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Abstract. State minimization plays a fundamental role in both classical automata theory and
in the theory of reactive systems. Many algorithms and results are based on the fact that for each
finite automaton there exists an equivalent minimum state automaton that can be effectively
computed and that is unique up to isomorphism.
Timed safety automata (TSA’s) [5], finite automata with clocks, have been used extensively for
the specification and verification of real-time systems. However, there does not always exist a
unique minimum state TSA that is equivalent to a given TSA. This problem occurs irrespective
of the selected notions of state (including or excluding clock values) and equivalence on states
(language equivalence, bisimulation equivalence, etc.).
Henzinger, Kopke and Wong-Toi [4] convincingly showed that if states do not include clock
values, state minmimization for timed automata is neither useful nor interesting. In this paper,
we discuss state minimization for states that do include clock values, i.e., at the semantic level,
and work in bisimulation equivalence. In this setting, a timed automaton is minimal when there
does not exist a pair of bisimilar but distinct states in the transition system induced by the
timed automaton.
We present a new model of minimizable timed automata (MTA’s), a variant of the TSA model,
and prove that

1. The MTA and TSA model are equally expressive in the sense that for each MTA there exists

a bisimilar TSA and for each TSA there exists a bisimilar MTA.
2. For each MTA there exists a bisimilar minimal MTA that can be effectively computed and
that is unique up to isomorphism.

1 Introduction

State minimization plays a fundamental role in both classical automata theory and in the theory of
reactive systems. Many algorithms and results are based on the fact that for each finite automaton
there exists an equivalent minimum state automaton that can be effectively computed and that is
unique up to isomorphism. Timed safety automata (TSA’s) [5], finite automata with clocks, have been
used extensively for the specification and verification of real-time systems. Despite this success, TSA’s
suffer from drawbacks. One key problem is that there does not always exist a unique minimum state
TSA that is equivalent to a given TSA. This problem occurs irrespective of the selected notions of state
(including or excluding clock values) and equivalence on states (language equivalence, bisimulation
equivalence, etc.). Henzinger, Kopke and Wong-Toi [4] convincingly showed that if states do not
include clock values, state minimization for timed automata is neither useful nor interesting: if time
steps of duration 0 are not allowed it is even possible to find for every TSA an equivalent (not uniquely
determined) TSA with just one state.

In this paper, we discuss state minimization for states that do include clock values, i.e., at the
semantic level, and work in bisimulation equivalence. (For the notion of bisimulation, consult, e.g.,
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[8].) In this setting, a timed automaton is minimal when there does not exist a pair of bisimilar but
distinct states in the transition system induced by the timed automaton.

We first present a series of examples of TSA’s for which no equivalent minimum state TSA exists.
This motivates the subsequent definition of our new model of minimizable timed automata (MTA’s),
a variant of the TSA model. We prove that

1. The MTA and TSA model are equally expressive in the sense that for each MTA there exists a
bisimilar TSA and for each TSA there exists a bisimilar MTA.

2. For each MTA there exists a bisimilar minimal MTA that can be effectively computed and that
1s unique up to isomorphism.

MTA’s are defined in two stages. First we introduce timed automata with bounded time domains
(BTDA’s). The boundedness of time domains is itself essential for minimization and in addition makes
it possible to introduce more general assignments to clocks, without altering the expressive power of
the model. E.g., assignments of the form z := y+2 are allowed. Manipulating such general assignments
will be a key technique in the minimization. An MTA is defined as a BTDA A together with a family
of relevance formulas, one for each clock in A, determining when z is relevant (w.r.t. enabling of
transitions). These formulas will make it possible to identify states that only differ w.r.t. irrelevant
clocks.

Our main motivation for developing the MTA model is that we are currently involved in a project
to generalize the classical theory of testing for finite automata [6] to a timed setting. Minimization
plays such a central role in the untimed theory that we do not see how one can possibly generalize
this to the timed setting without a corresponding notion of minimality. In the testing world, systems
are usually assumed to be deterministic. Since it is well-known (see, for instance, [8]) that the linear-
time branching time spectrum collapses for deterministic transition systems, this also motivates our
choice to work in the setting of bisimulation equivalence: technically this seems to be the simplest
equivalence to deal with and for our intended domain of application minimization modulo bisimulation
is all we need. An interesting topic of future research will be whether the results of this paper can
be generalized to the setting of trace equivalence. Since trace equivalence between timed transition
systems is undecidable [3, 2], the construction of a minimal MTA will in any case not be effective.

Apart from being essential for the purpose of minimization, the MTA model provides a nice alter-
native representation of TSA’s that offers insight in their behavior and that may be useful for the
efficient implementation of verification procedures. E.g., we obtain for every location of the automaton
the minimal dimension of the clock space of that location, in terms of the number of relevant clocks
and the size of their domains. We expect that from this information also an estimation of the minimal
number of clocks can be derived (see [7] for an algorithm to minimize the number of clocks).

To the best of our knowledge, this is the first paper in which minimization of timed systems is
treated at the level of transition systems. The work on minimization of timed systems done in [1, 11]
concentrated on minimization of the region graph. For testing timed systems and many other purposes,
minimization of the region graph results in a structure that is too course, and the more fundamental
operation of minimization of transition systems is required. In [10, 9, 2], bisimulations between timed
automata are studied, but minimization up to bisimulation is not dealt with.

The paper is organized as follows. In Section 2, we present some examples that motivate the MTA
model. BTDA’s and their operational semantics are defined in Section 3. In Section 4, we prove that
for every BTDA there exists a bisimilar TSA and in Section 5 we prove the converse. In Section 6, we
introduce MTA’s and show that they can indeed be minimized and have the same expressive power
as BTDA’s.



2 Motivating Examples

Timed safety automata are not minimizable for a variety of reasons. In this section we will discuss
some examples to explain the problems. These examples also serve as motivation for our new model
of minimizable timed automata. We assume the reader to be familiar with the model of timed safety
automata (TSA’s) as presented in [5]. In Section 3, the definition of TSA’s will be recalled along with
the definition of some new concepts.

Example 2.1. It is well-known that beyond a certain bound the actual values of clocks do not matter.
In fact, this was one of the key insights of Alur and Dill [3] when they defined the region construction.
Consider the TSA of Figure 1. This TSA is not minimal since (for instance), for all ¢,¢ > 2, the

Fig. 1. The need for bounded clock domains.

states (lp,t) and (lo,t') are bisimilar. It is not difficult to see that in fact no minimal TSA can be
equivalent to the TSA of Figure 1. Therefore, the clocks in our MTA model take values in a finite
interval augmented with the single element co. This allows us, for instance, to give clock 2 in the TSA
of Figure 1 domain [0,2] U {oco}. Beyond a certain point there is no need to record the specific value
of a clock, and we only need to know that this value is large. (End example.)

Example 2.2. Consider the TSA of Figure 2. This TSA represents a switch that can be turned on

r=2>5

Fig. 2. Clocks are not always relevant.

at any time and switches off automatically 5 time units after the last time it has been turned on.
The TSA is not minimal since, for all ¢,#' > 0, the states (lg,t) and (ly,?’) are bisimilar: clock # only
matters in location 1, where it records the time that has elapsed since the previous on-event. Again,
it 1s not difficult to prove that no minimal TSA can be equivalent to the TSA of Figure 2.

To deal with this situation, our new model allows one not to record the values of certain clocks in
certain locations of the automaton. (End example.)

Example 2.3. In the TSA model only two types of assignments are allowed: resets of the form
z := 0 and (implicit) identity assignments of the form z := x. More general assignments, such as
z:=x+ 1 and z := z — 1, are not included in the TSA model for decidability reasons: adding such
assignments would make it trivial to encode a two-counter machine and thus render reachability and



model checking problems undecidable. The example of Figure 3, however, suggests that assignments
that increment variables cannot be avoided if the goal is to minimize timed automata. It is easy to
find similar examples that show the use of assignments that decrement variables or assignments of
the form z := n with n # 0. Therefore we decided to allow for such assignments in the MTA model.
The main reason why this does not lead to undecidability 1s that in the MTA model the domains of
the clock variables are bounded intervals extended with oco. This boundedness makes it impossible to
encode two-counter machines directly.

c
rx=3
c
x =2

Fig. 3. The need for clock increments.

The TSA of Figure 3 is not minimal since, for all ¢ € [1,3], the states ({1,%) and (l2,# — 1) are
bisimilar. Once again, no minimal TSA exists that is equivalent to the TSA of Figure 3.

b

<2, z:=a+1

Fig. 4. Using clock increments in MTA’s.

Figure 4 indicates how this TSA can be minimized in the MTA model. (End example.)

Example 2.4. In order to minimize automata, it 1s also quite useful to allow for assignments of the
form # := y. In the TSA of Figure 5, the states (I3, = ¢,y = ¢') and (I3, = ¢/, y = t) are bisimilar
for all ¢, € [0, 1]. Figure 6 shows how, by swapping the roles of clocks 2 and y for one of the incoming

edges of [3 and by strengthening the invariant of this location, this redundancy can be eliminated.
(End example.)

Example 2.5. Our final example in this section illustrates how the value of one clock may become
irrelevant when the value of another clock passes some boundary. In the TSA of Figure 7, the value
of clock z in location l; becomes irrelevant as soon as clock y reaches a value larger than 1. As long
as y < 1, a b transition is possible from location {; to location {5. Since I has an outgoing ¢ transition
that tests x, this means that the value of & is relevant in location /; as long as y < 1. However, as
soon as y > 1, the b transition gets disabled.



Fig. 5. The need for clock renaming.

Fig. 6. The use of clock renaming.

Thus, for instance, states (I, z = %, y= 1%) and (I1,2 = %, y= 1%) are bisimilar, whereas the states
(ly,2 = %, Y= %) and (I, 2 = %, y = %) are not. It is not so difficult to prove that there exists no
minimal TSA that is equivalent to the TSA of Figure 7. In order to deal with this type of situations,
our MTA model incorporates so-called relevance formulas that allow one to specify, for each clock,
where its value is relevant and should be recorded as part of the state. (End example.)

3 Timed Automata

3.1 The model

Let R denote the reals, RZ% the nonnegative reals, and R® the reals together with the single element
o0. We extend the standard ordering < and addition operator + over R to R® in the usual way: for
every t ER™ ¢ < oo and t 4+ 00 = 0o+t = co. Let Z denote of integers and Z*° the set Z U {co}.



Fig. 7. Relevance of # depends on y.

Definition 3.1 (Intervals). An interval I is a (possibly empty) convex subset of R. An interval I is
bounded if both sup I and inf I are in R. An integer interval is an interval I with both inf I and sup 1
in ZU {—o00,00}. By convention inf () = sup@# = 0, which implies that the empty set is an integer
interval. Note that there are countably many integer intervals.

Definition 3.2 (Variables, domains and actions). We assume a countable universe C of clock variables
(or, just clocks). To each clock x we associate a domain, dom(z), which is either an integer interval
that is unbounded to the right, or the union of a bounded integer interval with the single element
o0. So [0,00), [6,00) and (—3,4] U {co} are possible clock domains, whereas R, [0, c0] and [0, 5] are
not. A domain that is obtained by adding oo to a bounded interval is called bounded. We write
intv(r) = dom(z) — {oo}, Ib(z) = infintv(z) and ub(x) = sup intv(z). We assume that for each
domain D there are infinitely many clocks in C to which D is associated. If D is a clock domain
(or interval) and n is an integer, then we write D — n to denote the clock domain (or interval)
{t—n|te D}.

Beside a universe of clock variables, we also assume a countable universe P of propositional variables
disjoint from C. For all propositional variables p the domain, dom(p), equals the set {T,F} of truth
values.

Finally, we assume the presence of a universe X D R2? of actions, ranged over by a, . . ..

Definition 3.3 (Constraints, assignments and transition tables). Let P, Py, P2 be finite sets of propo-
sitional variables and let C', C, C5 be finite sets of clock variables.

— Terms over C' are expressions generated by the BNF grammar ¢ := @ | n | e + n, where 2 € C
and n € Z°°. We denote the set of all such terms by T'(C).

— Inequations over C are expressions of the form e < e’ or e < ¢/ with e, ¢’ € T(C). Inequations
that contain two clock variables are also called clock comparisons.

— Constraints over P and C' are Boolean combinations of propositional variables in P and inequations
over C. We denote the set of all such formulas by F(P,C). A constraint ¢ is simple if it does not
contain clock comparisons, and finitary if it does not contain oco.

The Boolean constants T and F, denoting truth and falsehood, respectively, as well as equations
z = n are definable by simple constraints. In fact, for each integer interval I, the predicate z € T
can be expressed as a simple, finitary constraint ¢r(z). In inductive proofs we will often use that
each constraint can be rewritten such that it only contains inequations of the form z < n, x < n,
z<y+nand z<y-+n.

Let f be a term or constraint, let e be a term, and let & be a clock. The substitution of x
by e in f, notation fle/z], is the term or constraint that is obtained from f by replacing all
occurrences of x by e. For x a list zq, ..., z, of distinct clocks and e a list ey, ..., e, of terms, the



stmultaneous substitution fle/x] denotes the simultaneous replacement in f of the variables of x
by the corresponding terms of e.

— Assignments from C1 U Py to Cs U Py are expressions of the form p := ¢ with p € P, and
¢ € F(Py,C4), or of the form  := e with z € C3 and e € T(Cy). A simultaneous assignment A
from C1 U Py to Cy U Ps 1s a finite set of assignments from C; U P; to C3 U P such that there
is exactly one assignment to each u € (s U Po. If an assignment u := f occurs in A, then we
write A(u) = f. We define Cons(A) to be the conjunction, for each assignment  := e in A, of the
constraint e € dom(z). A (simultaneous) assignment is finitary if it does not contain co.

— Transition tables over P and C' are finite sets of guarded commands of the form a : ¢ = A, where
a€ X\R2Y o € F(P,C) and X is a simultaneous assignment from P UC to PUC.

Definition 3.4 (States and operations on states). Let P, C' be finite sets of propositional and clock
variables, respectively.

— A state over P and C'1s a valuation of the variables in P U C| 1.e., a function that maps each
variable in P U C to an element of its domain. We write S(P, C') for the set of states over P and
C.If s and ¢ are states and u is a variable, then we write s =, s’ to denote that s and s’ agree
on all variables except u. Similarly, we write s =y s’ to denote that s and s’ agree on all variables
except those contained in the set U.

— Given a term or constraint e € T(C') U F(P,C) and a state s € S(P,C), we write eval(s, e) to
denote the value to which e evaluates under valuation s. If e is a constraint then we write s |= e if
eval(s,e) = T. A constraint ¢ is satisfiable if there exists a state s such that s |= ¢; constraint ¢
holds if for all states s, s |= . If A is a simultaneous assignment and s |= Cons(A), then we define
s[A] to be the state satisfying, for all u, s[A](u) = eval(s, A(¢)). This notation is extended to sets
of states S by pointwise extension: S[A] = {s[\] | s € S}.

— Let s € S(P,C) be a state and d € RZ%. Then s @ d is the state given by

s(u) ifue P
(s d)(u) =< s(u) +dif ue C and s(u) + d € intv(u)

00 otherwise
A constraint ¢ is past-closed if, for all states s and all d € R2%, s @ d |= ¢ implies s |= ¢.

Definition 3.5 (Timed automata). A timed automaton A is a tuple (P, C, Inv, Init, ) where

— P 1s a finite set of propositional variables,

— (' 1s a finite set of clocks,

— Inv is a constraint over P and C,

— Inat 1s a satisfiable constraint over P and C' such that Init — Inv holds,

— ( is a transition table over P and C'. We demand that, for each guarded command a : ¢ = A
occurring in G, the implication ¢ A Inv — Cons(A) holds.

The components of A are denoted by P4, Ca, etc. We say that A is finitary if all constraints and
assignments are finitary.

Definition 3.6 (Special cases).

— A timed safety automaton (TSA)is a timed automaton in which all clocks have domain RZ° all
assignments are of the form z := 0 or « := z, and all constraints are finitary.

— A bounded time domain automaton (BTDA) is a timed automaton in which all clocks have a
bounded domain.



Our definition of a TSA is essentially the same as the original definition of Henzinger et al. [5], but
we made some small changes for technical convenience. Our notion of a TSA corresponds to what [5]
call a real-time program, with the following differences: (1) we have included the sets of variables as
explicit components of a TSA, (2) we added initial states and actions to make behavioral comparison
of automata possible, and (3) we removed the requirement from [5] that invariants are past-closed
(instead we have an additional requirement in the definition of the operational semantics).

The automata from Figures 1-7 of the previous section can all easily be viewed as timed automata.
For this the following notation is useful:

Definition 3.7. Given a finite set P of propositional variables and an element ¢ € P, we write
locp = q for the simple constraint ¢ A /\pEP\{q} =p and locp := ¢ for the simultaneous assignment
{¢g:=TrU{p:=F|pe P\{q}}. We write loc = ¢ and loc := ¢ when P is clear from the context.

In order to view the automata from Section 2 as timed automata, we introduce a propositional
variable for each vertex in the graph and impose as invariant the constraint Locy = \/leL loc = 1,
where L is the set of all vertices. All clocks have value 0 in the initial states unless specified otherwise,
and constraints T and assignments z := x are omitted from the diagrams. Thus, for example, the
automaton of Figure 1 corresponds to the TSA A with Py = {lo,l1}, Ca = {2}, Inva = Locp,
Inity = (loc=lyAe=0),and G4 ={a: (loc =lgNx <2)= {loc =11, 2 :=x}}.

3.2 Semantics

In this subsection we will define the semantics of timed automata by showing how to each timed
automaton a transition system can be associated.

Definition 3.8 (Transition systems). A transition system B is a tuple (S, S° —) where

— S is a set of states,
— 89 C S is a nonempty set of initial states,
— =C S x XY x Sis a transition relation.

The components of B are denoted by Sg, 5%, etc. We write s —p s’ for (s,a,s') €—. When B is
clear from the context we just write s — s’

Definition 3.9 (Operational semantics). Let A be a timed automaton. Then the operational semantics
of A, notation TS(A), is the transition system B given by

— Sp={s€8(Pa,Ca)|sk=Inva},

— S% = {8 S S(PA,CA) | s ': ]nitA},

— —p consists of all triples of the form (s, a, s’) with s,s’ € Sp and @ € X such that
o If a € R2Y then, for some guarded command a : ¢ = X in G4, s = ¢ and s’ = s[)\].
o If a € R2Y then s’ = s @ a and, for all d € [0,a], s & d € Sp.

We write S(A) for Sg, Z(A) for S%, and T(A) for —p. Transitions s % & with d € R2 are known
as time steps or delays. A valuation of the variables in P4 is called a location. Note that time steps
do not change the location of a state and that time can only progress in a location as long as the
invariant Inv 4 1s not violated.

The above operational semantics is essentially the same as the operational semantics defined in [5]
but again there are some minor technical differences: (1) we have not included stutter steps, (2) we
restrict the set of states to those that satisfy the invariant, and (3) we require that the invariant holds
for all intermediate states passed through in a time step; this condition is automatically fulfilled in [5]
since there invariants are required to be past-closed.



3.3 Bisimulations and Minimality

Definition 3.10 (Bisimulation and minimality). Let B be a transition system. A relation R C Spx Sp
is a bissmulation on B iff

— R(s1,s2) and 51 = s} implies that there is an s, € Sp such that sy — s and R(s], s5),
— R(s1,s2) and sz N st implies that there is an s) € Sp such that s; N sy and R(s), s5).

Two states s, s’ of B are bisimilar, notation s ~p s', if there exists a bisimulation R on B with R(s,s’).
We say that B is minimal (up to bisimulation) if, for all states s, s’ of B, s ~p s’ implies s = s'. A
timed automaton A is minimal iff TS(A) is minimal.

Definition 3.11 (Bisimulation of Transition Systems). Two transition systems By and Bsy are bisimi-
lar, notation By ~ B, if there exists a bisimulation R on the disjoint union of B; and Bs that relates
each start state of By to a start state of Bs, and each start state of By to a start state of By. Two
timed automata A; and As are bisimilar, notation A; ~ As, if the corresponding transition systems

TS(A;) and TS(Ag) are bisimilar.

4 From BTDA’s to TSA’s

In this section we show that for every BTDA there exists a bisimilar TSA. This is done in two phases.
First, in Section 4.2 to Section 4.5, we prove that for every BTDA there exists a bisimilar BTDA
satisfying the following three properties: (a) there exists an N € N such that for every clock x in Cy,
dom(z) = [0, N]U {00}, (b) assignments are of the form # := 0 or # := x, and (c) constraints are
finitary. Then, in Section 4.6, we show that domains [0, N]U {cc} can be modified to RZ°.

The first phase consists of several steps, each of which takes up one subsection. First, we show that
all constraints and assignments may be assumed to be finitary. Next, we show that time intervals may
be assumed to have lower bound 0. After that, we remove assignments of the form ¢ ;== norz : = y+n
with n € Z, n # 0. Having removed time shifts altogether, we proceed to show that all clocks may be
assumed to have an equal domain. Finally, we show how to remove assignments of the form z := y
with y # =.

4.1 Removing oo

In this section, we show that infinitary assignments and constraints can be eliminated from BTDA’s.
The key idea is to introduce, for each clock #, a new propositional variable p, that records whether
clock # has (recently) been subjected to an infinitary assignment. We then adapt all invariants and
guarded commands by rewriting them to formulas that do not contain oo, that do not refer to any
of the clocks x for which p, is true, and that are equivalent to the original formulas under the
assumption that all these clocks have value co. For instance, if p, is true while py is false, then the
formula z < 2 Ay < 5 Au < oo rewrites to T Ay < 5 AT. Since clocks = for which p, is true do
not occur in the resulting formulas, their value becomes irrelevant and the removal of the infinitary
assignments to these clocks is harmless.
Formally, we prove that BTDA’s may be assumed to be finitary, as defined below.

Definition 4.1. A BTDA A is called finitary when constraints in A are finitary, and for every
guarded command a : ¢ = X € G4 and every assignment z := e in A either e = z, or the implication
@ AInvy — e € intv(z) holds.

Consider an assignment  := y +n with n € N. If in a state s this assignment occurs and s(y) = oo,
then z is ‘implicitly’ assigned the value co. We make this ‘explicit’ by replacing such an assignment
by the assignment z := co.



Lemma 4.2. For every BTDA A there exists a BTDA A’ such that A ~ A’ and for every guarded
command a : ¢ = A € (G4 and every assignment x := e in A either e = oo, or the implication
@ A Invg — e € intv(z) holds.

Proof. Let A = (P,C, Inv, Init,G) be given. We define A’ = (P,C, Inv, Init,G') as follows. Let
a: e = A€ G We define ise () as the set of conjunctions ¢ that contain for each x € C precisely
one conjunct, which is either of the form A(z) € intv(z) or of the form A(x) & intv(z). For each
formula ¢ € iseo(A), we write expl (A, ¢) for the result of replacing each assignment # := A(x) such
that the formula A(2) ¢ intv(z) occurs in ¢ by # := oo. The guarded command a : ¢ = A is replaced
by the set of guarded commands a : ¢ A ¢ = expl (A, ¥), for all ¢ € s (A). It is easy to check that
A’ satisfies the requirements stated in the lemma. a

Next, we show how to remove occurrences of co from constraints and assignments.

Definition 4.3. Let ¢ be a constraint over P and C' and let X C C'. We define fin(y, X) by induction
on the structure of ¢.

T if n =00

finfzx <n,X)=<F ifn#ocoand 2 € X
x < n otherwise

F

ifreX
finlz <n,X) =< z€intv(z)if e € X and n = >
r<n otherwise
T fyeXorn=o0

finlx <y+n,X)=< y&intv(y)if (y¢ X and n # o) and z € X
x <y+n otherwise

F ifeeX
finx <y+n,X)=R z€intv(z)ifr ¢ X and (y € X or n = o)
z <y—+n otherwise

ﬁn(gplmgp%X):ﬁn(golaX)Dﬁn(@ZaX) DE{/\a\/}
ﬁn(_'gplaX) = _‘ﬁ”(SolaX)

Note that fin(yp, X) is finitary and that clocks from X do not occur in fin(p, X).

Lemma 4.4. Let s,s be states over P and C, and let X C C' such that, for all x € C,

S(x):{oo ifreX

s'(x) otherwise

Then we have, for all constraints ¢ over P and C,

sk e s | finlp, X).

Theorem 4.5. For every BTDA A there exists a finitary BTDA A’ such that A ~ A’

Proof. Let A = (P, C, Inv, Init,G) be given. Let, for each # € C, p, be a fresh propositional
symbol and let, for X C C, px abbreviate the formula A 5 pr A /\yEC/X —py. We define A’ =

(P',C, Inv', Init', G') by:



- PP=PU{p; |z C}.

— Inv' = \/ch(px A fin(Inv, X))

Init" = (pg A fin(Init, 0)).

— For each guarded command a : ¢ = A in G and for each X C €', G/ contains a guarded command
a:fin(p, X) Apx = A, where X is the simultaneous assignment from P’ U C to P’ U C given by

fin(A(u), X)ifue P
T ifdyeyY u=np,

N(u)=<F ifIyeC/Y ru=np,
u fueY
A(u) otherwise

where Y is the set of clocks for which A(y) is infinitary or contains a clock from X.

Using Lemma 4.4, it is easily seen that A’ is well-defined. For each s € S(A’), define h(s) to be the
state over P U C given by

oifue Cand s(py) =T
u otherwise

el = {

Define relation R by R = {(h(s),s) | s € S(A")}. Using Lemma 4.4, it is routine to verify that R is a
bisimulation between A and A’. ad

4.2 Changing lower bounds of clock domains to 0

We proceed to show that for every BTDA A there exists a bisimilar BTDA A’ with the property that
the time domain of every clock in A’ has lower bound 0. Intuitively, we shift the domain of each clock
z and its valuations by {b(z). Since the domain of a clock is hard-wired in the identity of the clock,
this is achieved by taking a copy #’ of clock ® with the new domain. For instance, if the domain of =
is [—4, 7) U {oo} then the domain of the copy ' will be [0, 11) U {oo}, and if state s" of A’ corresponds
to state s of A then s'(2') = s(x) +4. To ensure that the resulting BTDA is well-defined and bisimilar
to A, we also have to shift formulas and assignments. E.g., the formula z < 5 will be shifted to =’ < 9,
and the assignment « := 5 will be shifted to &’ := 9.

In the proof of the theorem below and later on in the paper, we use the following notation. Given a
function f and vector x = 21, ..., 2, we write f(x) for the vector f(z1),..., f(zn). In a similar way
also binary operators are lifted to vectors.

Theorem 4.6. For every BTDA A there exists a BTDA A’ such that A ~ A’ and lb(z') = 0 for
every clock ©' of A’.

Proof. Let A= (P,C, Inv, Init,G) be given. Let C' = {21, ..., 2,}. Associate to each clock # € C' a
fresh clock @' with dom(2') = dom(z) — lb(z). Let C" = {2’ | x € C'}. If ¢ is a constraint over P and
C', then let sh(y) denote the constraint p[x’ + [b(x)/x] over P and C’. Also, if s is a state over PUC
then let sh(s) be the state over P U C’ given by

s(u Hfue P
sh(s)(u) = {SEZ‘; —Ib(z)ifu=2a" €’

(Note that sh is a bijection.) A straightforward induction gives that, for each constraint ¢ over P and
C' and for each state s over P U (),

s = ¢ < sh(s) = sh(yp) (1)
Now define A’ to be equal to (P,C’, Inv', Init' | G}, where



~ Inv' = sh(Inv)

— Init' = sh(Init)

— For each guarded command a : ¢ = A in G, G' contains a guarded command a : sh(p) = sh(A),
where sh(A) is the simultaneous assignment from P U C’ to P U C” given by

sh(A(u ifue P
sh(A)(u) = {shEAEl«;; —lb(z)ifu=2a'€C"

where, for z € ('

_n if A(z) =n
sh(Mx)) = { y+Ib(y) +nif Az) = y+n

Using (1), it is routine to show that A’ is a well-defined BTDA: E.g., let a : sh(p) = sh(X) be a
guarded command in G’ as above. We show that the implication sh(¢) A Inv” — Cons(sh())) holds.
This is equivalent to showing that, for each state s’ over P U C” and for each z' € C,

s = sh(p) A Inv' — sh(A(z)) — Ib(z) € dom(z) — Ib(x)
which in turn is equivalent to
s = sh(p A Inv — A(z) € dom(z))
Using (1), this reduces to
sh™(s') |= ¢ A Inv = A(x) € dom(z)

which is directly implied by the assumption that A is a BTDA.

Clearly, b(z') = 0 for each clock &’ of A’.

Let R be equal to the mapping sh viewed as a relation, i.e., R = {(s, sh(s)) | s € S(A)}. Using (1),
it is routine to check that R is a bisimulation (an isomorphism, in fact) between A and A’. Here one
can use the observations that, for all s € §(A4), d € R2°, and simultaneous assignments A to variables

in PUC, sh(s @ d) = sh(s) & d and sh(s[A]) = sh(s)[sh(N)]. |

4.3 Removing finitary time shifts

In this section we show that one can replace assignments of the form z := n and z := y+n withn £ 0
by assignments of the form # := 0 and z := y, respectively.

The idea is to encode time shifts in the identity of variables. For instance, an assignment  := n
is replaced by the assignment z, := 0 and @, plays the role of z until a new assignment to z occurs
(e.g., in formulas, z is replaced by z,). The fact that the clock z, is actually the clock x shifted n
time units is modeled by putting ub(z,) = ub(z) — n and shifting formulas n time units at clock x.
For each location [ we keep track of the current time shifts of clocks by means of functions h that
map each clock z € C' to a time shift h(z) (and propositional variables pj for these functions). So if
in location {, h is the current function and h(z) = n then z,, plays in [ the role of x.

A crucial property to be established is of course that the set of time shift functions need not be
infinite. To prove this, we show that time shifts have to be accumulated only up to a certain point.
Consider e.g. an assignment of the form # := y + n with y + n # x + 0. When h(y) + n lies within a
certain range stretch(x), this assignment is replaced by #j(y)4n 1= Ya(y) and the new h value of x is

h(y) + n.

Definition 4.7. TLet A be a BTDA, # € C4. Define max(A) = max{ub(z) | © € Cyu}. Define
stretch(x) = [—max(A), ub(z)] N Z.



For a given clock # in C4, only time shifts h(y) +n in stretch(z) need to be considered. This can be
seen as follows. Suppose h(y) + n & stretch(x). Roughly, if & is the current time shift function, then
the value sy (y) of a clock y in A equals h(y) plus the value s(yn(y)) of yn(y) in A’. Suppose now that
there exists a guarded command a : ¢ = A € G4 with A(z) = y + n, such that s, = Invg A ¢. By
Theorem 4.5, s5(y) +n € intv(z), i.e., s(yn(y)) + h(y) +n € intv(zr). From this we will be able to infer
that s(yn(y)) € [0, max(A)]. But this is impossible, since h(y)+n & stretch(z). So h(y) +n ¢ stretch(x)
implies that the guarded command a : ¢ = X is not enabled.

Note that the time shift value h(z) of a clock  may be negative, which implies that the domain
of z(e) extends the domain of # and that s(xp(,y) + h(x) may be strictly negative. However, we will
maintain as an invariant that integer values of the new clocks zp(;) do not exceed max(A) and are
such that s(zy(e)) + h(x) > 0. This is reflected in the notion area, below.

Definition 4.8. Let C be a set of clocks.

1. To each clock # € C' associate a set of clocks C, = {z,, | n € stretch(x)}. For each clock x,, € Cy,
dom(m,) = dom(r) — n. Intuitively, o = x. Put sh(C) = |, ¢ Cs.

2. Define H¢ as the (finite) set of functions kA which map each clock # € C' to an element h(z) of
stretch(x). We let hg be the function that maps each clock to 0.

3. For # € C and h € H¢, put area(x, h) = [max{0,—h(z)}, max(A)] U{co}. A state s over P and
U.ce Th(e) is called h-compliant when for all x4,y € U, cc Th(e)s 5(Th(a)) € area(z, h).

4. A simultaneous assignment A to clocks in C' defines a function from H¢e to He as follows.

n if A(z) =n
A(R)(z) = ¢ h(y) + nif A(z) = y+ n and h(y) + n € stretch(x)

ub(z)  otherwise

5. Conversely, a function h € H¢ induces a function on simultaneous assignments to variables in
P U as follows. To each clock z, h associates a clock xj(;). Given this association, we define
sh(p, h) as p[x’'+h(x)/x] over P and C'. Then h(A) is the result of replacing in A every assignment
of the form p := ¢ by p := sh(p, h), every assignment of the form z := n by z, := 0, and every
assignment of the form @ := y + n by Zx(n)(2) 1= Un(y)-

6. For h € Hc and an h-compliant state s over P and | J, ¢ Ta(e), let sp be the state over P and C
defined by

[ s(u) ifueP
sn(u) = {s(uh(u)) + h(u)ifueC

Theorem 4.9. For every BI'DA A there exists a BTDA A’ such that A ~ A’ and A’ contains no
assignments of the forms x :=n or x := y 4+ n with n # 0.

Proof. Let A = (P, C, Inv, Init,G) be given. We define A’ = (P’ C’, Inv’, Init’, G’} as follows.

— P’ is P extended with, for each function h € H¢, a fresh propositional variable py,.

C' = sh(C).

— Inv' = Viem, (loc = pr A sh(Inv, h)).

— Init" = (loc = pp, A sh(Init, hy)).

— (' is defined as follows. For every h € H¢ and guarded command a : ¢ = A € G, G contains a
guarded command a : sh(p, h) A pr = h(X) U {loc := prn)}-

Define a bisimulation over S(A’) and S(A) by R = {(s,sn) | s € S(4'), s Epn}. O



4.4 Equalizing domains

In this section, we prove that for every BTDA A there exists a bisimilar BTDA A’ such that the
domains of clocks in A’ are all equal. Domains are made equal to the largest domain in A. More
precisely, to each clock # € Cy we associate a clock ' with domain [0, max(A4)] U {co} (for max(A),
see Definition 4.7). Of course we have to compensate for the extension of the domains. We keep track
of which clocks #’ have values in the original interval intv(z) and which clocks don’t. Similar to the
proof of Lemma 4.2, this is done by means of conjunctions of formulas ' € intv(z) and ' & intv(z).
To each such conjunction ¢ we associate the set Xy of clocks 2’ such that the formula ¢’ & intv(z)
occurs in %, i.e., the value of # in A would have been oo. For every conjunction i, we make a local
copy of invariants and guarded commands by applying the fin(-, Xy) function of Section 4.1 to them.

Next, consider the assignment z := y. In the approach outlined above, this assignment would be
translated to @’ := . If ¢ ¢ intv(y) then this assignment should have the effect that z’ is assigned
the value co. As in the proof of Theorem 4.5 we do not perform this assignment but simply store the
information that z’ actually has value oo by means of additional sets X of clocks (and propositional
variables for them).

Theorem 4.10. For every BTDA A there exists a BTDA A’ such that A ~ A’ and all clocks have
the same domain.

Proof. Let A = (P,C, Inv, Init,G) be given. Associate to each clock # € C a fresh clock #' with
domain [0, max(A4)] U {oo}. Put C" = {2’ | * € C} and define act(C’) as the set of conjunctions ¢
of formulas of the form 2’ € intv(z) and &’ ¢ intv(z) such that each clock #' occurs precisely once
in 9. To each formula ¢ € act(C’), we associate the set X, C C' of clocks 2’ such that the formula
z' & intv(r) occurs in .

Let, for each z € C’, p, be a fresh propositional symbol and let, for X C "’ px abbreviate the
formula A, x p. A /\yEC/X Py

We define A’ = (P’ C, Inv’, Init’ | G') by

— P'=PU{py |2 C}.

— Inv' = Vixcor Vyeaer(cnpx A A fin(Inv, X U Xy)).

~ Init' = Vyeace(onPo A A fin(Init, Xy)).

— (' is defined as follows. Let a : ¢ = A € G and let p be the result of replacing in A each

z € C by /. For every X C €’ and formula ¢ € act(C’), G’ contains the guarded command

a: fin(p, X UXy) A Apx = i, where pi is defined from p as A’ is defined from A in the proof
of Theorem 4.5, but with X replaced by X U Xy.

For s € S(A’) such that s |= px, define sx over P and C' by

s(u) ifue P
sx(u) = ¢ s(v)ifuin C, s(v') € intv(u) and v’ € X
oo otherwise.

We define the relation R over S(A’) and S(A) by {(s,sx) | s € S(4’),s E px}. Using a suitable
adaptation of Lemma 4.4, it is easy to check that A’ and R are well-defined and that R is a bisimulation.
O

4.5 Removing clock references from BTDA’s

In this section we show how to remove assignments of the form z := y with  # y from BTDA’s. The
constructions involved are somewhat complicated, so we only give an outline. The basic idea is that
instead of performing such an assignment in a certain location, we encode, by means of propositional



variables, in the location the information that the value of x equals the value of y and we let y play
the role of x until another assignment to x occurs (i.e., y is substituted for x in constraints and
assignments). For this it is essential that the domains of  and y are equal. A problematic situation is,
of course, when y plays the role of  and becomes itself the subject of an assignment y := e with e # y.
If the assignment to y if of the form y := z with z # y, the problem is easily solved: the assignment
to y is not actually performed but instead the information is stored that x refers to y and y refers to
z. But if the assignment is of the form y := 0, this trick does not work.

We solve this problem in two steps. First, we introduce for each location | a new clock elock(l) and
add the assignment clock(l) := 0 (in such a way that this assignment is only applicable when entering
location ). The new clocks will refer only to themselves. All other assignments of the form y := 0 in
location ! are removed, while storing the information that y refers to clock(l). So the original clocks
are no longer reset to 0 and the clocks that are reset, refer only to themselves. This does not solve our
problem completely: consider a loop from [ to { such that somewhere on the loop x starts referring to
clock(l). When passing through ! again, the value of clock(l) is lost. This problem is solved by making
an extra copy of the loop (and of clock(l)): one in which elock(l,0) holds the value of clock(l) from
the previous loop and elock(l, 1) holds the current value of clock(l), and one in which the situation
is reversed. This is done by means of a toggle bit function § which returns for every location a bit
b € {0, 1}, indicating the current loop; every time a loop passes [, the bit is toggled.

There is yet one snag. Consider two loops from [ to I. On the first loop « starts referring to a copy of
clock(l), on the second loop this does not happen. Consider a walk through the automaton according
to the following scenario. Leave { while 3(I) = 0 and loop through [ twice by concatenating the second
loop after the first loop. It is clear that in the first loop, @ starts referring to clock(l,0) and that after
the second pass through [ the value of clock(l,0) is lost for . We will show that automata can be put
in this form. After that, the construction of the automaton without assignments z := y with « # y
outlined above will be given.

4.6 To unbounded domains

We have shown that for every BTDA A there exists a bisimilar BTDA A’ satisfying the following
three properties. There exists an N € N such that for every clock # in Ca/, intv(z) = intv = [0, N].
Moreover, assignments to x are of the form « := 0 or z := z. Finally, constraints are finitary. To
construct for A a bisimilar TSA, it remains to deal with the extension of the bounded domains of
clocks in A to the domain RZ%. This can be done by a simple syntactic operation (-)° on constraints
with the property that a state s over the full domain RZ satisfies ¢ iff the restriction so, of s to
[0, N]U {00} (mapping all values larger than N to oo) satisfies . E.g., ignoring renaming of clocks,
(z<n)® =< nAze€intvand (z<y+n)® =(xcintvhz<y+n)Vydinty.

Definition 4.11. TLet A be a BTDA and intv = intv(z) for all + € C4. Associate to each clock
z € Ca a fresh variable 2/ with dom(z') = RZ% Put € = {2’ | # € C4}. Let ¢ be a finitary
inequation over Py and C4. We define ¢°° by induction on the structure of ¢.
(z<n)® =2 €intvAz <n
(z<n)® =2 €intvAz <n
(z<y+n)>® =@ cintv ANz’ <y +n)Vy ¢ intv
(z<y+n)® =2 €intvA(z' <y +nVy &intv)

oQ

Let s be a state over P4 and C'*°. Define s, over P4 and C4 by
s(u) if u € Py
Seo(u) = { s(y') if u =1y with x € C4 and s(y') € intv
oo otherwise



The (-)* function is extended to finitary constraints in the expected way.

Theorem 4.12. For every BTDA A there exists a TSA A’ such that A~ A’.

5 From TSA’s to BTDA’s

In this section we show that for every TSA there exists a bisimilar BTDA. The format of TSA’s almost
immediately fits into the format of BTDA’s, except for the boundedness of the domains. Let A be
a TSA and let N be the largest integer constant occurring in constraints in A. To change A into a
BTDA A’ it seems sufficient, at first sight, to change the domain of each clock into [0, N]U {oc}: then
every state s of A corresponds to a state s’ that is the same as s except that s'(x) = oo for all  with
s(x) > N. This naive approach does not work, however, when A contains clock comparisons. Suppose
for instance that A contains a clock comparison < y and a state s that satisfies N < # < y. Then the
corresponding state s’ does not satisfy z < y, and thus A and A’ may behave differently. The problem
is that in the TSA model the progress of time preserves the validity of clock comparisons, while this
is not the case in the BTDA model. We circumvent this problem by proving that for every TSA there
exists a bisimilar TSA that only contains simple constraints (i.e., without clock comparisons). The
idea is to encode the relative positions of clocks in a certain state in the discrete part (location) of
that state. Once all constraints are simple the naive transformation from TSA’s to BTDA’s can easily
be shown correct.

Theorem 5.1. For every TSA A there exists a TSA A’ such that A ~ A’ and constraints in A’ are
simple.

Theorem 5.2. For every TSA A there exists a BTDA A’ such that A~ A’.

6 Minimizable Timed Automata

Roughly speaking, a minimizable timed automaton is a bounded time domain automaton enriched
with a mechanism to identify equivalent states. In order to make this precise, we need the auxiliary
concept of a “preMTA”.

6.1 Definitions

Definition 6.1 (preMTA’s). A preMTA is a pair M = (A, Rel), where A is a BTDA and Rel is a
function that associates to each clock in Cy a relevance formula, a past-closed simple constraint in

F(P4,C.).

A relevance formula Rel(x) declares in which states clock # is relevant, and may take a value different
from co. A clock that is not relevant is called retired. Since relevance formulas are past-closed, a clock
that has retired remains so when time passes. However, after the occurrence of a discrete event a
retired clock may get back to work again.

The operational semantics of a preMTA 1s defined as an abstraction of the operational semantics
of the underlying BTDA.



Definition 6.2 (Operational semantics). Let M = (A, Rel) be a preMTA. For each s € S(Pa,Ca4),
let p(s) be the state given by

_ foo ifueCyand s & Rel(u)
pls)(w) = {s(u) otherwise
Mapping p applies to sets of states via pointwise extension. Let B = TS(A). Then the operational
semantics of M, notation T'S(M), is the transition system B’ given by

- Spr = p(SB)a
o %’ = p(S%),
— —p is the least relation satisfying s g s' — p(s) =g p(s').

Two preMTA’s M; and Ms are bisimilar, notation M; ~ M, if the corresponding transition systems
TS(M;) and TS(M,) are bisimilar. Similarly, we define bisimulation between preMTA’s and BTDA’s.
A preMTA M is minimal ift TS(M) is minimal.

Relevance formulas may declare that a clock is not relevant in a state, even though the clock is
tested in this state and thus appears to be relevant. Consider, for instance, the TSA of Figure 1. We
turn this into a BTDA A by giving «# domain [0,2] U {oo}. Next we build a preMTA M by adding
the “problematic” relevance formula Rel(z) = (loc = lg Ax < 1). Since A has a step (lo,2) — (I1,2),
M contains a step (lo, 00) = ({1, 00). But state (I, 00) of A does not have an outgoing a transition,
even though it is mapped by p onto the state (ly,o0) of M. Thus M and its underlying BTDA A
behave essentially different. This type of situations is excluded in the notion of an MTA. Intuitively,
an MTA is a preMTA in which the relevance formulas only declare that a clock has retired if it really
has retired.

Definition 6.3 (MTA’s). A minimizable timed automaton (MTA) M = (A, Rel) is a preMTA with the
additional property that the function p from Definition 6.2 (viewed as a set of pairs) is a bisimulation
between A and M.

The following theorem 1s a direct corollary of previous results that established the equivalence of
timed safety automata and bounded time domain automata.

Theorem 6.4. For every MTA M there exists a TSA A such that M ~ A, and conversely, for every
TSA A there exists an MTA M such that A ~ M.

Proof. Assume that M = (A’ Rel) is an MTA. Then by definition M is bisimilar with the underlying
BTDA A’. By Theorem 4.12, there exists a TSA A that is bisimilar with A’. Now M ~ A follows
since bisimulation is an equivalence.

Conversely, assume A is a TSA. Then, by Theorem 5.2, there exists a BTDA A’ that is bisimilar
with A. Let M be the preMTA obtained by pairing A’ with the function that associates relevance
formula T to each clock of A’. Then it is trivial to see that p is an isomorphism from T'S(A4’) to T'S(M),
which implies that M is an MTA that is bisimilar with A’. Again M ~ A follows since bisimulation
is an equivalence. a

6.2 Regions

In this section we define Alur and Dill’s [3] notion of a “region” in the context of bounded time domain
automata, and prove some lemmas that will be used later in the proof of our main result that for each
MTA there exists a bisimilar minimal MTA.



Definition 6.5 (Regions). Let A be a BTDA. The equivalence relation ~ is defined over the set of all
states of TS(A); s ~ ' iff the following conditions hold, for all p € P4 and #,y € Ca,

1. s(p) = 5’(p).

2. s(z) = o iff §'(2) = . .

3. If s(x) # oo then [s(z)| = [$'(»)] and [fract(s(z)) = 0 iff fract(s'(z)) = 0].

4. If s(x) # oo # s(y) then fract(s(x)) < fract(s(y)) iff fract(s'(z)) < fract(s'(y)).

A region for A 1s an equivalence class of states induced by ~.

The following facts about regions are standard:

1. Each BTDA only has finitely many regions.

Each region « can be denoted by constraint x,, in the sense that, for all states s, s € a iff s |E xq.

3. Each constraint ¢ either holds for all states in a region « or for none of them: s, s’ € « implies
(s Ep o s ). Wewrite o = ¢ iff s |= ¢, for some s € a.

4. If v is a region and a : ¢ = X a guarded command of A such that « |= ¢ then «[}\] is also a region.

[\]

Definition 6.6. Let A be a BTDA and let s, s’ be states of TS(A). The time successor relation < is
defined over the set of all states of TS(A):

sjslé3d6R20:5i>s.

We write s 1 to denote the set of time successors of s; s 1= {s’ | s < s'}. This notation is extended to
sets of states S by pointwise extension; S 1= U{s 1] s € S}.

It is well-known that, for each constraint ¢, one can effectively construct a constraint ¢ 1 such that
the set of time successors of states that satisfy ¢ equals the set of states that satisfy ¢ 1. Moreover,
if ¢ corresponds to a region a then ¢ 1 corresponds to the union of a finite number of regions, called
the successor regions of . Region « is a predecessor region of o’ iff o’ is a successor region of a.

Lemma 6.7. Let o be a region of some BTDA A. Suppose that s € a and s’ € a 1 are states such
that s ~ s’ and s =x s', for some set X of clocks. Then, for all states r,7' in a 1, r =x r' implies
ey

6.3 Main result
We now come to the main result of this paper.

Theorem 6.8. For every MTA M there exists a bisimilar minimal MTA M’ that can be effectively
computed and that is unique up to isomorphism.

Proof. (Sketch) The proof of this result is quite involved and we only outline its main structure here.
Let M = (A, Rel) be an MTA. Minimization takes place in five phases:

1. Strengthening of the invariant constraint Inv 4 so that all states of A that satisfy the invariant are
reachable.

2. Application of a history variable construction: we add propositional variables that record the
region entered through the last discrete action. As a result of this “spaghetti string strategy” each
location is split into a number of new locations in such a way that the clock spaces of the new
location are convex and at most one region wide.

3. Construction of relevance formulas that identify all bisimilar states.

4. Superposition of locations that have (part of) their clock space in common.



Ad 1 This can be done effectively using techniques of [5].

Ad 2 Let A= (P,C,Inv, Init, ;). We define A" = (P’ ', Inv’, Init', G’} as follows.

— P’ is P extended with, for each region « of A, a fresh propositional variable p,,.

- =C.

— Inv' = (\, loc = pa A xa 1) A Inv.

— Init' = (\/,, loc = pa A Xa) A Init.

For every region « and guarded command a : ¢ = A € G with o | ¢, G contains a guarded
command a : Yo = AU {loc := papr}-

The construction of A’ is clearly effective, and it is routine to verify that A ~ A’.

Ad 3 This phase consists of three steps:

1. Say that a clock x is free in a region « if a contains two different states s, s’ with s =, s’. Take, for
each clock x and region a for which r is free, two arbitrary states s and s’ and decide whether they
are bisimilar. This can be done using the result of Cerans [10, 9] who proved that bisimulation is
decidable for timed automata (this result carries over to our setting). According to Lemma 6.7,
the outcome is independent of the choice of s and s’. If s and s’ are not bisimilar then we declare
that clock z is relevant for «, otherwise we declare that x is irrelevant for «.

2. If clock x has been declared relevant for « then we declare x to be relevant for all predecessors of
a. Conversely, if clock = has been declared irrelevant for « then we declare x to be irrelevant for
all successor regions of «.

3. If « has neither been declared relevant nor irrelevant for « in steps (1) and (2), then # has been
declared relevant for all predecessors of a (except «) and irrelevant for all successors of o (except
a). If s(x) = oo for all s € a or o is maximal, i.e., if the only time successor of « is a itself, then
we declare z to be relevant in a. Otherwise, let X be the set of clocks whose value coincides with
that of z for all states of @. We can pick a state s in a and a state s’ from a proper successor of
a such that s =x s’. If s and s’ are not bisimilar then we declare that clock z is relevant for o,
otherwise we declare that z is irrelevant for a.

Define Rel(xz) as the disjunction, for all regions « for which # has been declared relevant, of the
constraint x.. Let p be the abstraction function on states induced by Rel according to Definition 6.2.
Using Lemma 6.7, one can show that, for all states s, s’ with the same location (s =p, s), p(s) = p(s’)
iff s ~ 5.

Ad 4 This is the most technical part of the proof. After obtaining minimality of the state space for a
fixed location, we now have to superimpose the state spaces of different locations. If two states from
(minimized) regions with a different location are bisimilar, then in fact there exists an isomorphism
between the two regions that is a bisimulation. Together with the result of Cerans [10, 9] this allows
us to decide which regions in the automaton are bisimilar. If two regions with a different location are
bisimilar then this means that, from some point, the two state spaces (“spaghetti strings”) of these
locations are bisimilar and have to be merged. W.l.o.g. we may assume that the relevant clocks of the
two state spaces S and S’ are disjoint (this can be achieved through renamings). This disjointness
allows us merge the two locations. Next we add copies of the clocks of S to both S and 5" and ensure
that (1) outside the parts that have to be merged the values of the copies are fully determined by the
values of the originals, (2) inside the parts that have to be merged the copies take the same values for
bisimilar states, (3) the original clocks become irrelevant as soon as a region that has to be merged is
entered. ad
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