilibrium state is the state with
spatial periodicity and, therefore, find all chiral terms al-
lowed by symmetry. Carlsson, Stewart, and Leslie only
raise the question whether this assumption is justified,
whereas de Gennes agrees with the assumption adhered
to in the present paper. The elastic constants for Sm-C'
given in Table I are related to the elastic constants of the
Orsay group [7] and Dahl and Lagerwall [8] according to
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TABLE I. The orientational elastic constants for some relevant smectic mesophases. The linear
combinations of elastic constants appear because of D11 + D22 ——0. The invariants belonging to
the surface elastic constants K,~q~ can be expressed as linear combinations of invariants belonging
to the bulk elastic constants K,~A, ~ and pure surface terms.

Smectic phase

General

k,~

bulk
k33

bulk
K1111 + K2222 2K1122)

K1112 K2212) K1121 K2221)
K1123 2223) K1113 K2213)

K1212) K2121 ) K3333) K2323)
K3321 ) K2333 ) K2321 ) K1333 )

K1312) K1313) K1323

surface
K1133 K2233)
K3312) K1221)
K2312) K1321

L,,a

surface
I 333

Sm-C K1111 + K2222 2K1122 )

K1123 K2223) K1212)
K2121 ) K3333 ) K2323) K2333 )

K1313) K1312

K1133 K2233)
K1221) K1321

Sm-C*, Sm-C',
Sm-C~

k33 K1111 + K2222 2K1122 )

K1123 K2223) K1212)
K2 12 1 ) K3333 ) K2323 ) K2333 )

K1313) K1312

K1133 —K2233)
K1221 K1321

k33 K1111 + K2222 2K1 122)
K1212) K2121) K3333)

K2323) K1313

K1133 K2233)

Sm-A K1212 —K2121
K1122 K1221 + ~ (Kl 111 + K2222)

K1221

D = —kss,

+11 ~1111+ ~2222 2~1122 2~1221)

+12 —~2121 )

&21 = ~1212)
Bi ——K
&2 = ~iSiS,
Bs ——Kssss

Bis = ~2sss)
+1 ~112S ~222S + ~1S21)

&2 = ~1S12,
E5 —~1221)

E6 = —~iiss + ~22ss)
E7 = ~is21.

(54a)
(54b)

(54c)
(54d)

(54e)

{54f)
(54g)

(54h)

(54i)

(54~)

(54k)

(541)

(54m)

Results are presented for the antiferroelectric Sm-C&
[12], and for the ferrielectric Sm-C* and Sm-C' [13]
phases. It should be noted that the macroscopic sym-
metry of the ferrielectric chiral smectics is the same as
that of the ferroelectric Sm-C*, although their micro-
scopic structures differ. This means that, as far as the
form of the deformation &ee energy density is concerned,
the ferrielectric and ferroelectric chiral smectics do not
di8'er.

The relevant positional and orientational elastic con-
stants for a general canonic and for the tilted canonic Dq
(monoclinic 2/m symmetry with b as symmetry axis),

the rectangular canonic D g (glide plane perpendicular
to 6, i.e., the point group symmetry is monoclinic), and
the hexagonal canonic Dqq (6/mmm symmetry with a
as sixfold axis) are given in Table II. The subscript d
indicates that the molecular organization in the columns
is disordered, i.e., Buidlike. See, for the full nomencla-
ture of these phases, Ref. [14]. Agreement is found with
the hydrodynamic theory of Brand and Pleiner [15] in the
cases of monoclinic and hexagonal canonics, and with the
theory of Prost and Clark [16] in the case of hexagonal
canonics.

Summarizing, a formulation of the theory of elasticity
of smectic and canonic mesophases is presented in terms
of a fully covariant notation. The theory is founded on
the interdependence of the positional and orientational
deformation variables, as required by the macroscopic
definition of these phases. The deformation &ee en-
ergy density consists of two independent contributions,
namely, the contributions due to the positional deforma-
tions and to the orientational deformations. The general
expression of the deformation Bee energy density of an in-
compressible nonchiral smectic involves 1 positional elas-
tic constant, 16 bulk orientational elastic constants and 6
surface orientational elastic constants, whereas the cor-
responding expression for an incompressible non-chiral
canonic involves six positional elastic constants and three
bulk orientational elastic constants. Chirality involves
only one additional bulk orientational elastic constant
for smectics, but none for canonics.
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TABLE II. The positional and orientational elastic constants for some relevant canonic
mesophases.

Canonic phase
General

&'~1 i

~1111) ~2222) ~1122) ~1212) ~1112) ~2212
~', I.i

~3131) ~3232) ~3132

Dt ~1111) ~2222' ~1122) ~1212 ~3131) K3232

Drd ~1111j ~2222) ~1122) ~1212 K3131) ~3232

1212~ ~1111 ~2222 ~1122 + 2 ~12121 K3131 —K3232

APPENDIX

For the sake of simplicity the strain tensor is approxi-
mated by

1
U~p = —(8~up + t9oup).

2

The most general surface term that can be constructed
as a linear combination of terms quadratic in U p reads

Acxppb = Apcxpb)

Aappb = Aapbp ~

(A2a)

(A2b)

The relation (Ala) implies that the tensor A p~g must
be constructed of the constant Kronecker tensor b p
alone, i.e., A p~g can be written as

terms quadratic in the strain tensor U p. Consequently,
the tensor A p~p satisfies the symmetry relations:

B~(A~p&supB&ug),
A p~g = cqb pbbs+ c2b ~bps + csb bbp~, (A3)

where the tensor A p~g is composed of the three local
axes a, 6, and e. This tensor is completely determined
by the following two properties. First, the surface term
must be solely a linear combination of terms quadratic in
0 up. This means that the surface term does not contain
terms linear in u, nor terms linear in 8 Bpu~. With the
aid of

where cq, t"q, and c3 are arbitrary constants. According
to the relation (Alb), the constants cq, c2, and cs must
satisfy the equations:

Cl C3

c2 ——0.

The relations (A2) lead to the equation

it can be directly concluded that

0~A~ppg: 0)

Acx pub — Ay pm' ~

(Ala)
(AIb)

Second, the surface term must be a linear combination of

0~(A~p&supB&us) = (O~A~p&s)upB&ug + A~p&supct~B&us

+A~ppg 0~Dp Op Q b )

C2 = C3.

Clearly, it holds that c~ ——c2 ——t"3 ——0, i.e. ,

A~ppg = 0) (A4)

meaning that there are no surface terms present in the
deformation &ee energy density due to positional elastic-
ity.
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