
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/27604

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16116515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/27604

Hairy Search Trees
C . H. A . K o s t e r a n d T h . P. v a n d e r W eid e

D epartm ent of Information System s, University o f Nijmegen, Toernooivetd, NL-6525, ED Nijmegen,
The Netherlands

Email: {kees.tvdw} (a).cs.kun.nl

Random search trees have the property that their depth depends on the order in which they are built. They
have to be balanced in order to obtain a more efficient storage-and-retrieval data structure. Balancing a
search tree is time consuming. This explains the popularity of data structures which approximate a
balanced tree but have lower amortized balancing costs, such as AVL trees, Fibonacci trees and 2-3
trees. The algorithms for maintaining these data structures efficiently are complex and hard to derive.
This observation has led to insertion algorithms that perform local balancing around the newly inserted
node, without backtracking on the search path. This is also called a fringe heuristic. The resulting class of
trees is referred to as 1-locally balanced trees, in this note referred to as hairy trees. In this note a simple
analysis of their behaviour is provided.

Received February 24 1995, revised August 16 1995

1. HAIRY TREES

Locally balanced search trees have been invented and
analysed a long time ago [1, 2], but they have not become
as popular as unbalanced search trees or AVL-trees. In
this note, we show how to obtain a simple form of locally
balanced trees and to analyse their behaviour. These
hairy trees are a class of search trees, characterized by:

is hairy (/) s
Vnodeveriv ^aS son s $ ÍS leaf]

The intuition behind this condition is that it prevents
trees from having list-like substructures longer than two
nodes (‘bare twigs’). Some examples of hairy trees are
presented in Figure 1.

The class of hairy trees can be described by the
following recursive definition:

1 . i s hairy (e)
2. If t is a singleton tree and x some key value, then:

• i s h a iry (/)
• i s h a iry (Tree (x, t) e))
• i s h a iry (Tree (x, e, /)).

3. If t { and t2 are both non-empty hairy trees and x is
some key value, then i s hairy(Tree(x, ¿j, ¿2))*

where e is the empty tree, and Tree (x , / i , /2)
constructor of trees. We will also overload this con
structor for singleton trees: Tree (x) ~ Tree (x, e, e). The
above inductive definitions give us the opportunity to use
structural induction in reasoning about hairy trees.

Definition 1- The function sin g le counts the number
of single-son nodes in a tree:

single (e) = 0
single (Tree (*, tu t2)) =

i f ty = e A t2 = € then 0
elif t\ = e V t2 = e then 1

else s in g le (íj)
+ s in g le fe)

T h e C o m p u t e r J o u r n a l ,

Definition 2. The number o f leaves o f a tree is defined
by:

leaves (e) = 0
leaves (Tree (x)) — 1
leaves (Tree (x¡ t\, ¿2)) =

leaves (/j) + leaves (t2) if t\

The following property is easily proved by structural
induction:

L em m a 1.

i s hairy (/) => 0 ^ single (/) ^ leaves (/)

Definition 3. The number o f keys in a tree is defined
by:

nkeys (e) = 0
nkeys (Tree (x t ij, t2)) = 1 -f nkeys (t\) 4- nkeys (t2)

Definition 4. The number o f external nodes o f a tree is
defined by:

ext (e) — 1

ext (Tree (x) t{i t2)) = ext (ti) + ext (t2)

L e m m a 2.

nkeys (t) + 1 = ext (f) — single (*) + 2 x leaves (/)

Our goal in introducing hairy trees is to reduce the ratio
between the number of single-son nodes and the number
of external nodes in a search tree. This ratio will be
denoted as A(/).

L em m a 3.

i s hairy (*)=*►()< A(¿) < 3

Both bounds are sharp. This lemma is easily proved
using the two previous lemmas.

V ol . 38, No. 8, 1995

692 C. H. A. K o s t e r a n d Th. P. v a n d e r W e i d e

FIGURE 1. Two hairy trees and a non-hairy one.

In general, hairy trees are not balanced. In the worst
case, a hairy tree of n elements has depth \{n 4- 1)/2~| (see
Figure 2).

2. IN S E R T IO N IN HAIRY SEARCH TREES

We present1 the operation en terh for inserting a key into
a search tree, which maintains the search tree as a hairy
tree by restructuring it whenever a node is inserted at the
end of a twig. Its structure follows the case-distinction in
the definition of i s hairy.

PROC enterh (TREE VAR t , EL CONST e) :
{ i s hairy search tree (t) }
IF i s empty (t) THEN t := tree (e)

THEN enter l e f t
THEN enter right

ELIFe < t .key
ELIF t . key < e
FI
{ i s hairy search tree (t) , i s in (e, t) }

ENDPROC enterh;

with the refinements:

enter l e f t :
IF i s empty (t . le f t)
THEN extend le f t
ELIF i s empty (t .r ight)
THEN

IF e < t . le ft .k e y
THEN enter le f t l e f t
ELIF t . l e f t .key < e
THEN enter l e f t right
FI

ELSE enterh (t . l e f t , e)
FI.

enter r igh t :
IF i s empty (t .r igh t)
THEN extend right
ELIF i s empty (t . l e f t)
THEN

IF e < t .right.key
THEN enter right l e f t
ELIF t , r ig h t . key < e
THEN enter right right
FI

FIGURE 2. The worst hairy tree.

ELSE enterh (t . r ig h t , e)
FI,

extend l e f t :
t . l e f t := tree (e) .

enter l e f t l e f t :
t : = tree (t . le f t .k e y , tree (e) , tree (t .k ey)) .

enter l e f t r igh t :
t : - tree (e, t . l e f t , tree (t .k e y)) .

extend righ t :
t .r igh t : - tree (e) .

enter r igh t r igh t :
t : - t r e e (t . r i g h t .key, tree (t .k e y) ,

t r e e (e)).

enter r igh t l e f t :
t := t r e e (e, tree (t .k e y) , t . r ig h t) .

The correctness of this algorithm is easy to prove, since it
closely follows the inductive structure of the definition of
i s ha iry . The implementation may be further optimized
by transformational techniques (unfolding, specializa
tion and elimination of recursion).

3. EFFICIENCY OF HAIRY TREES

terms
cost of a random successful search (Sn) in a tree with n
keys, and the cost of a random unsuccessful search (£/„).
Let In be the average internal path length of all hairy
trees with n keys (see [4]), so Sn = In/ n . Furthermore, let

The programming language used is Elan [3], an educational
algorithmic language. (Obtainable from f t p : / / f t p . c s .kun/nl/pub/
elan.) FIGURE 3. Addition via singlc-son node.

T h e C o m p u t e r J o u r n a l , V o l . 3 8 , N o . 8 , 1 9 9 5

ftp://ftp.cs.kun/nl/pub/

H a i r y S e a r c h T r e e s 693

or

FIGURE 4. After addition.

be the average ratio between the number of single-son
nodes and the number of external nodes in hairy trees
with n keys. Then we have:

J n + l = 4 + (tf« + l) - 2 A n (i)
as obviously the internal path length is augmented with
U„ -f 1 by the insertion of a new key, and occasionally
diminished by a restructing. A restructuring is performed
if and only if we start from (up to symmetry) the
situation of Figure 3, which is transformed by insertion
of a node at its end into the one of the cases in Figure 4.
After restructuring we have Figure 5.

In both cases the internal path length decreases by 1 as
a result of restructuring. The probability of this situation
to occur in tree t is:

2 X sing le (t)
ext (t)

From equation (1) we derive:

2A (0

«—1
h = Y j< Uk + 1 - 2A*)

k=0
(2)

The following relation is well known:

Sn i

and can be rewritten as

(3)

Combining (2) and (3) yields

n- 1
(« + 1) [/„ = £ (£/fc H- 2 - 2Afc)

k ~ 0

This is transformed into a recurrence relation by
computing (m + l)Un - nU„_\ = £/„_!+ 2 -2 A „ _ i ,
leading to:

U„ - <7„_
2

tl n- 1 n + 1

or

FIGURE 5. After restructuring.

and thus:

Un

n-\
2 Y

* = 0

1
k + 2

Next we consider A„. Let an be the average number of
single-son nodes in a hairy tree. When a new node is
inserted via a search path through a single-son node,
then the number of single-son nodes will be decremented
by 1. As such a search path contains three external nodes,
the probability of this event to occur equals 3crn/ (n -f 1).
If the search path does not contain a single-son node,
then the number of single-son nodes will be incremented
by 1. This event has a probability 1 - 3(xn/(n 4- 1).
Combining these results leads to the following recurrence
relation:

cr/i+i an
3(7,, (n + 1) - 3<t„

i -----

n — 5

n + 1oVi + 1

From this recurrence relation we derive <r6 = 1, and
therefore an = (n 4- 1)/7 for n > 6 . As A„ = <rn/(n + 1),
we conclude:

An I
7 for n > 6

L em m a 4.

a n &rr7 u n r v 1.1883 . . . lo g n

where U ' - 2 £fc=o l/(/t + 2) « 1.3863...¿log«
-0 .8456... is the average cost of an unsuccessful search
in a random binary tree. The result of this analysis is
summarized in T able 1 (see [2 ,4]).

4. C O N CLU SIO NS

The analysis of the complexity of hairy trees turns out to
be particularly simple. Their efficiency lies about halfway
between random search trees and AVL trees. Consider
ing the simplicity of their implementation, it is surprising
that this class of partially balance trees is not used widely
in practice.

TABLE 1. Comparing methods

Random search tree Hairy tree A VL tree Balanced tree

Expected search time

Worst case depth

1.386...2 log («)

n

1.188...2 log (»)
n + 1

2

1.012...

1.440...

2log(n)

2 log (n)

2 log (n)

2 log (n)

T h e C o m p u t e r J o u r n a l , V o l . 38 , No. 8 , 1995

+~4Aà > *» «U U > * ^ Ì ei*” y «••**•> w > ̂

694 C . H . A . K u s r i h a n d T h . IV v a n d i r W i i d i

A C K N O W L E D GEM EN TS

We wish to thank Jan van Leeuwen for his interest and
advice. We also wish to thank the anonymous referees
for their valuable comments which led to an improve
ment of the paper.

R E F E R E N C E S

[1] Po ble te, P. V. and M unro , J. I. (1985) The analysis of a

fringe heuristic for binary search trees, J. Ah\untiun\, (iH
335-350.

[2] Gönnet, G. H, (1983) Handbook o f Algorithms and Data
Structures. Internationa! Computer Science Services.

[3] Koster, C. H. A. (1987) Top-Down Programming with Elan.
Ellis Horwood.

[4] Knuth, D. EL (1973) The Art o f Computer Programming,
Volume J: Fundamental Algorithms. Addi son-Wesley.

[5] Walker, A. and Wood, D. (1976) Locally balanced binar>
trees. Comp, J., 19, 322 325.

T h e C o m p u t e r J o u r n a l , V o l . 38, N o . 8 , 1995

