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Brief Definitive Report

Criticai Amino Acids in the Lymphocyte Function—associated  
A ntigen-11 D om ain Mediate Intercellular Adhesion M olecule 
3 Binding and Immune Function
By Yvette van Kooyk,* Minke E. Binnerts,* Caroline P. Edwards,* 
Mark Champe,* Phillip W  Berman,* Carl G. Figdor,* 
and Sarah C. Bodary*

From the * Department o f Tumor Immunology, University of Nijmegen, 6525 E X  Nijmegen,
The Netherlands; and *Department of Immunology, Genentech, Inc,, South San Francisco, California
94080

Summary
We have identified amino acid residues within die evolutionarily conserved I domain of die 
a-chain (CD 11 a) of the leukocyte integrin leukocyte function—associated antigen (LFA) 1 that 
are critical for intercellular adhesion molecule (ICAM) 3 (CD50) binding. I CAM-3, a ligand of 
LFA-1 f is thought to mediate intercellular adhesion essential for the initiation of immune re­
sponses. Using a panel of human/murine I domain chimeras and point mutants, we observed 
that the Ile-Lys-Gly-Asn motif, located in the N H 2-terminal part o f the C D lla  I domain, is 
required for ICAM-3 but not ICAM-1 binding. These findings demonstrate that the I domain 
of C D lla  contains distinct functional subdomains for ligand specific binding. An aspartic acid 
located at position 137, which is essential to I CAM-1/LFA-1 interactions (Edwards, C.P., M. 
Champe, T. Gonzalez, M.E. Wessinger, SA. Spencer, L.G. Presta, P.W. Berman, and S.C. 
Bodary. 1995. f ,  Biol. Chew, 270:12635-12640), was also critical for ICAM-3 binding, whereas 
Ser at position 139 did not effect ICAM-1 or ICAM-3 binding. A synthetic peptide containing 
the Ile-Lys-Gly-Asn motif inhibited ICAM-3—dependent adhesion and proliferation o fT  cells 
at micromolar concentrations, suggesting that this peptide interferes with immune recognition. 
These observations underscore the importance of I CAM-3 in leukocyte function, and may lead 
to development of a new category of immunosuppressive agents.

The integrin leukocyte function-associated antigen 
(LFA) 1 (CDlla/CD18) is a leukocyte-specific adhe­

sion receptor that modulates adhesive interactions and sig­
naling functions in the immune system (1—3). LFA-1 
mediates cell-cell adhesion upon binding to its ligands in­
tercellular adhesion molecule (ICAM) 1 (CD54), I CAM-2 
(CD 102), or ICAM-3 (CD50) (4-8). Several studies (9-13) 
have demonstrated that activation of LFA-1 is required for 
adhesion, and that this can be induced in vitro by engage­
ment of the TC R -C D 3 complex. Alternatively, LFA-1 
can be activated by exposure to divalent cations (Mn2+) or 
treatment with activating mAbs to C D lla  or CD 18.

Although LFA-1 binding sites have been located in the 
N H 2-tenninal Ig domains of ICAM-1 and -3 (14-16), pre­
cise determination of the ligand-binding sites in LFA-1 is 
still lacking. It has been postulated that the 200-amino acid 
inserted or “I” domains, which are found in the a  chains of
integrins (LFA-1 [CD lla, aL], MAC-1 [C D lib, otM],

Minke Binnerts and Caroline P. Edwards contributed equally to this 
work.

pl50,95 [CD 11c, aX], VLA-1 [al], VLA-2 |a2], and
aEß7) and are homologous to the type A domains of von 
Willebrand factor, cartilage matrix—binding protein, and 
complement factor B (17, 18), are essential to ligand bind­
ing (19—23). The observations that most blocking mAbs to 
C D lla  map to the I domain (22—24) and that recombinant
I domains both inhibit integrin-mediated adhesion and 
possess ligand-binding activity (19-21) underscore the role 
of the I domain in ligand binding.

In this study a panel o f human/murine C D lla  I domain 
mutants were used to identify amino acids that were essen­
tial for the binding of LFA-1 to ICAM-3. W e observed 
that residues located in the N H 2-terminal portion of the I 
domain of CD1 la are critical for ICAM-3 binding, but not 
for ICAM-1 binding.

Materials and Methods
Antibodies. Function-blocking mAbs directed against human 

C D lla  NKI-L15 (11), human CD18 (MHM23) (25), and mu­
rine C D lla  (M l7) (26) were used. mAbs Rek-1 (anti-ICAM-1;
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CD54) (6) and AZN-IC3.1 (anti-I CAM-3; C D 50) (Binnerts,
«

M.E., SJ. van Vliet, Y. van Kooyk, and C.G. Figdor, manuscript 
in preparation) were used to inhibit LFA-1/ICAM-1 or LFA-1/ 
ICAM-3 interactions, respectively. For cell adhesion studies, the 
activating antibody KIM185, directed against CD18 (12), was 
used. The mAb T3b, directed against CD3 (27), was used for T 
cell costimulation assays.

Generation of CD1 la I  Domain Mutants. The generation of hu­
man/mouse (H/M) chimeras, the I domain point mutants, and 
mu3, has been described previously (24, 28). m ul and mu2 were 
generated by overlap extension PCR. Briefly, using full-length 
human C D lla  cDNA (pRK LFAam) and mu3 cDNA as tem­
plates, the N H 2- and COOH-terminal halves of the m ul and 
mu2 I domains were generated by PC R  (mul: for residues 125— 
234, mu3 was used, and. for residues 235-308, pR K  LFAam was 
used; mu2: for residues 125-234, pRK LFAotm was used, and for 
residues 235—308, mu3 was used.) The Bglll at residue 297 was 
removed from the m ul I domain. The two halves of m ul and 
mu2 were joined by overlapping extension PC R  and cloned into 
the C D lla  at the appropriate I domain restriction sites (Narl, 
Bglll: mul; Narl, PflMl: mu2).

Expression of C D l  la  I  Domain Mutants in 293 Cells. Mutated 
C D lla  and wild-type CD 18 cDNAs were cloned into the RK 5 
and RJC 7 expression plasmids and transfected into the 293 hu­
man kidney adenocarcinoma cell line using a standard calcium 
phosphate coprecipitation method (29). Transfection efficiencies 
ranged from 20 to 70%. After 3 d, transfectants were harvested by 
EDTA (5 mM) treatment and were assayed for adhesion to ICAM-1 
and ICAM-3. Staining of the transfectants with various anti- 
LFA-1 mAbs revealed that the mutations did not affect the overall 
conformation of the LFA-1 heterodimer (28) (data not shown).

Adhesion to IC A M -1  and IC A M -3 . ICAM-1 and ICAM-3 fu­
sion proteins consisting of the five domains of ICAM-1 or ICAM-3 
fused to a human IgGl Fc fragment (ICAM-1 Fc, ICAM-3Fc, re­
spectively) were isolated from supernatants o f L cell cultures sta­
bly transfected with pICAM-lFc and pICAM-3Fc, respectively 
(7, 16). Culture supernatant was purified by protein A column af­
finity chromatography and eluted with 3.5 M MgCl2 and 10% 
glycerol. 96-well plates (Maxisorb; Nunc, Roskilde, Denmark) 
were precoated with 4 jxg/ml goat anti-human Fc (Jackson Im- 
munoResearch Laboratories, Inc., West Grove, PA) for 2 h at
37°C and blocked with 1% BSA (Boehringer Mannheim, Mann­
heim, Germany) ((¡1 h at room temperature). ICAM-lFc or 
ICAM-3Fc proteins\were coated overnight at 4°C or at 37°C for
2 h, at a concentration .of 200 ng/well. Transfected 293 cells 
(200,000 cells/well) wet:e added in adhesion buffer (0.14 M 
NaCl, 0.02 M Hepes, 0.2% glucose, 1 mM MgCl2} and 1 mM 
CaCl2), with the anti-CD 18-activating mAb KIM185 (12) and 
allowed to adhere for 1.5 h at 37°C. Nonadherent cells were re­
moved by washing three times with PBS, and cell attachment was 
measured using the PNAG (P-nitrophenyl-N-acetyl-ß-D-glu- 
cosaminide) method of Landegren (30). The mean OD405 of 
trip he ate wells was determined and corrected for the expression 
levels of CD 11 a/CD 18 on the distinct transfectants. For compar­
ison 50,000 cells gave an average OD of 1. For adhesion of the 
human T cell line HSB (obtained from American Type Culture 
Collection, Rockville, MD), cells (40,000/well) were labeled 
with 5lCr for 45 min at 37°C. Cells were incubated with different 
concentrations of synthetic peptides followed by activation with 
KIM 185. Subsequently, cells were incubated on ICAM-1 Fc- or 
ICAM-3Fc-coated plates for 30 min at 37°C in the presence of 
peptides and KIM 185. Nonadherent cells were removed by three 
washes with adhesion buffer, adhering cells were lysed with 1%

Triton X-100, and radioactivity was quantified. Results are ex­
pressed as the mean percentage of adhesion of triplicate wells.

Proliferation Assay. 96-well plates were coated with subopti­
mal concentrations ofanti-CD3 antibodies (T3b, 10 ng/well, 1 h at 
37°C), followed by goat anti-human Fc (400 ng/well, 1 h at 37°C), 
1% BSA (100 ¡ml/well, 30 min at 37°C) and ICAM-1 Fc or 
ICAM-3Fc proteins (100 ng/well, 1 h at 37°C). Resting PBL ob­
tained by centrifugal élutriation from normal donors as described 
previously (31) were added (100,000 cells/well) and cultured for
3 d. On day 3, cells were pulsed for 16 h with pH]thymidine 
(1.52 TBq/mmol, 0.5 jxCi/well; Amersham Corp., Arlington 
Heights, IL), and uptake was quantified to measure ICAM-1- or 
I CAM-3-dependent proliferation. To determine whether in­
duced proliferation was LFA-1 and ICAM-1 specific, cells were 
cultured in the presence of function-bloeking antibodies at a con­
centration of 10 fJLg/m l.

Results and Discussion
Despite the high sequence homology between human 

and mouse LFA-1, murine LFA-1 does not bind human 
ICAM-1 (32). Exploiting this species specificity, we deter­
mined that substitution of murine I domain sequences into 
human C D lla  abolished the ability of LFA-1 to bind 
ICAM-1 (28). In this study, we adopted a similar strategy 
to determine the role of I domain sequences in LFA-1/ 
ICAM-3 interactions. A panel of H /M  C D lla  I domain 
mutants was used, some of which correspond to epitopes 
recognized by C D lla  blocking mAbs (24), to identify amino 
acids that were essential for the binding of LFA-1 to ICAM-3 
(Fig. 1). The capacity of 293 cells transfected with cDNAs 
encoding chimeric C D lla  and human CD 18 to bind puri­
fied human ICAM-1 Fc and ICAM-3Fc is shown in Fig. 2 
A .  Wild-type human CD 11 a/CD 18 transfectants bound 
both ICAM-1 and ICAM-3. As had been previously shown 
with ICAM-1 (28), the mu3 chimera (which contains the 
complete murine I domain) did not bind human ICAM-3. 
FACS® analysis, using the M17, NKI-L16, and MHM23 
mAbs (11, 25, 26), showed that the mu3 chimera contains 
the expected murine I domain epitopes as well as human 
C D lla  and CD 18 epitopes, suggesting that this heterodimer 
was correctly folded (28). Thus it appeared that the I domain 
of murine LFA-1 lacked the binding site(s) for ICAM-3 as 
well as ICAM-1. We also observed that mul (which con­
tains the N H 2-terminal portion of the murine I domain) 
bound ICAM-1 but not ICAM-3, whereas mu2 (which 
contains the COOH-terminal portion of the murine I do­
main) bound to both ICAM-1 and ICAM-3, We conclude 
that the N H 2-temiinal portion of the human I domain con­
tains residues critical to ICAM-3 binding, and that ICAM-1 
and ICAM-3 bind to distinct sites within the I domain of 
LFA-1. Precise mapping of residues involved in ICAM-1 
binding is in progress.

To precisely locate the ICAM-3 binding site in the 
N H 2-terminal portion of the I domain, we tested the abil­
ity of seven H /M  chimeras to bind ICAM-3. (Fig. 2) The 
overall conformation of these H /M  LFA-1 chimeras was 
intact and did not affect ICAM-1 binding (24, 28). O f all 
H /M  chimeras tested, only H/M 53, in which the human
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Figure 1. Amino add sequences of the murine and human C D lla  I domains and the H /M  1 domain chimeras and point mutants. Schematic represen­
tation of CD1 la with the location of the I domain and the metal binding (EF hand) domains. Chimeras were generated in which the complete human I 
domain was replaced with the corresponding murine residues (amino acids 125-311; mu3), or in which the N H 2-tenninal portion of the human I do­
main (amino acids 125-222; mul) or the COOH-terminal portion of the human I domain (amino acids 223-311; mu2) were exchanged for the murine 
I domain residues. H /M  chimeras (H/M48—54, I126M, R127A, G128A, N129K) contained from one to five murine residues substituted for the human 
I domain sequences (24). The Ala substitutions for conserved residues are shown for the constructs D137A and S139A. The human residues are repre­
sented by a dash, and where the sequence differs from the human sequence, the residue is shown. All chimeric proteins and H /M  mutants were expressed 
in the human kidney cell line 293 as LFA-1 (CD1 Ia/CD18) heterodimers.

lie -126 and Asn-129 were replaced with murine residues 
Met and Lys, respectively, completely abrogated adhesion 
to ICAM-3 (Fig. 2 B). In contrast, the adhesion of this mu­
tant to a wide range of concentrations of ICAM-1 showed 
identical binding as that of wild-type C D lla  (data not 
shown). This indicates that the loss of binding of H/M53 
to ICAM-3 was not due to the low affinity of ICAM-3, 
compared with ICAM-1, for LFA-1. Point mutations of 
Ile-126 and Asn-129 revealed that only the replacement of 
Asn with Lys at position 129 dramatically reduced the ad­
hesion to ICAM-3. When Lys-127 and Gly-128, which are 
conserved between the human and mouse, were mutated 
to Ala, only the Lys-127 mutation led to reduced binding

to ICAM-3. These data demonstrate that residues critical 
for ICAM-3 binding aire located in the N H 2-terminal por­
tion of the I domain of C D lla  within the Ile-Lys-Gly-Asn 
motif at positions 126-129, and that Lys-127 and Asn-129 
are critical to ICAM-3 binding (Fig. 2 C).

It is interesting to note that the Ile-Lys-Gly-Asn se­
quence was previously found to be critical for the binding 
of several mAbs to murine and human C D lla  that block 
binding to ICAM-1 (24). Although subsequent studies (28)
demonstrated that these residues were not directly involved 
in ICAM-1 binding, the fact that an immediately adjacent 
sequence (residues 130—143) was highly conserved among 
the CD11 integrin I domains, as well as homologous domains
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Figure 2. LFA-l-mediated adhesion of H /M  C D lla  I domain chimeras and point mutants to purified human ICAM-1 and ICAM-3. 293 cells, trans­
fected with pAdv R N A  (moth) or together with wild-type human CDÍ8 and the indicated C D lla  constructs, were tested for their capacity to bind 
ICAM-1 (white heirs) and ICAM-3 (black bars) in the presence of 5-20 fig/ml activating anti-CD18 mAb (KIM 185) (12). (¿4) Adhesion of the mul, mu2, 
and mu3 chimeric proteins to human ICAM-1 and ÍCAM-3. (Ö) Adhesion of the H/M  Í domain chimeras to human ICAM-1 and ICAM-3. (C and D) 
Adhesion of the I domain point mutants to human ICAM-1 and ECAM-3. One representative experiment out of three is shown.

of other proteins (e.g., cartilage matrix protein, von Wille- 
brand factor, and factor B [33]), suggested that this was a 
functionally significant domain. Studies by Michishita et al. 
(19) showed that mutation of Asp~140GlySer to AlaGlyAla 
of the closely related integrin CD 11b abolished binding to 
C3bi. Recent x-ray diffraction studies of the I domain of 
Mac-1 have shown Asp-140 and Ser-142 to be part of a 
novel cation binding site in which the acidic side chain co­
ordinates directly to a Mg2* ion (34). Studies of C D lla  (28) 
have shown that the homologous Asp-137 in C D lla  was 
critical to ICAM-1 binding. We found that mutation of Asp- 
137 to Ala abrogated binding to ICAM-3 (Fig. 2D). In con­
trast, mutation of Ser-139 to Ala did not profoundly effect 
LFA-1 binding to ICAM-1 or ICAM-3, suggesting that Ser- 
139 of C D lla  may not be involved in cation coordination. 
Since the residues corresponding to the Ile-Lys-Gly-Asn 
motif were absent from the Mac-1 I domain fragment used 
for the x-ray diffraction study (34), and since Mac-1 lacks a 
homologous sequence, it will be of interest to determine 
the structure and proximity of this motif to the C D lla  cat­
ion binding site.

To obtain further insight into the role of the Ile-Lys- 
Gly-Asn-126 to 129 and the Asp-137 sequences in binding 
of ICAM-3 to LFA-1, a series of peptides that spanned this 
region of C D lla  were synthesized (Fig. 3). Interestingly, 
we observed that low concentrations of one peptide effi­
ciently inhibited the ability of the LFA-1—expressing T cell 
clone HSB to bind to ICAM-3, but not to ICAM-1 (pep­

tide 2; IC50 = 25 |xg/ml; 10.8 |xM). In contrast, the two 
other peptides (peptides 1 and 3), which also contain the 
Ile-Lys-Gly-Asn motif, did not inhibit LFA-1—me di a ted 
adhesion at concentrations up to 100 jxg/ml. These data in-

peptide 1 CI KG NVDLVFLFDG 

peptide 2 GRPGFQECIKGNVDLVFLFDO 

peptide 3 MLQGRPGFQECIK G N VD

Figure 3. Inhibition of LFA-1/ICAM-3-mediated adhesion by low 
concentrations of synthetic I domain peptides. The LFA-1—expressing HSB 
T cell clone was preincubated with different concentrations of the indi­
cated synthetic peptides (6.25-200 |xg/mJ) followed by activation with the 
anti-CD18 mAb KIM 185 (10 jj-g/ml). The capacity of the peptides to 
block binding to ICAM-1 or I C AM-3 was measured. Results are ex­
pressed as the mean percentage of inhibition of cell binding from triplicate 
wells. Standard deviation was <8%. One representative experiment out 
of three is shown.
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Figure 4. Inhibition of ICAM-3 costimulation o f 
PBL with I domain peptides. Resting PBL (100,000 
cells/well) were cultured in the presence of the syn­
thetic peptides (100 fig/ml; depicted in Fig. 3) on 
plates coated with ICAM-1 Fc (white bars) and ICAM- 
3Fc (black bars) (100 ng/well) along with suboptimal 
concentrations of anti-CD3 mAb (1 ng/well) for 3 d at 
37°C. One experiment out of three, in which triplicate 
determinations were carried out, is shown.

dicate that the sequences surrounding this motif are impor­
tant for the inhibitory effect of peptide 2. Since ICAM-3 is 
thought to play a role in the initiation of the immune re­
sponse, we investigated whether the Ile-Lys-Gly-Asn-con- 
taining peptides also affected immune function. We assayed 
whether the peptides would inhibit either the ICAM-1 or 
ICAM-3/CD3-induced costimulation of resting PBL pro­
liferation (35). As illustrated in Fig. 4, peptide 2 inhibited 
ICAM.-3—induced proliferation, but not ICAM-1-induced 
proliferation. Peptides 1 and 3 were inactive. The inhibi­
tory activity of the peptides is likely to result from binding 
o f  the peptide to residues of ICAM-3 that are involved in 
LFA-1 binding. This is currently under investigation.

Comparison of the sequence homology of the I domains 
o f the other CD 18 integrins indicated that the Ile-Lys-Gly- 
Asn motif is unique to C D lla , suggesting that LFA-1 con­
tains a unique binding site for ICAM-3. Indeed, no studies 
have reported Mac-1— or pl50/95-mediated binding to

ICAM-3. It will be interesting to know whether the re­
cently described fourth member of the CD 18 integrins 
C D lld /C D 18 contains the Ile-Lys-Gly-Asn sequence in 
the I domain, since there is evidence that this heterodimer
binds to ICAM-3 with high affinity (36).

Collectively, these findings demonstrate for the first time 
that the I domain of C D lla  contains distinct functional sub- 
domains for ligand-specific binding: a conserved Asp-137 
residue important for binding of ICAM-1 and -3, an Ile- 
Lys-Gly-Asn domain important for binding of ICAM-3, 
and distinct, yet-to-be-defined residues important for bind­
ing of ICAM-1 (37). Our finding that low concentrations 
of I domain peptides significantly inhibit ICAM-3—depen­
dent immune function, without affecting ICAM-1—depen­
dent function, may direct the development of a new class 
of antiinflammatory/immunosuppressive agents for the treat­
ment of diseases such as arthritis or graft rejection after organ 
transplantation.
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