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Hairy Search Trees
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The Netherlands 

Email: {kees.tvdw} (a).cs.kun.nl

Random search trees have the property that their depth depends on the order in which they are built. They 
have to be balanced in order to obtain a more efficient storage-and-retrieval data structure. Balancing a 
search tree is time consuming. This explains the popularity of data structures which approximate a 
balanced tree but have lower amortized balancing costs, such as AVL trees, Fibonacci trees and 2-3  
trees. The algorithms for maintaining these data structures efficiently are complex and hard to derive. 
This observation has led to insertion algorithms that perform local balancing around the newly inserted 
node, without backtracking on the search path. This is also called a fringe heuristic. The resulting class of 
trees is referred to as 1-locally balanced trees, in this note referred to as hairy trees. In this note a simple 
analysis of their behaviour is provided.
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1. HAIRY TREES

Locally balanced search trees have been invented and 
analysed a long time ago [1, 2], but they have not become 
as popular as unbalanced search trees or AVL-trees. In 
this note, we show how to obtain a simple form of locally 
balanced trees and to analyse their behaviour. These 
hairy trees are a class of search trees, characterized by:

is  hairy  (/) s
Vnodeveriv ^aS son s $ ÍS leaf]

The intuition behind this condition is that it prevents 
trees from having list-like substructures longer than two 
nodes (‘bare twigs’). Some examples of hairy trees are 
presented in Figure 1.

The class of hairy trees can be described by the 
following recursive definition:

1 . i s  hairy  (e)
2. If t is a singleton tree and x  some key value, then:

• i s  h a iry  (/)
• i s  h a iry  (Tree (x, t) e))
•  i s  h a iry  (Tree (x, e, /)).

3. If t { and t2 are both non-empty hairy trees and x  is 
some key value, then i s  hairy(Tree(x, ¿j, ¿2))*

where e is the empty tree, and Tree (x , / i , /2) 
constructor of trees. We will also overload this con
structor for singleton trees: Tree (x) ~  Tree (x, e, e). The 
above inductive definitions give us the opportunity to use 
structural induction in reasoning about hairy trees.

Definition 1- The function sin g le  counts the number 
of single-son nodes in a tree:

single (e) =  0 
single (Tree (*, tu t2)) =

i f  ty =  e A t2 =  € then 0  
elif t\ =  e V t2 =  e then 1

else s in g le  (íj)
+ s in g le  fe)

T h e  C o m p u t e r  J o u r n a l ,

Definition 2. The number o f leaves o f a tree is defined
by:

leaves (e) =  0 
leaves (Tree (x)) — 1 
leaves (Tree (x¡ t\, ¿2)) =

leaves (/j) +  leaves (t2) if t\

The following property is easily proved by structural 
induction:

L em m a  1.

i s  hairy (/) => 0 ^  single (/) ^  leaves (/)

Definition 3. The number o f keys in a tree is defined
by:

nkeys (e) =  0
nkeys (Tree (x t ij, t2)) =  1 -f nkeys (t\) 4- nkeys (t2)

Definition 4. The number o f external nodes o f a tree is 
defined by:

ext (e) — 1

ext (Tree (x) t{i t2)) =  ext (ti) +  ext (t2)

L e m m a  2.

nkeys (t) + 1 =  ext (f) — single (*) +  2 x leaves (/)

Our goal in introducing hairy trees is to reduce the ratio 
between the number of single-son nodes and the number 
of external nodes in a search tree. This ratio will be
denoted as A(/).

L em m a 3.

i s  hairy (*)=*►()< A(¿) <  3

Both bounds are sharp. This lemma is easily proved 
using the two previous lemmas.
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FIGURE 1. Two hairy trees and a non-hairy one.

In general, hairy trees are not balanced. In the worst 
case, a hairy tree of n elements has depth \{n 4- 1)/2~| (see 
Figure 2).

2. IN S E R T IO N  IN HAIRY SEARCH TREES

We present1 the operation en terh  for inserting a key into 
a search tree, which maintains the search tree as a hairy 
tree by restructuring it whenever a node is inserted at the 
end of a twig. Its structure follows the case-distinction in 
the definition of i s  hairy.

PROC enterh (TREE VAR t , EL CONST e) :
{ i s  hairy  search tree (t) }
IF i s  empty (t) THEN t  := tree (e)

THEN enter l e f t
THEN enter right

ELIFe < t  .key 
ELIF t . key < e 
FI
{ i s  hairy  search tree ( t ) , i s  in (e, t ) }  

ENDPROC enterh;

with the refinements:

enter l e f t  :
IF i s  empty ( t . le f t )
THEN extend le f t  
ELIF i s  empty (t .r ight)
THEN

IF e < t . le ft .k e y  
THEN enter le f t  l e f t  
ELIF t . l e f t  .key < e 
THEN enter l e f t  right 
FI

ELSE enterh ( t . l e f t , e)
FI.

enter r igh t :
IF i s  empty (t .r igh t)
THEN extend right 
ELIF i s  empty ( t . l e f t )
THEN

IF e < t  .right.key 
THEN enter right l e f t  
ELIF t , r ig h t . key < e 
THEN enter right right 
FI

FIGURE 2. The worst hairy tree.

ELSE enterh ( t . r ig h t ,  e)
FI,

extend l e f t  :
t . l e f t  := tree  ( e ) .

enter l e f t  l e f t  :
t  : = tree ( t . le f t .k e y ,  tree (e ) , tree (t .k ey)) .

enter l e f t  r igh t : 
t  : -  tree  (e, t . l e f t ,  tree  ( t .k e y )) .

extend righ t : 
t  .r igh t : -  tree  ( e ) .

enter r igh t r igh t : 
t  : - t r e e  ( t . r i g h t .key, tree  ( t .k e y ) ,

t r e e ( e ) ).

enter r igh t l e f t  : 
t  := t r e e  (e, tree  ( t .k e y ) ,  t .  r ig h t) .

The correctness of this algorithm is easy to prove, since it 
closely follows the inductive structure of the definition of 
i s  ha iry . The implementation may be further optimized 
by transformational techniques (unfolding, specializa
tion and elimination of recursion).

3. EFFICIENCY OF HAIRY TREES

terms
cost of a random successful search (Sn) in a tree with n 
keys, and the cost of a random unsuccessful search (£/„). 
Let In be the average internal path length of all hairy 
trees with n keys (see [4]), so Sn =  In/ n . Furthermore, let

The programming language used is Elan [3], an educational 
algorithmic language. (Obtainable from f t p : / / f t p . c s .kun/nl/pub/ 
elan.) FIGURE 3. Addition via singlc-son node.
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or

FIGURE 4. After addition.

be the average ratio between the number of single-son 
nodes and the number of external nodes in hairy trees 
with n keys. Then we have:

J n + l = 4  + (tf« + l ) - 2 A n (i)
as obviously the internal path length is augmented with 
U„ -f 1 by the insertion of a new key, and occasionally 
diminished by a restructing. A restructuring is performed 
if and only if we start from (up to symmetry) the 
situation of Figure 3, which is transformed by insertion 
of a node at its end into the one of the cases in Figure 4. 
After restructuring we have Figure 5.

In both cases the internal path length decreases by 1 as 
a result of restructuring. The probability of this situation 
to occur in tree t is:

2 X sing le  (t) 
ext (t)

From equation (1) we derive:

2A (0

«—1
h  =  Y j< Uk +  1 -  2A*) 

k=0
(2)

The following relation is well known:

Sn i

and can be rewritten as

(3)

Combining (2) and (3) yields

n- 1
(« +  1 ) [/„ =  £  ( £/fc H- 2 -  2Afc)

k ~ 0

This is transformed into a recurrence relation by 
computing (m + l )Un -  nU„_\ = £/„_!+ 2 -2 A „ _ i ,
leading to:

U„ -  <7„_
2

tl n- 1 n +  1

or

FIGURE 5. After restructuring.

and thus:

Un

n-\
2 Y

* = 0

1
k  +  2

Next we consider A„. Let an be the average number of 
single-son nodes in a hairy tree. When a new node is 
inserted via a search path through a single-son node, 
then the number of single-son nodes will be decremented 
by 1. As such a search path contains three external nodes, 
the probability of this event to occur equals 3crn/ ( n -f  1). 
If the search path does not contain a single-son node, 
then the number of single-son nodes will be incremented 
by 1. This event has a probability 1 -  3(xn/(n  4- 1). 
Combining these results leads to the following recurrence 
relation:

cr/i+i an
3(7,, (n + 1 ) -  3<t„ 

i -----

n — 5

n +  1oVi +  1

From this recurrence relation we derive <r6 = 1, and 
therefore an =  (n 4- 1)/7 for n > 6 . As A„ =  <rn/(n  +  1), 
we conclude:

An I
7 for n > 6

L em m a  4.

a n &rr7 u n r v 1.1883 . . .  lo g  n

where U ' -  2 £fc=o l/(/t +  2) «  1.3863...¿log« 
-0 .8456... is the average cost of an unsuccessful search 
in a random binary tree. The result of this analysis is 
summarized in T able 1 (see [2 ,4]).

4. C O N CLU SIO NS

The analysis of the complexity of hairy trees turns out to 
be particularly simple. Their efficiency lies about halfway 
between random search trees and AVL trees. Consider
ing the simplicity of their implementation, it is surprising 
that this class of partially balance trees is not used widely 
in practice.

TABLE 1. Comparing methods

Random search tree Hairy tree A VL tree Balanced tree

Expected search time 

Worst case depth

1.386...2 log («) 

n

1.188...2 log (») 
n +  1 

2

1.012...

1.440...

2log(n) 

2 log (n)

2 log (n)

2 log (n)
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