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Abstraet--A self-organizing feature map to cluster DNA dinucleotides is presented. During 
a training session 244 training patterns, each consisting of nine torsion angles, are clustered 
in a 10 by 10 map. The method is successful for separating the four known DNA classes in 
the training set. Contour plots of the weights after a training session indicate gradients in 
torsion angles corresponding to class separation. Moreover, certain units in the map probably 
correspond to unfavourable torsion angle combinations resulting in, e.g. van der Waals 
clashes. Hence, although no direct relation to a conformation's energy (as in a Ramachandran 
plot) is present in the map, it may provide a multidimensional interpretation of accessible and 
forbidden areas for dinucleotides. The applicability of the method on this DNA data matrix 
shows its potential to be used in more extensive structural analysis studies, e.g. in a case of 
comparing DNA with RNA. Several test patterns resulting from molecules with unusual 
structural characteristics are identified with the map. Copyright © 1998 Elsevier Science Ltd 
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1. INTRODUCTION 

Most biomacromolecules, such as proteins and 
nucleic acids, occur in preferred conformations. 
Examples include ~-helices and r-sheets in proteins 
and A-DNA, or various types of B-DNA, in nucleic 
acids. These preferred conformations are the basic 
keys for structural stability and biological activity of 
the molecules. It is therefore of biological importance 
to understand the relation between a preferred 
conformation and the responsible structural par- 
ameters. Which structural parameters can be used to 
study this relation? Possible candidates in the case of 
nucleic acids are helical parameters, such as, roll, 
twist and rise. For  example, El Hassan and Calladine 
(1996) studied the relation between propeller-twisting 
of base pairs and the conformational mobility of 
dinucleotide steps in DNA. Torsion angles provide 
another possibility in the research of underlying 
principles for preferred conformations. 

Beckers and Buydens (1998) used a data matrix 
with 244 objects derived from structures given in 
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Tel: + 31 24 3653192; Fax: + 31 24 3652652; E-mail: 
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El Hassan and Calladine (1996). Each object is a 
dinucleotide which is represented by a vector of 
nine torsion angle values. The authors searched 
for multiple correlations between the torsion angles 
in the dinucleotides with multivariate analysis on 
the basis of singular value de-composition 
(SVD) (Beckers and Buydens, 1998). They 
demonstrated that score plots revealed a clear 
separation of DNA classes and provide a means 
of constructing multidimensional Ramachandran- 
like plots (Ramachandran et al., 1963) for nucleic 
acids. 

Traditional multivariate techniques, such as SVD 
methods, are often based on data-reduction by 
means of linear combinations of the original 
variables. These approaches assume some kind of 
parametric model. Artificial neural networks (ANNs) 
construct models without the inclusion of  explicit 
parameters and are, therefore, often referred to as 
black boxes. However, they are an interesting 
alternative for traditional multivariate approaches 
in both calibration and classification problems 
(Rubner and Tavan, 1989; Melssen et al., 1993; Smits 
et al., 1993; Walczak and Wegscheider, 1993). 
Moreover, ANNs are capable of dealing with 
non-linearities. 
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In this paper a self-organizing feature map 
(Kohonen, 1989; Kohonen, 1995) is introduced to 
reveal the structure of  the 9-dimensional data matrix 
of Beckers and Buydens (1998). For this purpose 
the data matrix, referred to as the training set in 
this paper, is mapped onto a rectangular grid, holding 
9-dimensional weight vectors, during the training 
phase of the network. The basic principle is quite 
simple. First of all, the map of  neurons, or units, is 
constructed. Each unit contains a 9-dimensional 
vector of weights. These weights are initialised in a 
random manner. Then a 9-dimensional input vector, 
or pattern, is compared successively with each of the 
weight vectors. According to some measure of 
similarity, the unit with a weight vector that 
compares best with the input vector is assigned 
the winner. This process is repeated for all input 
vectors. In an iterative manner the weights are 
adapted in such a way that the topology of the 
data matrix is preserved in the best possible 
manner. After training, input patterns resembling 
each other will be located on the same unit, or units, 
in close proximity. Hence, a clustering of  input 
patterns is accomplished by mapping a matrix of 
high-dimensional input patterns onto a grid of weight 
vectors. 

Our aim was to show the applicability of this 
new method to the clustering of a large DNA data 
set. It is demonstrated that by means of a 
self-organizing feature map the D N A  classes present 
in the training set are clearly separated. Moreover, 
by comparing the mean torsion angles of patterns 
that are clustered on each unit, some kind of 
gradient in individual torsion angles is observed 
that defines the DNA-class separation. Hence, the 
method has the potential to be used in detailed 
nucleic acid structural analysis studies, e.g. compari- 
son of D N A  with RNA, or the analysis of loop 
structures. 

The gradient in individual torsion angles is seen 
even more clearly when the contour plots o f  the final 
weights per unit are studied. Weights reflect 
characteristics of  patterns clustered on a certain unit. 
This is an advantage over SVD-Iike methods where 
the gradient between classes is not seen that clear. 
Moreover, on some units, no patterns are clustered at 
all. 

Probably these units represent torsion angle 
combinations that would produce, e.g. too much 
sterical hindrance or other unfavourable structural 
aspects. Hence, these units may represent forbidden 
areas for dinucleotides. Although no direct relation 
between conformation and energy is present in the 
map this aspect strongly brings to mind the 
information that is represented in a Ramachandran 
plot. 

The final weights of  the Kohonen map are used to 
identify unknown patterns o f  several test sets. Most 
o f  the test sets contain one or more patterns o f  
uncommon dinucleotide steps, e.g. bases that bulge 
out o f  a helix or bases that belong to a loop structure. 
The 244-pattern training set was constructed in such 
a manner that it covered most  known (naturally 
occurring) DNA-class  patterns. Therefore all 
phenomena present in the test sets can be explained 
with the l0  by 10 Kohonen map. 

2. MATERIALS AND METHODS 

2.1. Data Sets 
2. I. 1. Training set 

Table 1 summarizes the data that was used in this 
study. It is based on the study of conformational 
mobility of dinucleotide steps by El Hassan and 
Calladine (all references, in which the crystal 
structures of sequences given in Table 1 were 
published, are given in E1 Hassan and Calladine 
(1996)). Each single strand sequence was subdivided 
into dinucleotide steps. We describe the dinucleotide 
steps by the nine torsion angles depicted in Fig. la. 
Hence, the training set contains nine columns or 
variables. The individual dinucleotides, represented 
by nine variables, are the rows, or patterns, of the 
data matrix. Dinucleotides containing the bases 
inosine and uracil as well as dinucleotides with bases 
in mismatched base pairs were not added to the data 
matrix. They are indicated in boldface in Table 1. 
Dinucleotides that had one or more torsion angle 
combinations in forbidden areas (see Mooren, 1993) 
were not added to the data matrix. 

According to El Hassan and Calladine (1996) the 
dinucleotides derived from the structures depicted in 
Table 1 could be labeled as A-DNA or B-DNA. 

Table 1. Sequence of the structures from which the dinucleotide 
steps were taken and corresponding helix types 

Sequence* Helix type 
Dodecamers 

d(CCGTACGTACGG) A 
d(GCGTACGTACGC) A 
d(CGCIAATTAGCG) B 
d(CGCGAATTCGCG) B 
d(CGCAAATTTGCG) B 
d(CGCGAATTCGCG) B 

, d(CGCAAATTCGCG) B 
d(CGCGAATTTGCG) B 
d(CGCAAATTIGCG) B 
d(CGCGAATTGGCG) B 

Dccamers 
d(CGATCGATCG) B 
d(CGGTATACGC) A 
d(GCGTATACGC) A 
d(GCGTATACGC) A 
d(CGATCGATCG) B 
d(CCAGC~CTGG) B 
d(CCAGGCCTGG) B 
d(CCAACITTGG) B 
d(CCAACITTGG) B 
d(CCAAGATTGG) B 
d(CCAACGTTGG) B 
d(CGATTAATCG) B 
d(CGATATATCG) B 

Octamers 
d(GGIC-CTCC) A 
d(GGGTACCC) A 
d(CCCCGGGG) A 
d(GCCCGGGC) A 
d(GCCCGGGC) A 
d(GGGGCTCC) A 
d(CTCTAGAG) A 
d(GGUAUACC) A 
d(GGC~TCCC) A 
d(GGGATCCC) A 
d(GGGGCCCC) A 
d(GTACGTAC) A 

Tetramer 
d(CCGG) A 

*Dinucleotides from mismatched base pairs as well as base pairs 
containing inosine and uracil were not taken into the data matrix 
and are indicated in boldface. 
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Fig. 1. (a) Torsion angle representation of a dinucleotide. 
The backbone conformation is represented by torsion angles 
ct, fl, ~,, E and (. The complete conformation of the furanose 
ring is not taken into account and, instead, it is represented 
by 6. The orientation of the base with respect to the sugar 
ring is given by torsion angle X. (b) Training set with 244 
patterns of dinucleotides represented by 9 torsion angles. 

Subsequently we provided the B-DNA dinucleotides 
with additional labels B~, with an E(tr)/((g-) 
combination, and B,, having an E(g-)/((tr)* combi- 
nation, following the definition given in Priv6 et al. 
(1987). This resulted in 112 B~ dinucleotides and 32 
B,  dinucleotides, respectively. The remaining 100 
A-DNA dinucleotides contained four objects that 
were labeled as "crankshaft". In the small group of 
objects exhibiting the so-called crankshaft effect the 
combination :t(g-)/7(g ÷) is switched to ct(tr)/~(tr). 
Although crankshaft effects are most often reported 
for A-DNA, it appeared that one of the B~ 
dinucleotides (object 73) also had a ct(tr)/~,(tr) 
combination. No data pre-treatment was performed 
on the resulting training set of 244 dinucleotides. 

2.1.2. Test sets 

To validate the classification of the Kohonen 
network we constructed several test sets (Table 2). 
Torsion angles and other information were extracted 

* The expressions in parentheses are used to indicate the 
corresponding torsion angle ranges, i.e. g+: 60 _ 60°; tr: 
180 + 60°; g-: 300 + 60 °. 

from the Nucleic Acid Database (NDB, (Berman 
et al., 1992)). 

For  each of the sequences the first and last 
nucleotide were not taken into account. From the 
sequences marked with "t" the torsion angles of only 
one strand were used. Spermine was added to bdf062. 
This resulted in a base pair opening with the 
accompanying CCACCG strand. A novel non- 
Watson Crick hydrogen bonding scheme for a T.A 
base-pair was the result, bdfp24 has a chiral 
phosphorothioate linkage in the backbone instead of 
the usual phosphoro-di-ester. A loop structure is 
formed by self-association of complementary bases 
in udg028. Flipped-out bases and bulges concern 
bases that are directed towards the outside of a 
double-helix. 

2.2. Self-organizing Feature Maps 

In this study a Kohonen network, which belongs to 
the class of self-organizing feature maps, is used. 
Unlike most ANNs, Kohonen networks are trained 
unsupervised, i.e. input patterns are presented but 
no associated output patterns are offered. First a 
framework of units in a grid is set up. This is called 
the actual Kohonen map. To choose the grid size, 
corresponding to the number of units in this map, one 
can use the following rule of thumb: 

2 x number of classes < number of units<<number 
of patterns 

Then each unit, j ,  is assigned a n-dimensional vector 
of weights, ffj. This procedure is depicted in Fig. 2a. 
The weight values are initialised in a random manner, 
provided that they lie between the minimum and 
maximum of the original variable values. 

Now the network is ready for the training phase. 
A pattern, 3c,, is chosen randomly from the training 
set. It is compared with each of the weight vectors 
according to some similarity criterion, e.g. the 
Euclidean distance, see Fig. 2b. The unit with a 
weight vector, ~j, most similar to the pattern, ,~,, is 
assigned the winner. According to a pre-defined 
neighbourhood criterion, some of the units surround- 
ing the winner are also selected. In the next step the 
weight values of the winning unit and corresponding 
neighbourhood units are adapted according to 
equation (1): 

ffj(t + 1) 

= w~j ( t )  + ~l(t)N(t,r)[x--+,- w--*j(t)] (1) 

~j(t) = the weight vector of unit j at iteration t 
~, = input pattern i 

~(t) = the learning rate at iteration t 
N(t,r) = neighbourhood function at iteration t. 

The learning rate is decreased in time. The 
neighbourhood function shrinks in time and accord- 
ing to the distance r between the winning unit and 
other units in the map that need to be updated. In 
other words, the number of units of which the weight 
values are updated decreases in time and eventually 
only the weight vector of  the winning unit is 
adapted. After all the input patterns have been 
matched, one cycle of training is completed. Training 
usually stops when weight vectors do not change 
significantly any more. A trained network contains 
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Fig. 2. (a) Initialization of m by m' Kohonen map; 1 - -  a grid of size, in this case, 5 by 5 is defined; 2 
- -  the nodes represent units; 3 - -  each unit is assigned a n-dimensional weight vector. (b) Pattern ~ is 

compared with each of the weight vectors according to some similarity criterion. 

weight vectors that approximate the distribution of 
the patterns in the original data matrix. In such a 
trained network each unit might be associated with 
an object class. In this way, the resulting map can be 
used for classification purposes. 

3. EXPERIMENTAL 

3.1. Configuration 

3.1 .1 .  T r a i n i n g  sess ion  

As indicated in Section 2.1 we expected four classes 
of dinucleotides to be present in the training set. 
The number of patterns in this training set is 244. 
Therefore, we decided to build Kohonen maps 
ranging from 3 by 3 to 10 by 10. Results will be given 
for 5 by 5, 7 by 7 and 10 by 10 Kohonen maps. These 
maps were represented by a rectangular grid with the 
index of the units starting from 0. 

The neighbourhood function was a so-called 
"bubble" function, i.e. a set of array points around the 
winning unit is chosen which decreases linearly in 
time. During the first 3000 cycles, the initial radius of 
the bubble function was 5. This radius was decreased 
to a radius of 3 for the following cycles. Training was 
allowed for a maximum of 100 000 cycles. During the 
initial training phase the starting value of the learning 
rate was 0.3 while this was 0.05 for the remaining part 
of the training phase. 

3.1 .2 .  T e s t i n g  sess ion  

After the network is trained the resulting weights 
are stored. For a test pattern a similarity measure, in 
this case the Euclidean distance, is calculated with 
each of the weight vectors. The test pattern is 
clustered on the unit having a weight vector that 
results in the smallest Euclidean distance. 

Table 2. Sequence, NDB code definition of helix type with corresponding remarks and reference 
of the test sets 

Sequence/code Type/remarks Reference 

d(GCCGC_~)/adf073t 
d(AGGCATGCCT)udj032t 
d(GCGTGG)bdf062 
d(CGCAATTGCG)udj031 
d(CGCAGAATTCGCG)udm010t 
d(GGCCAATTGG)udj049t 
d(GCGCGC)bdfp24 
d(GCATTG-CT)udg028 

A Mooers et al., 1995 
A/flipped-out bases Nunn and Neidle, 1996 

B/spermine Tari and Secco, 1995 
B/helix-helix junction Spink et al., 1995 

B/bulges Joshua-Tor et aL, 1992 
B/overhanging bases Vlieghe et aL, 1996 
B/modified backbone Cruse et aL, 1986 

B/loop Leonard et al., 1995 

tTorsion angles of only one strand used. 
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Fig. 3. Part of a 5 by 5 Kohonen map with the indices of the units. For some units a mean torsion angles 
"spectrum" (see text) of patterns typical for A-DNA, BI-DNA, B.-DNA and crankshaft dinucleotides are 

drawn. 

3.1.3. Display 

To analyse the results of training session and 
testing session, several display modes are used. In the 
first, for each map the number of patterns clustered 
on each unit is displayed. The indices of the patterns, 
and hence the torsion angles of these patterns, 
clustered on a unit, can be retrieved. In the second 
display mode, labels representing a DNA class and 
the mean torsion angles of  patterns clustered on a 
unit are depicted in the same map. This leads to a 
kind of  torsion angle "spectrum" typical for the 
patterns clustered on a unit. An alternative is to 
display the weight vectors of each unit. In this 
manner clustering of specific pattern characteristics is 
displayed, see Fig. 3. To study the distribution of 
torsion angles on the units, contour plots of the 
weights are displayed. The input patterns are not 
scaled. Therefore, the final weights values after a 
training session are on the same scale as the torsion 
angles. For each weight, corresponding to a certain 
torsion angle, the value on each of the units can be 
retrieved. These values can be displayed in contour 
plots. E.g., the third value on a weight vector 
corresponds to E. After training the l0 by 10 map the 
values of  the third value on the weight vectors of all 
units were stored. The minimum value was 170 and 
the maximum value 260. This range was subdivided 
into 10 parts and the weight values corresponding to 

were displayed as grey tones according to the range. 

3.2. Hardware and Software 

In this study we used SOM__.PAK (Self-Organiz- 
ing Map Program Package) Version 3.1 
(SOM PAK, 1995). The program was executed on 

a Sun Sparc TM machine. A training session of 100 000 
cycles costs about l0 s real time. Additional software 
to analyse the outcome of SOM PAK and to 
construct figures was programmed with Matlab for 
Unix Workstations, version 4.2c, by The Math- 
Works, Inc. 

4. RESULTS AND DISCUSSION 

4.1.1. Training session 

Figure 4a depicts the number of input patterns 
clustered on each unit after training the 5 by 5 
network. As can be seen in Fig. 4b, the B,-DNAs are 
concentrated in the upper right corner of the map. 
There is some overlap with BrDNAs.  On unit (3,3) 
one B r D N A  is clustered with four B,-DNAs and on 
unit (3,4) three BrDNAs occur with five B/I-DNAs. 
Besides the labels of DNA classes the mean torsion 
angles of the patterns clustered on each unit are 
depicted in Fig. 4b. These show a gradient of 
increasing E values and decreasing ( values in the 
direction (4,0) to (4,4). The same gradient, albeit less 
pronounced, as expected, can be observed in the 
direction (3,0) to (3,4). The A-DNAs are clustered 
entirely on the left side of the map. There is some 
overlap with BrDNAs.  On unit (1,0) one B r D N A  
is clustered with two A-DNAs while unit (2,0) 
holds only one A-DNA with nine BrDNAs.  The 
crankshaft entries are clustered with three A-DNAs 
in unit (0,0). Not surprisingly these three A-DNAs 
have ac t -  7 combination that is intermediate between 
real crankshaft dinucleotides and complete non- 
crankshaft dinucleotides. The gradient observed in 
going from (0,0) to (0,4) is an increasing ct. The 
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column of units (2,0) to (2,4) clearly represents 
the BrDNA structure. The main difference is the 
column of units (1,0) to (1,4), which also holds some 
A-DNA nucleotides. The latter has higher mean 
values and lower X and 3 values which is typical of 
A-DNA. 

Although there is an acceptable class separation 
and much additional information from the mean 
torsion angle gradients in the 5 by 5 map, possibly 
more structure can be retrieved in a map with larger 

grid size. The orientation of the patterns that 
are clustered on a larger map may be different. This 
is caused by a renewed initialisation for larger maps. 
In the 7 by 7 map in Fig. 5, overlap in the Bu-DNA 
class is still observed. However, this overlap is small 
and the bulk of the Bt/-DNAs is clustered on unit 
(6,0). There is only one unit with overlapping 
A-DNAs and BrDNA (unit (2,6) holding two 
A-DNAs and three B/rDNAs) and now the 
crankshafts are completely separated from all other 
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Fig. 4. 5 by 5 Kohonen map, ( + ) A-DNA, (O) BrDNA, (O) Bu-DNA and (*) crankshaft; (a) number 
of clustered patterns on each unit; (b) labels and mean torsion angles of clustered patterns on each unit. 
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Fig. 5. 7 by 7 Kohonen map, ( + ) A-DNA, (©) BI-DNA, (O) Bn-DNA and (*) crankshaft; (a) number 
of clustered patterns on each unit; (b) labels and mean torsion angles of clustered patterns on each unit. 

dinucleotides. The three patterns in unit (0,5) are 
indeed the patterns that have a ~t-7 combination 
intermediate between real crankshaft dinucleotides 
and complete non-crankshaft dinucleotides. A more 
strict separation of A-DNA from B-DNA can be seen 
in this map. Of course, the gradients of  mean torsion 
angles are still present here. 

In the 10 by 10 map the class separation is very 
clear (Fig. 6). Not only is A-DNA separated from 
B-DNA but also B1-DNA from B,-DNA and, again, 

there is the crankshaft separation. Very small 
amounts of patterns are clustered on the three units 
that still have overlapping patterns. Hence, the 5 by 
5 map does not yet give a proper separation of the 
crankshaft entries. For maps with more points 
(starting from 7 by 7) there is good crankshaft 
separation although there is some overlap of  BcDNA 
with B,-DNAs and of B-DNA with A-DNA. This 
latter overlap decreases when the number of  points 
increases but as shown earlier (see Section 2) there is 
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an upper limit to this number  of points (we took 10 
by 10 as the upper limit). 

Figure 7 depicts contour plots of  the weights 
corresponding to e, (,  ~t and 6n, respectively, after 
training the 10 by 10 map. Although no patterns are 
clustered on some units, the weights of these units 
were nevertheless adapted during the training session 
as a result of  the neighbourhood function. After a 
training session is ended the weight vectors will show 

nice gradients. In this 10 by I0 map we see ~ decrease 
and ( increase in a vertical direction starting from the 
lower left corner. This is also the case when we go 
from the lower left comer  to the right. In the same 
manner  ~ (and the positively correlated X) decrease in 
going from left to right. Starting from the lower right 
comer ~t decreases (while the negatively correlated 
increases) when we move to the upper right comer. 
These are the main gradients. Of  course, when having 
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Fig. 6. 10 by 10 Kohonen map, ( + ) A-DNA, (C)) BrDNA, (O) Bu-DNA and (*) crankshaft; (a) number 
of clustered patterns on each unit; (b) labels and mean torsion angles of clustered patterns on each unit. 
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minimum value 
torsion angle 

tx 

maximum value 
torsion angle 

Fig. 7. Contour plots for weight values corresponding to E, (, ct and ~ after training the 10 by 10 Kohonen 
map. Light tones correspond to low values and dark tones correspond to high values (white corresponds 

to the minimum and black corresponds to the maximum of the weight value). 

H2' H2' H2' 

1 2 

Fig. 8. When ( moves from its normal g- value towards a tr value, atom A approaches atom H2' which 
inevitably results in a van der Waals clash (step 1). However, the molecule avoids this by, at the same 

time, moving e in the opposite direction from its normal tr value towards a g- value (step 2). 

a more detailed look some other gradients can be 
detected. 

On some of  the units zero or only one pattern is 
classified. These units have no mean torsion angle 
spectrum and probably represent patterns that have 
torsion angle combinations which would produce 
severe sterical hindrance or other unfavourable 
structural aspects. Hence, these units may be 
considered forbidden areas for dinucleotides. 

I f  a direct relation between conformations in the 
data matrix and their energies existed this would 
reflect the equivalent of  a Ramachandran plot for 
nucleic acids. Because all the information from the 
original 9-dimensional torsion angle space is mapped 

* A realistic plot might be constructed by producing all 
conformations for a dinucleotide with a certain 
resolution, calculating the energies, and subjecting the 
resulting data matrix to a self-organizing feature map 
analysis. However, depending on the resolution of the 
torsion angle variations, this leads to a huge data matrix. 

onto a grid space a multidimensional Ramachandran 
plot would be the result. However,  we can only speak 
in terms of  accessible and forbidden areas in the map 
without making a comparison with the well-known 
Ramachandran plot*. 

The data is not  scaled. Hence, the weights are on 
the same scale as the torsion angles. Therefore, when 
a unit corresponds to torsion angle combinations that 
are considered forbidden, one looks at the weights 
and immediately has insight in the structural reason 
for this, e.g. it is known that E and ( are negatively 
correlated. Typical B r D N A  e and ~ values are 180 ° 
and 270 ° , respectively. It can be demonstrated that 
when E starts to move towards a higher value, a 
corresponding decrease in ~ is necessary to avoid a 
van der Waals clash between two specific atoms in the 
backbone. This is depicted in Fig. 8. Maybe some of  
the units in the lower left corner of  the 10 by 10 map 
on which none or only one pattern is classified 
represent e - (  combination in which one of  the two 
angles has not  changed enough to avoid the clash. 

CAC 21/6--B 
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Fig. 9. (a) 2-Dimensional biplot; class separation of ( + ) A-DNA, (O) BrDNA, (0)  BH-DNA and (*) 
crankshaft dinucleotides as indicated by score points; (b) 3-dimensional score plot after SVD analysis. 

However,  we have to be careful with the 
interpretation of  the maps in this manner. Training 
patterns that were used contained torsion angle 
combinations that are accessible. At  least this is 
assumed because they are X-ray resolved structures. 
Although there are areas in the maps that seem to 
represent forbidden torsion angle combinations, 
because no patterns are clustered on them, the 
network was not  explicitly trained for these kind of  
combinations by actually presenting corresponding 
patterns. 

In an earlier study we used SVD to arrive 
at so-called biplots of  the data matrix (Fig. 9). 
For  a detailed discussion of  this method see 
Beckers and Buydens (1998) In a biplot both 
scores and loadings are depicted in the same figure. 
Scores separate the data matrix into the known 
classes. Loading vectors correlate torsion angles. 
The projections of  scores on loading vectors 
indicate which torsion angles play a dominant  role in 
D N A  class separation. The results of  the biplots are 
supported by (simple) physical interpretations. The 
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Fig. 10. Classification of unknown patterns from adf073, udJ032, bdf062 and udj03l on the l0 by 10 map. 

advantage of the self-organizing feature map is that 4.1.2. Testing session 
an easy to interpret class separation is obtained, i.e. 
the individual dinucleotides are assigned to a single The adf073 + strand is stored in the N D B  
unit. This may aid in a better interpretation of as A - D N A .  All the dinucleotides are correctly 
structural aspects of  the clustering, clustered in the A - D N A  region of  the Kohonen 

From a 3-dimensional score space the nine original map (Fig. 10). Not  much diversity is seen 
torsion angles can be reconstructed using the SVD between the nucleotides which was expected 
method. Hence, the interpretation of  accessible and by looking at the corresponding torsion angles 
forbidden areas is again possible. (Table 3). 
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Fig. l 1. Classification of unknown patterns from udm010, udj049, bdfp24 and udg028 on the 10 by 10 
map. 



388 M. L. M. Beckers et al. 

Table 3. Torsion angles for test patterns 

Pattern# Z~ 6~ E ( • fl ), t~2 X2 

adf073 
1 204 84 206 293 292 164 59 80 202 
2 202 80 216 285 283 183 53 89 201 
3 201 89 202 288 277 178 64 84 194 
4 212 82 211 298 277 181 59 79 211 
5 211 79 189 291 275 186 55 76 197 
6 197 76 198 283 284 191 54 87 203 

udj032 
l 186 89 212 297 288 181 51 80 200 
2 200 80 214 284 294 166 51 84 203 
3 203 84 203 288 289 181 50 87 205 
4 205 87 212 286 292 166 53 85 207 
5 207 85 204 290 295 174 51 83 204 
6 204 83 178 268 298 176 59 140 239 
7 239 140 250 127 292 204 43 134 236 

bdf062 
I 229 161 232 249 277 148 75 163 275 
2 275 162 250 166 327 112 30 131 269 
3 269 131 241 165 106 247 160 170 251 
4 207 146 211 243 340 171 342 161 258 
5 258 161 188 210 60 57 43 102 237 
6 237 102 233 198 319 115 57 133 280 

udj031 
l 250 129 191 240 34 182 302 152 270 
2 270 152 159 265 298 186 64 156 268 
3 268 156 175 247 305 195 36 130 259 
4 259 130 122 300 94 164 249 156 246 
5 246 156 180 279 285 187 54 145 263 
6 263 145 221 231 308 163 18 161 292 
7 292 161 285 150 254 159 53 140 260 

udm010 
1 236 173 183 238 191 231 107 137 297 
2 297 137 230 166 243 90 308 143 267 
3 267 143 322 301 98 150 180 96 233 
4 233 96 165 291 295 195 40 151 260 
5 260 151 179 242 324 160 43 149 267 
6 267 149 157 264 261 179 89 147 255 
7 255 147 226 213 297 99 93 110 236 
8 236 110 215 290 352 232 280 153 245 
9 245 153 194 275 311 188 45 144 282 

10 282 144 223 169 63 253 199 177 204 

udj049 
1 245 112 207 252 317 158 40 137 286 
2 286 137 258 287 308 145 181 95 223 
3 223 95 213 286 296 171 51 148 274 
4 274 148 244 162 314 149 32 146 270 
5 270 146 164 263 283 182 70 116 235 
6 235 116 176 271 309 168 62 114 233 
7 233 114 189 254 318 160 48 113 242 
8 245 112 177 274 283 180 59 121 244 
9 244 121 188 261 301 169 51 90 232 

bdfp24 
1 260 144 244 167 318 122 45 130 255 
2 255 130 209 247 310 157 43 132 257 
3 257 133 229 198 299 145 51 133 251 
4 248 134 187 279 290 181 44 145 267 
5 267 145 262 150 295 148 40 138 250 
6 250 138 202 256 318 155 35 146 278 

udg028 
1 255 l l7  238 153 312 143 43 138 220 
2 220 138 217 70 79 194 67 146 231 
3 231 146 279 283 302 192 60 147 256 
4 256 147 213 229 323 139 39 l l3 250 

Ud j032  ÷ has  a r a t h e r  c o m m o n  A - D N A  s t ruc tu re  
excep t  t h a t  one  o f  the  bases  is f l ipped  o u t  o f  the  hel ix.  
D i n u c l e o t i d e  6 o f  th is  s t r a n d  ha s  h ighe r  6 a n d  X 

va lues  t h a n  p r e v i o u s l y  e x a m i n e d  d inuc l eo t ides .  I t  is 
l ike  B r D N A  a n d  is i n d e e d  c lus t e red  in  the  b o r d e r  
r e g i o n  b e t w e e n  A - D N A  a n d  B r D N A .  D i n u c l e o t i d e  
7 has  B - D N A  ~ a n d  X va lues  a n d  bes ides  this ,  
E - ~ > 0. I t  is co r rec t ly  iden t i f i ed  as  B , - D N A .  

In  the  bdf062  sequence  the re  is b a s e - p a i r  o p e n i n g  
a n d  s h e a r i n g  o f  a T ' A  base  pai r .  Th i s  n o n - W a t s o n  
C r i c k  h y d r o g e n  b o n d i n g  s cheme  is i n d u c e d  by  the  
a d d i t i o n  o f  spe rmine .  T h e  6 a n d  X va lues  o f  bdf062  
i n d i c a t e  t h a t  al l  t he  d i n u c l e o t i d e s  b e l o n g  to  the  
B - D N A  class.  T h e r e  are  t wo  d i s t i nc t  B n - D N A  
d inuc leo t ides .  D i n u c l e o t i d e  1 is an  i n t e r m e d i a t e  

b e t w e e n  B r D N A  a n d  BH-DNA.  The  o t h e r  p a t t e r n s  
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are identified as crankshafts although in dinucleotide 
4 and 5 the anti-correlated effect between ~ and 
is not observed. Instead it seems that only a low 

value or high ~, value, without any other 
extreme effects, leads to clustering in the crankshaft 
region. 

Udj031 ÷ is part of a pseudo four-way helix-helix 
junction. All the dinucleotides in udj031 + have high 

and X values typical of B-DNA. Two of the 
dinucleotides show a clear crankshaft effect although 
they have mainly B-DNA characteristics. There are 
three BI-DNA objects and one obvious Bn-DNA 
dinucleotide. Dinucleotide 6 is intermediate in that 
it has a high E value but no corresponding low 
B, -DNA ~. 

In udm010 + one of the bases, which is in 
dinucleotide 2 and 3, is bulged or points towards the 
outside of the helix. Dinucleotides 2 and 3 have 
B-DNA-like 6 and ~ values but show a pronounced 
crankshaft effect. The other dinucleotides that are 
clustered in the crankshaft region have lower 6 and 

values and hence show more A-DNA character- 
istics. Dinucleotide 7 obviously is intermediate 
between BI-DNA and B,-DNA. The other dinucle- 
otides are in the B r D N A  region. 

Udj049 ÷ has overhanging bases which expresses 
itself in a diverse identification of patterns all of 
which have indeed more or less B-DNA character- 
istics although, in particular, dinucleotides 8 and 9 
are in regions between A-DNA and B-DNA. 

In bdpf24 the normal phosphoro-di-ester linkage in 
the backbone was replaced with a phosphorothioate 
linkage. Nevertheless, the B-DNA characteristics, 
with three dinucleotides in a B r D N A  region and 
three dinucleotides in a BI~-DNA region, remained 
intact. 

The udg028 sequence is a loop structure. This is 
accomplished by some specific torsion angle combi- 
nations. Dinucleotide 2 has a very low ~ but 
no corresponding high V value. A high E value is 
accompanied by a very low ( which explains the 
identification as BH. Also dinucleotide 3 has a high e 
value but because there is also a high ( it is clustered 
in the BI region. 

5. CONCLUSIONS AND OUTLOOK 

We used a self-organizing feature map to cluster 
DNA dinucleotides. It is demonstrated that 244 
patterns in a training session are distributed over the 
maps corresponding to their DNA-class character- 
istics. An advantage over traditional multivariate 
techniques, such as principal component analysis, is 
that no parametric model is assumed. Moreover, by 
studying the weights that result from a training 
session, one finds how the characteristics of specific 
patterns change while going from one unit to another. 
This results in a kind of DNA-class borders. 

By displaying the numbers of patterns clustered on 
each unit, a density map is created. On some units 
zero or one pattern will be clustered and hence these 
units have a low density. These units possibly 
correspond to dinucleotides that have torsion angle 
combinations that may be forbidden on sterical 
grounds. Nevertheless, the largest map used in this 
study, the 10 by 10 map, has only a small number of 

units on which no patterns were clustered. On the one 
hand enlarging the grid size would probably result in 
a better DNA class separation and hence a better 
indication of forbidden and accessible areas. How- 
ever, we have to keep in mind that "number of units 
< number of  patterns". Therefore, enlarging the 
grid size beyond 10 by 10 leads to creating some kind 
of memory rather than a low-dimensional map 
for clustering purposes. On the other hand, the 
indication of accessible and forbidden areas in the 
present map is exclusively based on training patterns 
that are assumed to have acceptable torsion angle 
combinations. 

It is demonstrated in this paper that unknown 
patterns are identified well using the weights that 
result from the training session. Some of the 
unknown patterns are clustered on units correspond- 
ing to only one training pattern but none of the 
unknown patterns are clustered on units holding no 
training patterns. 

The applicability of the method is shown by means 
of the elegant manner it characterizes the variety in 
the DNA dinucleotide data set. This shows that the 
method has the potential to be used in more complex 
clustering or in characterization tasks concerning 
other types of nucleotides. 
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