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Roughening and preroughening in the six-vertex model with an extended range of interaction

Paul J. M. Bastiaansen* and Hubert J. F. Knops
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

~Received 6 July 1995!

We study the phase diagram of the body-centered solid on solid~BCSOS! model with an extended interac-
tion range using transfer matrix techniques, pertaining to the~100! surface of single-component fcc and bcc
crystals. The model shows a 232 reconstructed phase and a disordered flat phase. The deconstruction transi-
tion between these phases merges with a Kosterlitz-Thouless line, showing an interplay of Ising and Gaussian
degrees of freedom. As in studies of the fully frustratedXY model, exponents deviating from Ising are found.
We conjecture that tricritical Ising behavior may be a possible explanation for the non-Ising exponents found
in those models.

I. INTRODUCTION AND MOTIVATION

The recent interest in surface phase transitions focuses on
the interplay between roughening and reconstruction degrees
of freedom.1–9The further-than-nearest-neighbor interactions
between surface atoms governs the reconstruction of the sur-
face. Den Nijs and Rommelse have established the existence
of a phase intermediate between the rough and the recon-
structed phase in a simple restricted solid on solid~RSOS!
model, in which the surface is disordered but remains flat on
average.3 They called it the disordered flat~DOF! phase. The
principle behind the DOF phase is the simultaneous exist-
ence of Ising degrees of freedom~which govern the recon-
struction of the surface! and Gaussian degrees of freedom
~which govern the roughening!, and the possibility of sepa-
rate and joined transitions of these degrees of freedom.

Recent research on surface models with further-than-
nearest-neighbor interactions has clarified much of the nature
of the DOF phase and its transitions to flat, rough, and re-
constructed phases.5,8 The long range of the interactions
present in these models disables exact solutions, and severely
limits the maximum system sizes in numerical calculations.
For that reason, only limited work has been done on more
realistic models than that studied by Rommelse and Den
Nijs. Mazzeo, Carlon, and Van Beijeren studied the~100!
surface of a two component bcc crystal like CsCl,9 and
Mazzeo, Jug, Levi, and Tosatti the~110! surface of a single
component fcc crystal, pertaining to the noble metals.6,7

The RSOS model of Rommelse and Den Nijs3 describes
the ~100! surface of sc lattices. The reconstructed phase
present in their model, which they call body-centered solid
on solid ~BCSOS! flat, has a simple BCSOS nature and
therefore displays an Ising-type degeneracy. These in-plane
degrees of freedom become disordered when temperature is
increased, giving rise to a DOF phase. It is therefore natural
to expect this transition, generally referred to as
deconstruction,1 to be in the Ising universality class, and
indeed this is found in their numerical calculations. The
~100! and~110! surfaces of bcc and fcc lattices, on the other
hand, give rise to reconstructed phases of a more compli-
cated nature. In the case of a~110! surface this is the missing
row ~MR! reconstructed phase, also referred to as 231
reconstructed.6 In the case of a~100! surface it is the 232

reconstructed phase.9 The latter applies to our model. Both
phases display a fourfold degeneracy, as will be described in
Sec. IV. Deconstruction of this phase can follow different
scenarios and there is noa priori reason why its universality
class should be Ising.8

When the Gaussian, out-of-plane degrees of freedom be-
come disordered, the surface roughens. The roughening tran-
sition is of the Kosterlitz-Thouless~KT! type. When both
transitions, deconstruction and KT, merge into a single line
the surface roughens and deconstructs at the same tempera-
ture. The question as to the universality class of this transi-
tion seems to have a different answer for different models.
Den Nijs5 studies the~110! surface of an fcc crystal by
means of a four-state chiral clock step model, and finds the
transition to be of a decoupled nature, i.e., Ising3 KT.
Mazzeo, Carlon, and Van Beijeren, however, find that the
two transitions actually never merge but only become expo-
nentially close.9 Nevertheless, the exponents on the decon-
struction branch deviate from Ising even when both transi-
tions are still well separated.9,10We shall come back later to
this point.

The close interplay between Ising and Gaussian degrees
of freedom is also observed in fully frustratedXY models
~FFXY!, where the frustration is responsible for an Ising-
type degeneracy, whereas theXY degrees of freedom are
Gaussian.11–17The generic version of this type of models, the
coupledXY-Ising model,12,18 is actually dual to the clock
step model of Den Nijs5 in the zero chirality limit. In the
FFXY models, both transitions are found to be either closely
separated17 or simultaneous, and exponents deviating from
Ising are found by many authors. The same puzzling phe-
nomenon thus is observed here, and the question as to the
universality class of the transition in the FFXY models may
well be the same question as in the case of the surface mod-
els.

In this paper, we present the study of the~100! surface of
a single component fcc crystal like argon. The model is
equipped with further than nearest neighbor interactions, and
we believe it to be a realistic description of these surfaces. In
another paper, we present Monte Carlo~MC! simulations on
a Lennard-Jones fcc structure pertaining to argon, to calcu-
late the coupling constants of our model.19 Our model exhib-
its a 232 reconstructed phase which is not, to our knowl-
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edge, realized in nature. Indeed, our MC calculations on
argon show that its~100! surface does not exhibit a DOF or
reconstructed phase. Nevertheless, our calculations indicate
what kind of interactions on a~100! surface can give rise to
DOF phases.

Moreover, we also observe that the interplay between
roughening and Ising degrees of freedom yields exponents
deviating from Ising. We find that the exponents agree fairly
well with those found in the FFXY models, and argue that
both transitions are in the same universality class. To classify
the values of the exponents at the deconstruction transition,
we want to put forward the conjecture that instead of Ising
behavior, tricritical Ising behavior may be involved.

This paper is organized as follows. In Sec. II we give a
description of our model. In Sec. III we present the phase
diagram. In Sec. IV we study the ordered phases and the
possible interfaces between them, in order to understand
qualitatively the behavior of the model and to present the
techniques used to derive the phase diagram. In Sec. V we
present the results of the calculation of the critical exponents.
In Sec. VI we put forward our conjecture of tricritical Ising
behavior.

II. DESCRIPTION OF THE MODEL

The model under study is an extended version of theF
model20 which was exactly solved by Lieb.21 The F model
falls into the larger class of six-vertex models. In 1977, Van
Beijeren formulated these six-vertex models in terms of
heights, in order to use them to describe surfaces of bcc and
fcc crystals.22 Hence the name BCSOS model.

Our model is formulated on a square lattice, where on
every lattice site a height variable is defined that can have
integer values, with the restriction that nearest neighbor
heights always differ by11 or21. This can be represented
by putting an arrow on each bond of the dual lattice, giving
rise to the six possible vertices of the six-vertex model on the
sites of the dual lattice. The arrows of each vertex satisfy the
ice rule: two arrows point inward, two arrows point outward
~Fig. 1!.

The formulation in terms of heights gives rise to two
equivalent sublattices, with heights even on one lattice and
odd on the other. Let us, throughout this paper, denote the
‘‘even’’ sublattice withA and the ‘‘odd’’ sublattice withB.
The interactions between heights of different sublattices only
exists by means of the above-mentioned restriction, whereas
the interaction between heights of the same sublattice are
between nearest and next-nearest neighbors. Equal heights of
the atoms are given a Boltzmann weight 1, whereas height

differences of62 are given a Boltzmann weightW in the
case of nearest neighbors andK in the case of next-nearest
neighbors.W andK are the parameters of the phase diagram.
We limit ourselves to that part of the phase diagram where
inequality of next-nearest neighbor heights is disapproved of,
in other words,K<1.

An alternative formulation is obtained when height differ-
ences between atoms of a sublattice are indicated by an ori-
ented loop. Each vertex corresponding to a height difference
on one of the two sublattices carries a net polarization that
can be indicated by an arrow, as depicted in Fig. 1. The
collection of all polarization arrows forms loops, each loop
pertaining to one of the two sublattices, so that we can dis-
tinguish betweenA andB loops. A loop indicates a height
difference of62. Adjacent loops of the same sublattice carry
antiparallel arrows, whereas adjacent loops of different sub-
lattices carry parallel arrows. Loops of different sublattices
do not cross. In terms of these loops, the Boltzmann weights
areWK2 per unit length for a straight piece,WK for a corner
andW2 for an intersection; see Fig. 2.

The lineK51 in the phase diagram implies absence of
next-nearest-neighbor interactions, and the model equals the
exactly solvedF model. On this line, the surface is flat for
W, 1

2, and exhibits a KT transition atW5 1
2 to a rough phase.

We check our computer program against this exact solution,
and it enables us to get an indication of the accuracy of the
techniques used to estimate the critical exponents of the
model. This is the more important, as the long range of the
interaction limits the maximum system size which we can
reach with our calculations.

The other extreme of the phase diagram isK50, where
all height differences between next nearest neighbors of a
sublattice are forbidden. The lineK50 thus corresponds to a
flat surface for allW. This can be established by filling the
lattice with vertices 5 and 6 in a checkerboard configuration.
No loops are present on the lattice, and its free energy is
equal to 0. This phase is twofold degenerate, and exists for
W,1. The average height^h& is half-integer.

For W.1, it is cheaper to form a reconstructed phase,
where the heights of one of the two sublattices are all equal
~say 0!, whereas the heights of the other sublattice are alter-
nately11 and21. In terms of loops the lattice is filled with
intersections, as in Fig. 3, where the phase is depicted, to-
gether with possible interfaces between the different realiza-
tions of this phase.A (B) loops indicate height differences of
the even~odd! sublattice and are depicted as solid~dashed!
lines. The phase is called 232 reconstructed. It has a free

FIG. 1. The vertices of the six-vertex model. Height differences
on the sites are indicated with thin arrows. The bold arrows indicate
the net polarization of the vertices, and correspond to a height dif-
ference on one of the two sublattices. The vertices 5 and 6 are flat
and remain empty.

FIG. 2. Boltzmann weights in terms of loop configurations. Dots
denote the positions of the vertices. The presence of a loop~thick
lines! between two atoms of one sublattice denotes a height differ-
ence of these atoms. Loops are characterized asA or B loops,
depending on the corresponding sublattice.
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energyf52 ln(W) for K50, and will therefore be stable for
W.1. It is fourfold degenerate~apart from the infinite de-
generacy resulting from overall height changes!. At W51
there is a phase transition between the flat and the recon-
structed phase. At and slightly aboveK50 all possible ex-
citations are heavily suppressed, so that the transition must
be of first order.

III. THE PHASE DIAGRAM

First let us present the phase diagram of the model~Fig.
4!. The line K51 corresponds to the exactly solvedF
model. ForW, 1

2 the surface is flat. AtW5 1
2 there is a KT

transition into the rough phase, where the model renormal-
izes to the Gaussian model. The whole area below the line
T-R-S-U belongs to this rough phase.

At K50, where next nearest neighbors at both sublattices
are forced to be of equal height, there is a first order transi-
tion from the flat phase into the 232 reconstructed flat
phase. At pointQ this first order transition goes over into the
lineQ-R, which is a preroughening line.3 To the right of this
line there is a DOF phase. The lineQ-S is an Ising-like
transition into the 232 reconstructed phase. We do, actually,
not find Ising exponents on this line.

This part of the phase diagram closely resembles that of
Den Nijs.4 In this reference he considers an RSOS model
with nearest and next-nearest-neighbor interactions. He also
finds a first order line, where the average surface height

changes from integer to half integer, continuing into a pre-
roughening line.

At pointQ in our phase diagram, the interface free energy
between integer surface height and half-integer surface

FIG. 3. Interfaces between different realiza-
tions of the 232 reconstructed ground state. The
configuration is depicted in terms of the loops in
Fig. 2. Vertices reside on the sites of the square
lattice ~thin, dotted lines!. The solid lines are the
A loops; the dashed lines are theB loops. Digits
indicate the heights of the alternating sublattice;
heights of the fixed sublattice not being indicated.
The phase in the upper left corner of each of the
pictures isA1(1), the 1 indicating the average
height. ~a! is the double step interface between
A1(1) andA1(3), ~b! is the Ising interface be-
tweenA1(1) andA2(1), and~c! and~d! are the
single step interfaces betweenA1(1) and
B1(2) andB2(2), respectively. The ‘‘thick’’ part
of theA-B interface can be seen as a ‘‘thin’’ part
together with an additional Ising interface.

FIG. 4. The phase diagram of the BCSOS model with extended
interaction range. The parameterW is the Boltzmann weight per-
taining to a nearest neighbor height difference on a sublattice.K is
the weight pertaining to a next nearest neighbor height difference.
The line K51 corresponds to the exactly solvedF model. The
dashed line is the estimateWK3/25 1

2 of the KT transition.
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height vanishes, which corresponds to1
2-step melting. On the

preroughening line the surface is rough.
On the lineS-U the surface roughens and deconstructs

simultaneously. In this respect our phase diagram differs
from that of Ref. 4 where the two transition lines~roughen-
ing and deconstruction! actually cross. The behavior in our
model is more similar to the clock step model analyzed later
by Den Nijs,5 where the reconstructed rough phase does not
exist. This phase, where the Ising order is still present but the
surface is already rough, does not exist in our model. The
transition lineS-U therefore includes roughening and simul-
taneous disordering of the Ising degrees of freedom. We do
not find Ising exponents on this line.

The merging of the Ising-like transitionQ-S and the KT
line R-S is also described by Mazzeoet al.9 They claim that
in their model the lines never actually merge, but become
more and more closely separated. We believe, however, that
this question is by no means settled and cannot be settled by
purely numerical methods. Two separate transitions occur-
ring nearby will strongly influence each other and are likely
to join. A true resolution of this point will require analytical
methods, probably employing the supersymmetry which
might be invoked byST invariance.5

In our calculations, the limited system size prevents an
accurate determination of the transition points. We choose to
interpret our data such that both lines meet at pointS, but
stress that we are neither certain of its existence nor of its
precise location. An analytical approach will be necessary to
settle this open question.

IV. INTERFACES AND CRITICAL EXPONENTS

In both the flat and the reconstructed phase the surface is
ordered. The flat phase is twofold degenerate with respect to
its arrow representation, the phases corresponding to an av-
erage height of6 1

2 mod 2n, respectively. It undergoes a
roughening transition when the free energy of the interface
between the two realizations of this phase vanishes. This
interface has the character of a single step and consists of the
A or B loops in Fig. 2 as discussed before. AtK51 this
transition takes place atW5 1

2. The weight per unit length of
the interface is thenW. For KÞ1 this weight isWK2 for a
straight piece andWK for a corner. The average weight is
thereforeWK3/2 and we can estimate the KT lineT-R by
plotting WK3/25 1

2 in the phase diagram~the dotted line in
Fig. 4!, giving a good agreement with the actual line. This
means that roughening on the lineT-R is established via the
same mechanism as in theF model.

The reconstructed phase is fourfold degenerate. Heights
on one sublattice are fixed, whereas heights on the other
sublattice alternate in a checkerboard fashion, which can be
chosen in two equivalent ways. The average height equals an
integer. The ground state itself corresponds to a lattice filled
exclusively with intersections of one type of loop. This is
depicted in Fig. 3, together with possible interfaces between
the different realizations of this phase. Note that the degen-
eracy present in the MR reconstructed phase of~110! sur-
faces is of the same type.

Let us denote the phases byA1(n), A2(n), B1(n), and
B2(n). TheA andB refer to the loop type. For the phase
A6(n), the heights of sublatticeA alternate betweenn11

andn21 and those of sublatticeB are fixed. The plus and
minus signs refer to the antiferromagnetic order.

The integern is the height of the fixed sublattice, which is
equal to the average height of the phase. We thus have the
following phases:

A1~n! and A2~n! with n odd,

B1~n! and B2~n! with n even. ~1!

It follows that an interface betweenA andB always carries
~at least! one step up or down.

Figure 3 shows four possible interfaces, bending around a
corner. The phase in the upper left corner in each of the four
figures isA1(n51). The interface in Fig. 3~a! is between
A1(1) andA1(3), anddoes therefore not affect the Ising
order, but only the roughness of the surface. It carries a
double step. The interface in Fig. 3~b! is betweenA1(1) and
A2(1) and does not carry a step but has the character of a
pure Ising-Bloch wall.

In Figs. 3~c! and 3~d! the interfaces are betweenA1(1)
on the one hand andB1(2) andB2(2) on the other. As can
be seen from the figure, the character of the interface is dif-
ferent in the horizontal and vertical directions. The thin,
‘‘cheap’’ part of the interface can be seen as a pureA-B
interface, carrying a single step, whereas the thick, ‘‘expen-
sive’’ part is anA-B interface together with an Ising wall,
which, in the figure, is depicted alongside the single step
interface. A corner in theA-B interface thus creates an Ising
wall, which can eventually split off and wander freely over
the lattice, thereby gaining entropy, as depicted in Fig. 5. It
follows that there is an important interplay between the in-
terfaces of Figs. 3~b!, 3~c!, and 3~d!, or between roughening
and reconstruction degrees of freedom. An attempt to locate
the transition points by just estimating the interface free en-
ergies is therefore likely to fail.

Now it can be seen that in principle two different sce-
narios for deconstruction can be imagined.8 When only the
free energy of the pure Ising interface vanishes, the Ising
order is destroyed. The surface remains flat, as the domain

FIG. 5. The behavior of theA-B interface of Figs. 3~c! and 3~d!.
The ‘‘thick’’ part of the depicted interface consists of a ‘‘thin’’ part
and an Ising part, which can split off and wander over the lattice,
eventually become connected to other single step interfaces. The
solid line is a pureA-B interface; the dashed lines are Ising walls.
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wall does not carry a step, and only one type of loop inter-
sections (A or B! prevails on the surface. It is natural to
assume that this scenario for deconstruction falls in the Ising
universality class. The second scenario applies when single
step interfaces become free, but steps occur in an up-down-
up-down order, such that the surface remains flat. This sce-
nario can apply when parallel steps are repulsive and anti-
parallel steps are attractive. This is the qualitative
mechanism as described by Rommelse and Den Nijs.3 In this
case the Ising order is destroyed and both loop typesA andB
appear on the surface. There is noa priori reason for this
deconstruction scenario to fall in the Ising universality class.
Instead, one could argue it to be prerougheninglike as the
transition involves two phases with different average heights
merging into a single phase with an intermediate average
height. See also Ref. 8 and Sec. V.

The two scenarios give rise to different DOF phases. In
the first scenario, the DOF phase is actually ordered with
respect to the prevailing sublattice loopsA or B and is there-
fore called deconstructed, even, flat~DEF! by Bernasconi
and Tosatti.8 The second scenario gives rise to sublattice as
well as Ising disorder. We will see that in our model the first
scenario applies; therefore the appearing phase is actually
DEF, but as both types generally are referred to as DOF in
the literature, we chose to follow this convention.

Amethod to extract information on the phase diagram and
critical exponents is to force the system to generate inter-
faces by applying different boundary conditions~BC’s!.
When the ground state does, as a result of the BC’s, not fit on
the lattice, the system will be forced to generate an interface
at the expense of a higher free energy. Subtracting the free
energy of the system without an interface yields the pure
interface free energyh. To calculate these free energies we
employ transfer matrix calculations on lattices of dimension
L3`. As compared to Fig. 3, we choose the direction of
transfer to be diagonal. The original six-vertex square lattice
is then tilted over 45 degrees. This enables us to do calcula-
tions on lattices with a maximal dimension of 10A2 in terms
of the lattice distance. We denote this dimension byL510.
The interface free energyh(L) per unit length is then calcu-
lated as

h~L !52
1

L
lnS l8

l D , ~2!

wherel is the largest eigenvalue of the transfer matrix with
L even and periodic BC’s andl8 is the largest eigenvalue
pertaining to other BC’s. ForL odd, we interpolate between
L21 andL11.

With periodic BC’s, the net number of steps on the lattice
is a conserved quantity. As a result, the transfer matrix splits
up into blocks, each block corresponding to a number of
steps which is 0,62,64, . . . .23 The ground state, or the
largest eigenvalue, is to be found in the central block of the
transfer matrix, corresponding to a net number of zero steps
on the surface. We also calculate the largest eigenvalue in the
subcentral block corresponding to two up or down steps. The
corresponding interface free energy is denoted byhs(L) (h
step!.

It is readily seen that the reconstructed ground state only
fits on the lattice whenL is even and periodic BC’s are

applied. WhenL is odd the ground state only fits over the
cylinder when it is shifted by one unit in the diagonal direc-
tion. Under such a shiftA6(n) turns intoA7(n) ~andB6

into B7); hence the system is forced to generate an Ising
wall. The corresponding interface free energy will be de-
noted byho(L) (h odd!.

Furthermore, we perform calculations with antiperiodic
BC’s. The arrows on the bonds of the six-vertex lattice are
flipped on the boundary. As a result, the net number of steps
on the surface is not conserved anymore. Antiperiodic BC’s
also generate an Ising wall, but imply in addition an inver-
sionh→2h of the Gaussian height variables. The interface
free energy will be denoted byh2(L).

And finally, we calculate the largest eigenvalue in the cen-
tral block of the transfer matrix that corresponds to an eigen-
vector which is antisymmetric under arrow inversion. This
eigenvalue allows us to calculate an inverse correlation
length which will be denoted byh i (h Ising!,

h i~L !52
1

L
lnS las

ls
D , ~3!

wherelas is the largest eigenvalue corresponding to an ei-
genvector which is antisymmetric under arrow inversion.
ls is the maximum eigenvalue of the transfer matrix, whose
eigenvector is symmetric under arrow reversion. Hence the
subscripts. The correlation length corresponds to the Ising
order as follows from the symmetry of the involved eigen-
vector.

We do, actually, need to generate still two additional in-
terfaces. We need to distinguish between the two different
deconstruction scenarios described above. Therefore we need
to decide whether there is either only Ising disorder or Ising
as well as sublattice disorder in the DOF region. The re-
quired BC’s therefore should~a! generate an odd number of
steps on the surface, thus coupling anA and aB phase over
the boundary, and~b! be antiperiodic in order to retain the
up-down-up-down order of steps~there can be no up-down-
up-down order of steps when the number of steps is odd and
periodic BC’s are applied!. The corresponding interface free
energy then vanishes when there is sublattice disorder but
remains finite when there is only Ising disorder in the DOF
region. The second additional interface we need to generate
is the pure single step interface which we need to confirm the
Gaussian nature of the preroughening line.

With the direction of transfer chosen as above, it is im-
possible to generate these two interfaces. Therefore we per-
form limited calculations on the same model, but with the
direction of transfer chosen as thevertical direction with
respect to the lattice depicted in Fig. 3. The ground state then
fits on the lattice when its size is an even number of vertices
and when periodic BC’s are applied. With respect to this
direction, a vertical unit shift turnsA6 into B6 ~and a hori-
zontal unit shift turnsA6 into B7). Hence a single step
interface can be generated by choosing the system size odd.
The interface decisive of sublattice disorder is generated by
choosing the system size odd and applying antiperiodic BC’s
as well.

The interface free energies allow us to distinguish be-
tween the various possible phases. ExtrapolatingL→`
yields the infinite size free energy. Performing the extrapola-
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tion with and without the value for the lowest row sizeL52
yields an estimate of the error. In the flat phase, onlyho
vanishes. In the reconstructed flat phaseho , h2 , andhs are
finite. In the DOF phase,h2 andho vanish, and in the rough
phase all interface free energies vanish. Vanishing interface
free energies all exhibit an exponential finite size dependence
everywhere but at criticality, where they scale as 1/L. Plot-
ting Lh(L) for various system sizes thus yields information
about phases, phase transitions, and critical exponents by
standard techniques of finite size scaling~FSS!.24

Interface free energies are inverse correlation lengths, and
scale as

Lh~L !5
L

j
→2px ~4!

at criticality, wherex is the critical exponent pertaining to the
correlation function of the disorder operator that generates
the interface in question.25 The exponentx is extracted by
plottingLh(L) for different values of the system sizeL, and
extrapolating the values at the intersection points of the
curves. The central charge can be calculated from the finite
size dependence of the free energy26

f ~L !5 f ~`!2
pc

6L2
. ~5!

The double step interfacehs scales in the rough phase as

Lhs~L !5
1

2
Kga

2, ~6!

whereKg is the value of the Gaussian coupling anda52 is
the step height. We consider double steps, and extractKg by
extrapolating 1

2Lhs(L). Single steps are more difficult to
treat in this model, as they couple to the Ising order as well.
We will only occasionally need those single step interfaces,
to distinguish between the two possible deconstruction sce-
narios giving rise to DOF and DEF phases, respectively, and
to establish the Gaussian~rough! nature of the preroughening
line. When the model renormalizes to the Gaussian model,
the ratio of the single and double step free energy is precisely
4, as can be read off from Eq.~6!. We will use this prediction
to confirm the Gaussian nature of the preroughening line.

In the rough phase close to the KT transition,Kg assumes
the behavior27

Kg5
1

2
p1AAT2Tc, ~7!

where the critical value12p and the square root are universal.
The quantity (Kg2p/2)2 should vanish linearly when ap-
proaching a KT point. We use this linear behavior as the
identification of a KT transition.

Antiperiodic BC’s imply in particular an inversion
h→2h of the Gaussian height variables. In the rough phase
and on the KT lines, where the model renormalizes to the
Gaussian model, this inversion yields a universal defect free
energy28

Lh2~L !→
1

4
p, ~8!

independent of the value of the Gaussian couplingKg . In the
present model on the lineS-U in the phase diagram, where
Gaussian degrees of freedom couple to the deconstruction
degrees of freedom, it is nota priori clear how to disentangle
this contribution. However, in order to see whether in the
scaling limit a decoupling scenario makes sense, it will be
useful to simply subtract this contribution from the value of
Lh2(L).

It is often taken for granted that the interface free energies
ho and the inverse correlation lengthh i must yield the same
exponentx. The BC’s used to calculateho generate an Ising
wall and correspond to the correlation function of a disorder
operator, which is, in the Ising model, dual to the spin-spin
correlation function.29 This is not necessarily true in the
present case~cf. also Ref. 16!, and we will carefully distin-
guish the different exponents by indicating them withxo and
xi , respectively. The exponent fromh2 will be indicated as
x2 . The exponent pertaining tohs is involved when rough-
ening takes place and is conventionally expressed in terms of
the Gaussian couplingKg . The thermal exponentxt is cal-
culated from the singular behavior of the specific heat. The
singular part of the specific heatC is in our model propor-
tional to the variance of the number of broken~next! nearest
neighbor bonds:

C;2W
]

]W SW ]

]W
f ~W,K,L ! D , ~9!

or a similar expression with derivatives with respect toK.
The specific heat scales as

C;L222xt ~10!

at criticality,24 enabling us to extract the value ofxt .

V. RESULTS

A. The KT and preroughening lines

In the rough phase, under the lineT-R-S-U, the model
renormalizes to the Gaussian model.Lh2(L) assumes its
universal value14p as it should@Eq. ~8!#. The lineT-R-S is
identified as a KT transition, where single steps melt, via the
linear behavior of (Kg2

1
2p)

2 as in Eq.~7!.
The lineP-Q is a first order transition and goes over into

the preroughening lineQ-R. At the preroughening line, the
surface is rough and the model renormalizes to the Gaussian
model. The preroughening transition, together with its first
order continuation, is now well understood.3,5 It draws a
close resemblance to theF line which is, in our phase dia-
gram, the lineK51. At the first order line, there is coexist-
ence of different ordered phases with different surface
heights. At pointQ ~or similarly, at pointT!, the interface
free energy between these different heights vanishes, and the
surface roughens. Coexistent phases at pointQ are integer
valued ~the reconstructed phases! and half-integer valued
~the flat phases!. This means that roughening of the surface
takes place via12-step melting. As a consequence, the univer-
sal value of the Gaussian couplingKg equals 2p at pointQ.
The preroughening lineQ-R is a line with continuously
varying critical exponents, as is theF line forW. 1

2.
Roughening of surfaces is conventionally described by

the sine-Gordon Hamiltonian
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H5E d2r H 12Kgu¹f ru22U2 cos~2pf r !

2U4 cos~4pf r !J , ~11!

wheref denotes the average surface height. In the flat phase,
the average surface height is half-integer, which means that
U2,0. In the reconstructed phase this average height is in-
teger, meaningU2.0. The lineQ-R therefore must corre-
spond toU250, meaning that integer as well as half-integer
average surface heights are allowed. The renormalization to-
wards the Gaussian model on this line is governed by the
parameterU4 which remains irrelevant up to the pointQ
whereKg takes the renormalized value 2p.

Our numerical calculations confirm this. On the prerough-
ening lineLh2(L) converges to

1
4p as it should. The value

of Kg should equal
1
2p at pointR and increase to 2p at point

Q. We find atK50.60 the valueKg51.754(14), slightly
above12p, andKg52.07(5) atK50.55.Kg increases further
to 2p at pointQ. Moreover, Gaussian behavior predicts that
the ratio of the single and double step interface free energies
is 4. We determine this ratio at pointK50.55 and find it to
be 4.1~2!.

The DOF phase, confined by the linesQ-R-S-Q, is char-
acterized by a finite value of the double step interface free
energy and vanishing ofho andh2 . Also the central charge
c should converge to zero in this region, but we do not see
this as there is a strong crossover to Gaussian behavior in
this region. Clear evidence for the existence of the DOF
phase is given in Fig. 6, whereLh2(L) is plotted for differ-
ent values ofL on the lineK50.60. Intersection points of
the curves indicate critical points. Two clearly distinct inter-

section points are found on this line, the value ofLh2(L)
strongly decreases in between these points, and we expect it
to drop to zero for larger values ofL. We take this as con-
clusive evidence for the existence of a DOF phase in be-
tween these points.

Strong crossover is to be expected in the DOF region,
which is relatively small, and on the lineQ-S, and we should
be careful interpreting our data. The parameterU2 of the
sine-Gordon model in Eq.~11! is relevant in the renormal-
ization sense, but still small, as it vanishes on the prerough-
ening line. From the lineR-S we see that the value of the
Gaussian couplingKg is indeed above its universal value
1
2p, but yet slightly. This means that the DOF region, to-
gether with the lineQ-S, exhibits a strong Gaussian-like
behavior and that the real, flat nature of the surface only
becomes apparent for much larger system sizes.

B. The line Q-S

The most interesting part of the phase diagram are the
lines Q-S and S-U, as they exhibit the interplay between
roughening and reconstruction degrees of freedom. The lo-
cation of the lineQ-S is determined by the vanishing of the
interface free energiesh2 andho . First we determine which
of the two scenarios, as described in Sec. IV, applies to the
deconstruction transitionQ-S. We examine the behavior of
the required interface as described in this section. It is calcu-
lated using the ‘‘vertical’’ transfer matrix, odd system size,
and antiperiodic BC’s. Its free energy on the lineK50.55 is

FIG. 7. The interface free energyLh(L) of the interface which
distinguishes between sublattice order and disorder in the DOF re-
gion. It is calculated using antiperiodic boundary conditions that
coupleA loops withB loops over the boundary. It is calculated on
the line K50.55 for L55,7,9,11, curves increasing on the right
corresponding to increasing values ofL. Extrapolating the location
of the intersection points gives a value ofW'1.03. The prerough-
ening transition is found to be atW51.08 on this line, whereas
deconstruction is located atW51.25. This implies that the intersec-
tion points actually belong to the preroughening transition, and that
h(L) remains finite in the DOF region, indicating sublattice order-
ing. See the text for further explanations.

FIG. 6. Seam free energyLh2(L) for L52,4,6,8,10 on the line
K50.60. LargerL values correspond to steeper curves. The inter-
section points on the right and on the left clearly correspond to
different locations. The values ofLh2(L) in between drops to zero,
indicating a DOF phase. The intersections on the left converge to
1
4p, indicating the Gaussian character of the preroughening line.
The intersection points on the right clearly are above1

4p, indicating
the non-Ising character of the deconstruction transition.
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depicted in Fig. 7. We find that it remains finite in the DOF
region up to the preroughening line. This is conclusive to
decide that it is the first scenario which applies, meaning that
only the Ising order is destroyed in the DOF region, but that
still one of the two sublattice loopsA or B prevails on the
surface. It is therefore expected that the lineQ-S is an Ising
transition with central chargec5 1

2. We are, however, not
able to confirm this.

On the line we find, as expected, strong crossover to
Gaussian behavior. Convergence of the central charge and
the exponent pertaining toh2 is not smooth. Of the central
charge, no estimate whatsoever is made. The exponentx2

varies from 0.173~9! to 0.192~5! in the directionQ→S, but
we should be careful interpreting this as we find a non-
smooth convergence. Moreover, the prediction of the loca-
tion of the transition differs from other methods. All of this is
to be expected from the strong crossover. Figure 6 shows
curves forLh2(L) on the lineK50.60 for different values
of L.

The exponentxo does not suffer from crossover as it is
insensitive to Gaussian behavior. Convergence of thisxo is
smooth and the estimates do not vary over the lineQ-S. We
have very few points to determine this value because of our
limited system sizes, but with smooth convergence we find
xo50.068(8). This value definitely differs from the Ising
valuex5 1

8. The exponent pertaining toh i yields a value of
xi50.204(5) at pointK50.60, which is also inconsistent
with Ising. Finally we determined the thermal exponentxt . It
is difficult to determine and exhibits generally a bad conver-
gence. AtK50.60, however, the convergence shows to be
good and yieldsxt50.88(1). Its Ising value isxt51.

No exponent whatsoever is found consistent with Ising on
the lineQ-S.

C. The line S-U

On the lineS-U, the KT lineR-Smerges with the decon-
struction line. We do not expect Ising exponents, however, as
we did not find them on the lineQ-S. Surprisingly, we find a
~smoothly converging! central charge value ofc51.47(1),
which is close to its KT3 Ising value, but seems to be even
lower. However, central charges are notoriously difficult to
calculate and the convergence could be an artifact of our
small system sizes.

The Gaussian couplingKg does not display the universal
behavior of Eq.~7!, and its value at the transition seems to be
lower than the universal value12p.

The exponent corresponding toh2 displays smooth con-
vergence and yields a value ofx250.200(2). The ~admit-
tedly inaccurate! determination of the exponent fromho
gives xo50.07(2). The exponent fromh i displays non-
smooth convergence and givesxi50.15(1), but theestimate
of the error may be much too small. The thermal exponent
shows for largerW bad convergence and is impossible to
determine. Just beyond pointS, however, determination is
still possible and we findxt50.73(3) atW51.60 and
xt50.72(7) atW51.75. Beyond this point,xt seems to de-
crease, but no conclusions as to its value can be inferred
from our data. We cannot even exclude the possibility of the
transition becoming first order further away from pointS.

VI. DISCUSSION

Interpretation of our data apart from the linesQ-S and
S-U is straightforward. The lineT-R-S is a KT line,Q-R is
a preroughening line, andQ-P is a first order line, actually
extending to theK50 axis.

The lineQ-S is expected to be an Ising line but does not
display Ising exponents. This could be due to the fact that it
is squeezed between the two multicritical pointsS andQ.
Indeed in the clock step model of Den Nijs5 where the mul-
ticritical point Q is absent, Ising-like behavior is found. On
the other hand, in the model studied by Mazzeoet al.9 the
phase diagram is in this respect similar to that of the clock
step model, but these authors do find exponents deviating
from Ising.10

A feature which is present in both our model and that of
Mazzeoet al. but not in the clock step model is the presence
of the vertices 5 and 6~Fig. 1!, to which no Ising spins are
assigned. These vertices act like vacancies with a fugacity
1/W. It is quite conceivable that it is these vacancies that
alter the universality class. The model displaying these va-
cancies is the tricritical Ising or Blume-Capel model.30 The
model shows a critical~Ising! line terminating in a tricritical
point beyond which the transition becomes first order.

The central charge of the tricritical Ising point isc5 7
10

and its exponents arex5 3
40,

1
5,

7
8, and

6
5.
31 Apart from the

central charge, which shows a notorious bad convergence,
we are able to identify the three most relevant exponentsx.
The exponent340 ~0.075! is identified withxo50.068(8) on
Q-S and ~with larger error! with xo50.07(2) onS-U. The
exponent15 ~0.20! corresponds toxi50.204(5) onQ-S, but
not on S-U, wherexi50.15(1). The third exponentx5 7

8

~0.875! is found asxt50.88(1) on the lineQ-S. The last
exponentx2 that we measured alongQ-S stems from anti-
periodic BC’s and suffers from strong crossover to Gaussian
behavior. In the Gaussian phase, this exponent isx5 1

8 as
follows from Eq.~8!. If the crossover is perfect, one tends to
think that this value adds up to the actual value, which means
that the exponent should be identified with152

1
8 yielding

~coincidentally! 3
40. Indeed, the finite size value rises up to

about 0.20 and then starts to decrease for larger values ofL.
The exponentx2 should thus be identified with340. To com-
plete the identification, the least relevant exponentx5 6

5

should be sought for.
In summary, the lineQ-S shows tricritical Ising exponents

within the error bars. On the lineS-U, where the surface
becomes rough as well, deviations from this behavior are
found.

This coincidence could lead one to the conjecture that this
part of the phase diagram is to be understood as a tricritical
Ising model~coupled to a Gaussian model!. However, apart
from the fact that the tricritical Ising exponents are found
along the whole lineQ-S and not in a single point, the puz-
zling feature is that the scaling fields to which these expo-
nents belong do not fit. Our magnetic exponentxi is identi-
fied with the thermal tricritical exponentx5 1

5 while our
thermal exponentxt appears as themagnetictricritical expo-
nent x5 7

8. Further research is needed to see whether the
remarkable coincidence of the calculated exponents with the
exponents of the tricritical Ising model is a mere accident or
whether there is a deeper connection. A better understanding
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is even more called for in view of the large number of recent
papers that discuss models with similar behavior.

Mazzeo, Levi, Jug, and Tosatti studied deconstruction and
roughening of the Au~110! surface in a MC simulation.6

They find two separate but nearby transitions, and claim that
the deconstruction transition is in the Ising universality class.
Their result for the exponent

g

n
5222x, ~12!

wherex is a magnetic exponent, isg/n51.8(2), which cor-
responds to an exponentx50.1(1), actually consistent with
Ising as well as tricritical Ising behavior. The specific heatC
shows a logarithmic size dependence, indicating Ising-like
behavior, but, as argued in Ref. 13, power law and logarith-
mic behavior may be very difficult to distinguish. We con-
clude therefore that their results do not necessarily indicate
Ising behavior but are consistent with behavior deviating
from Ising as well.

Mazzeo, Carlon, and Van Beijeren9 study the phase dia-
gram of the two-component BCSOS model. They find a
roughening transition initially separated from a deconstruc-
tion transition. The latter falls into the Ising universality
class. When the two transitions become nearby, they find
exponents deviating from Ising. They find a magnetic expo-
nent xo well below the Ising value18 and a central charge
above3

2.
10

Another model showing an interplay between Gaussian
and Ising degrees of freedom is the FFXYmodel. The model
is believed to be equivalent with a line in the full phase
diagram of the coupled XY-Ising model, with
Hamiltonian12,18

H52(
^ i , j &

A~11s is j !cos~u i2u j !1Cs is j . ~13!

The angle variablesu are theXY variables and thes are
Ising spins. The model shows an Ising line and a KT line,
merging into a single critical line that eventually becomes
first order.12,18 In studies of the FFXY model, most authors
find that there is a single transition with exponents deviating
from Ising.11,13,15,16The hypothesis of the two transitions to
be simultaneous is not always confirmed14 or is rejected.17 It
is thus believed that the FFXY model is located in the phase
diagram of the coupledXY-Ising model close to the merging
of the Ising and KT lines. The single critical line of this

model shows varying critical exponents, presumably due to
crossover. The exponents found in the above mentioned pa-
pers display roughly the same values as in our model on the
line S-U. The thermal exponentxt is generally found some-
what lower than the tricritical Ising value78, the exponent
pertaining toh2 agrees fairly withx5 1

5, and the correlation
function exponentxi is about 0.15.

We therefore conjecture that the joined transitions of the
two-component BCSOS model, our model, and the coupled
XY-Ising model fall into the same universality class. We find
varying critical exponents along this line, and the transition
may eventually become first order, as in the coupledXY-
Ising model.

VII. CONCLUSIONS

We have calculated the phase diagram of a single-
component BCSOS model with nearest and next-nearest-
neighbor interactions between atoms of each of the two su-
blattices, using transfer matrix techniques. We found a rich
phase diagram, with flat, 232 reconstructed, DOF, and
rough phases. Existence and character of the preroughening
transition between flat and DOF phases as established by
Den Nijs3,4 are confirmed by our calculations. The Ising-like
deconstruction transition between the reconstructed and DOF
phases actually shows exponents deviating from Ising. Merg-
ing of this line with a KT transition line gives rise to a
simultaneous roughening and deconstruction transition with
exponents deviating from Ising.

We stress the similarity of this interplay between rough-
ening and Ising degrees of freedom with that in fully frus-
tratedXY models, note that the observed exponents in both
cases roughly coincide, and therefore argue that both transi-
tions fall in the same universality class.

We observe qualitatively that the interplay between
roughening and Ising degrees of freedom in our model may
result in the effective appearance of Ising vacancies in the
model, and compare our calculated critical exponents with
those of the tricritical Ising point present in the phase dia-
gram of the Blume-Capel model. We observe a remarkable
coincidence, and conjecture that tricritical Ising behavior
rather than Ising behavior may well be involved.
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