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GENERAL INTRODUCTION 

 

The subject of this thesis is the Smith-Lemli-Opitz syndrome (SLOS; MIM 270400). This autosomal 

recessive multiple malformation syndrome was first described in 1964 by David Smith, Luc Lemli and 

John Opitz. First we will review several clinical, biochemical, pathophysiological, molecular and 

therapeutical aspects of SLO syndrome whereafter the outline of the thesis is given. 

 

Cholesterol (Figure 1), is an important constituent of the cell membrane of most eukaryotic cells, and 

secondly, acts as the precursor for steroid hormones, bile acids and myelin formation in the brain, 

spinal cord and peripheral nervous system. Finally, cholesterol has important interaction with proteins, 

which control embryonic development. 

   

 
Figure 1. Structure of cholesterol. 

 

SLOS, a severe developmental disorder associated with multiple congenital anomalies, is caused by a 

defect in cholesterol biosynthesis, i.e. a deficiency of the enzyme 7-dehydrocholesterol reductase, the 

final enzyme of the cholesterol biosynthetic pathway. Low cholesterol and high concentrations of its 

direct precursor 7-dehydrocholesterol (7DHC) and its isomer 8-dehydrocholesterol (8DHC) in blood 

and tissues are the biochemical hallmarks of the syndrome. The plasma sterol concentration generally 

correlates with severity and outcome. It remains uncertain however whether the clinical symptoms are 

primarily due to the shortage of cholesterol or to the abundance of the precursors 7DHC and 8DHC, or 

both.
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History 
In 1964 David Smith, Luc Lemli and John Opitz described three boys with a similar phenotype. 

Historically, the syndrome is often also named “RSH”syndrome, formed by the first letter of the 

original patients’ last names (Smith et al. 1964). This initial report was soon followed by descriptions 

of many new clinical cases. Since this original publication, the SLOS has remained a clinical diagnosis 

for 30 years. The SLOS phenotype described in male and female patients in many case reports 

disclosed a clinical spectrum with great variability. The estimated incidence of the autosomal recessive 

SLOS is 1/20,000 – 1/80,000 live births in individuals of European ancestry, but it has a lower 

incidence in most other ethnic groups (Ryan et al. 1998; Kelley & Hennekam 2000; Bzduch et al. 

2000; Nowaczyk et al. 2001; Witsch-Baumgartner et al. 2001).  

 In the past forty years case reports focused on the description of the various organ and 

dysmorfic anomalies in SLOS. Several experienced reviewers have discussed various clinical and 

biochemical aspects of SLOS (Cunniff et al. 1997; Neklason et al. 1999; Opitz 1999a; Fitzky et al. 

1999; Kelley & Hennekam 2000; Moebius et al. 2000; Waterham & Wanders 2000; Kelley & Herman 

2001). It is important to note that only the cases described from the mid-90s were biochemically 

proven after the discovery of the biochemical hallmark underlying the SLOS. Although experienced 

clinicians claimed to recognise patients with SLOS easily, it became clear that the broad spectrum of 

anomalies and very variable severity of this syndrome does not make the diagnosis always obvious. 

Even experienced dysmorphologists admit that making the clinical diagnosis SLOS, especially in mild 

cases, is not always straightforward and that individuals fulfilling the SLOS criteria in some cases 

could not be confirmed when biochemical proof became available (Guzetta et al. 1996; Nowaczyk et 

al. 2004; own observations).  

 

Clinical features 

The past years a delineation of SLOS has been made by many case reports and small series. Although 

structural defects in many organs may be involved and are described, in the majority of SLOS patients, 

heart, lungs, liver and kidneys usually are not affected. Conversely, in more severely affected patients, 

life span is often limited by lethal internal malformations. 

 

Craniofacial  
The distinctive craniofacial appearance of SLOS consists of a typical facies with a microcephaly, 

bilateral ptosis, broad and high forehead, broad nasal bridge, inner epicanthal folds, micrognatia, cleft 

palate, long philtrum and anteverted nares (as in the patient shown in Figure 2). 
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Figure 2. Typical facial appearance of a 6-year old boy with SLOS (Photo taken by the parents and printed with 
parental permission). 
 

 

Limbs 

The characteristic syndactyly of the second and third toe, although sometimes very subtle, is present in 

about 80-96% of patients with confirmed SLOS.  Polydactyly of feet and hands, oligodactyly of hands, 

short thumbs, hypoplastic thenar eminences and clubfeet are also common in combination with shorter 

limbs. 

 
Ophthalmologic 

Mild to moderate blepharoptosis is common in SLOS, while congenital bilateral cataract and bilateral 

optic nerve hypoplasia are described in more severe cases (Kretzer et al. 1981; Atchaneeyasakul et al. 

1998). Inherited defects in enzymes of cholesterol metabolism and use of drugs, which inhibit lens 

cholesterol biosynthesis, are associated with cataracts in animals and man. The basis of this 

relationship apparently lies in the need of the lens to satisfy its sustained requirements for cholesterol 

by on-site synthesis. Impairing this synthesis can lead to alteration of lens membrane structure. Lens 

membrane contains the highest cholesterol content of any known human membrane (Cenedella 1996). 

SLOS was diagnosed 1.2% of 250 paediatric patients with bilateral cataract and neurological features. 
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(Cruysberg 1996). Sterol analysis from ocular tissue in SLOS patients and fetuses showed markedly 

increased 7DHC and 8DHC, whereas the cholesterol concentration in the retinal pigment epithelium, 

lens, cornea, and sclera was lower (Atchaneeyasakul et al. 1998). 

 

Cardio-pulmonary 

Minor or major cardiac defects have been described up to 50% in large series of SLOS patients (Lin et 

al. 1997; Kelly & Hennekam 2000). A more specific association with atrioventricular canal defect and 

patients with an abnormal pulmonary venous return has been described. Striking is the documentation 

of non- or hypolobated lungs in autopsy studies of severe SLOS patients and animal models (Fitzky et 

al. 2001; Rakheja et al. 2003). 

 

Gastrointestinal 

Functional and anatomical gastro-intestinal abnormalities such as pyloric stenosis, aganglionosis coli 

(Hirschprungs’ disease), gastrointestinal reflux and failure to thrive, are common. 

 

Urogenital 

Genital malformations and its endocrine aspects are very interesting. Hypospadias, under-virilised 

male sex-differentiation ranging from cryptorchidism to complete sex reversal with a female 

appearance in 46 XY-individuals is described in SLOS. Further non-specific urogenital and renal 

abnormalities, as in other syndromes, are described to a lesser extent. 

 

Development and behaviour 

In SLOS psychomotor retardation and microcephaly are very common (80-95%). Mental development 

of SLOS patients ranges from profound mental retardation to borderline normal intelligence (Ryan et 

al. 1998; Langius et al. 2003; Mueller et al. 2003). The behavioural phenotype includes cognitive 

delay, sensory hyperreactivity, language impairment, sleep cycle disturbances, self-injury behaviour 

(up to 35%), syndrome specific motor movements, and autism spectrum behaviour (up to 50%). Some 

studies report aggression (52-63%), marked irritability from childhood throughout life. Sleeping 

disorders in the first and self-injurious behaviour in the second decade of live have a great impact on 

the family and parental acceptance of SLOS. Frequently SLOS patients demonstrate upper-body 

opisthokinesis; they arch their necks backwards frequently; and stereotypic stretching, accompanied 

by brief and rapid hand movements, can be observed (Tint et al. 1995; Kelley et al. 1996; Pauli et al. 

1997; Nwokoro et al. 1997; Ryan et al. 1998; Opitz et al. 1999b; Tierney et al. 2000; Tierney et al. 

2001). 
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Growth 

SLOS patients have short stature at diagnoses and growth-retardation as documented in several case 

reports and studies. Some initial attempts have been made with growth-hormone (GH) treatment in 

SLOS patients. They improved from –4.15 SD at the age of 5.5 years to –1.6 SD at 13 years (Ullrich et 

al. 2002). Larger trials are needed to evaluate the effect of GH on length and neuromotor 

development. Experience with GH-therapy in Prader-Willi syndrome, Noonan syndrome and Turner 

syndrome on growth and development may help to introduce this treatment strategy in SLOS.  

 

Dermatologic  

7DHC, also known as provitamin D3, is the precursor for Vitamin D (cholecalciferol) biosynthesis. In 

the presence of hundred to thousand-fold increased levels of 7DHC in serum and tissue one should 

expect high levels of Vitamin D in SLOS patients. No significant hypercalciaemia or nefrocalcinosis 

has been documented in SLOS, however.  

 Conversely, the majority of SLOS patients (60-70%) suffer from mild to severe skin 

photosensitivity (Charman et al. 1998; Anstey et al. 1999). Even after several minutes' exposure to 

bright sunlight, erythema occurs to exposed skin in some SLOS patients and is of permanent clinical 

concern to a circumscript group of patients. Monochromatic ultraviolet (UV) radiation and visible 

light testing revealed an immediate and persistent reaction to low-dose UVA at 350 nm and an 

abnormal erythemal response to visible light at 400 nm (Charman et al. 1998). UVA is known to cause 

peroxidation of membrane lipids with subsequent alterations in the structure and function of the 

membranes, leading to modifications in transmembrane transport and deregulation of receptors and 

messenger systems. Dietary cholesterol could improve photosensitivity in SLOS in some patients 

(Elias et al. 1997; Irons et al. 1997; Starck et al. 2002). 

 

Adrenal insufficiency 

Cholesterol is the precursor for corticosteroid production. Adrenal function and stress reaction have 

been tested in patients, showing conflicting data. Adrenal insufficiency has been suggested in some 

SLOS patients with low blood sodium, increased blood potassium, high levels of ACTH and renin but 

normal values of cortisol (Chemaitilly et al. 2002). Adrenal insufficiency with persistent hypertension 

has been documented in a newborn infant with SLOS (Nowaczyk et al. 2001). 

 

Endocrine 

Precocious puberty, under-virilisation and even complete sex reversal is frequently described in SLOS 

(Starck et al. 1999). Since cholesterol is the precursor of steroid hormones, reports speculated about 

endocrine abnormalities in SLOS patients. Abnormal steroid production and metabolites have been 

detected by some researchers but the cause for under-virilisation in SLOS remains speculative. Recent 
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studies on 40 SLOS patients (age 1 day – 25 years) studied urinary steroids using GC/MS and 

selected-ion-monitoring. Neonates with SLOS excreted conventional 3β-hydroxy-5-ene steroids, 

mostly 16α-hydroxylated and 7 and 8-dehydro homologues. Dominant novel steroids excreted by 

older children and SLOS adults are 7 and 8-dehydro variants of pregnanetriol (Shackleton et al. 2002). 

Recently 17 alpha-hydroxypregna-4,7-diene-3,20-dione and 17 alpha-hydroxy-5 beta-pregn-7-ene-

3,20-dione have been tentatively identified as steroid metabolites in SLOS (Guo et al. 2003). 

Abnormal neurosteroidogenesis can influence behaviour and development pre- and postnatally. Delta-

7 and/or delta-8-unsaturated neurosteroids may be produced in the brain. Analysis of urinary steroids 

in post-pubertal SLOS females confirmed the presence of neurosteroid-like compounds in SLOS 

(Marcos et al. 2004). 

 

Brain 

Brain imaging and post-mortem examination in SLOS case reports revealed abnormal cerebral gyri, 

cerebellar hypoplasia, delayed myelinisation, holoprosencephaly, lissencephaly, agenesis or 

hypoplasia of the corpus callosum, hippocampal malrotation and choroidal cyst. Aspecific migration 

disorders were documented in up to 37% in smaller series (Kelley et al. 1996; Ryan et al. 1998; 

Nowaczyk et al. 2001). These observations confirm that SLOS is a multiple malformation/retardation 

syndrome and patients are at risk for an impaired development from birth. Neuro-imaging in a series 

of 18 SLOS patients showed four callosal abnormalities, one Dandy Walker variant and one 

arachnoidal cyst (Caruso et al. 2003).   

 

Neurophysiology 

Abnormal nerve conduction velocities have been documented in SLOS patients (Starck et al. 1999). 

Some groups studied rod photo responses in children with SLOS and found slow kinetics of photo 

transduction in all but 3 of 13 patients. Their observation demonstrates altered kinetics of a membrane-

bound signaling system. This may be caused by altered sterol composition in the cell membranes of 

rod photoreceptors (Elias et al. 2003). In a rodent-model, the retina revealed anatomical, degenerative 

and conductive abnormalities when the ratio of 7DHC/Cholesterol was increased (Fliesler et al. 2004).  

Progressive polyneuropathy improved on cholesterol supplementation, whilst stationary forms did not 

(Starck et al. 2002).  

 

Cholesterol biosynthesis 

The great breakthrough for SLOS was the discovery of its biochemical characteristics in 1993 by the 

group of Mira Irons and Richard Kelly (Irons et al. 1993; Tint  et al. 1995). Patients typically show 

reduced levels of cholesterol and increased levels of 7DHC and its isomer, 8DHC, in plasma and all 
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tissues. This biochemical abnormality in SLOS is caused by an enzymatic defect in the last step in 

normal cholesterol biosynthesis (Figure 3).  

Cholesterol is a main end product derived from the isoprenoid biosynthetic pathway. This 

cascade supplies cells with a variety of compounds, collectively called isoprenoids, which function in 

diverse cellular processes. Among these are Ubiquinone-10 and Heme A, involved in electron 

transport, dolichol, mediator of protein glycosylation, isopentyl tRNAs, and farnesyl and geranyl 

groups for prenylation of proteins that are involved in cell signaling and differentiation (Goldstein & 

Brown 1990). A series of enzyme reactions is required to eventually produce cholesterol. Acetyl-CoA 

(C2) is converted into the isoprene unit, isopentenyl-PP (C5), by six different serial enzyme reactions. 

After adding C5 to geranyl-PP (C10) through farnesyl-PP (C15), squalene (C30) is transformed to 

lanosterol (4,4,14-trimethylcholesta-8(9), 24-dien-3-ol) by cyclization (Figure 3).  

Not only humans but the majority of organisms, including animals, plants, fungi and micro-

organisms, are equipped with the crucial de novo cholesterol biosynthetic pathway, supplying sterols 

and steroids to cells, membranes and tissues, illustrating the importance of cholesterol biosynthesis for 

intermediate and end-products.  
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Figure 3. The cholesterol biosynthetic pathway. HMG-CoA reductase is the rate-limiting step for the entire 
enzymatic pathway. The sterol Δ7-reductase (DHCR7) catalyses the last step in cholesterol formation. This 
enzyme is defective in SLOS. 
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DHCR7 (7-dehydrocholesterol-reductase) deficiency 

The SLOS is caused by a deficient enzyme: 7-dehydrocholesterol reductase (DHCR7; E.C. 1.3.1.21; = 

3 β-hydroxysterol Δ7- reductase),  localised intracellulary in the membrane of the endoplasmic 

reticulum (Witsch-Baumgartner et al. 2000). The only structural difference between cholesterol and 

7DHC is the unsaturated double bond in the B ring at the 7th position  in 7DHC (Figure 4.)  

 
Figure 4. Last steps in the post-squalene part of the cholesterol biosynthesis. Reduction of the Δ24 double bond 
by 3β-hydroxysterol-Δ24-reductase can occur at any point along the pathway. The 3β-hydroxysterol-Δ5-
desaturase (lathosterol-dehydrogenase), 7-dehydrocholesterol-reductase and 3β-hydroxysterol-Δ8-7-isomerase, 
respectively add, remove and translocate a double bond in the B ring. 
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Biochemical diagnosis in SLOS 

When a patient is clinically suspected of SLOS, the diagnosis can be confirmed by the detection of 

7DHC (and or 8DHC) in various tissues. The presence of increased concentrations of 7DHC in 

plasma, CSF, amniotic fluid, or tissues is diagnostic for SLOS (Irons et al. 1994, Tint et al. 1995, 

Shefer et al. 1995; Mills et al. 1996; van Rooij et al. 1997). Routine hospital laboratories use 

cholesterol-oxidase methods to measure serum cholesterol. This test however is not useful in 

diagnosing SLOS while it does not detect abnormal sterols. 7DHC-detection can be performed with 

different techniques such as Gas Chromatography (GC), Gas Chromatography-mass spectrometry 

(GC-MS), HPLC, electrospray ionization tandem mass spectrometry, time-of-flight secondary ion 

mass spectrometry and Tandem MS (Irons et al. 1993; Tint et al. 1995; Guzzetta et al. 1996, 

Zimmerman et al. 1997; Starck et al. 2000; Rizzo et al. 2000; Johnson et al. 2001; Scalco et al. 2003). 

Most European countries have one or more laboratories that can biochemically confirm the clinical 

diagnosis of SLOS.  

DHCR7-enzyme activity has been studied in fibroblasts, liver microsomes and chorionic villus 

samples (Salen et al. 1996; Bae et al. 1997; Shefer et al. 1997). Total body sterol balance studies using 

stable isotopes are time consuming and expensive (Shefer et al. 1995; Honda et al. 1996; Lund et al. 

1996; Steiner et al. 2000; Linck et al. 2000). Neither are primary diagnostic tools but can be important 

in research setting and may give important answers to experimental questions concerning cholesterol 

biosynthesis and metabolism in patients.  

 

Prenatal Diagnosis 

Prenatal diagnosis in the late 90’s was available through measurement of 7DHC levels in chorionic 

villi at 11-12 weeks and amniotic fluid at 15-16 weeks of gestation. Currently, more accurate 

diagnosis is possible by molecular genetic studies of mutations in the DHCR7 gene of the unborn 

child. Abnormal synthesis of cholesterol in the adrenal foetal glands with SLOS results in equine-type 

estrogens in the maternal plasma and urine detected by GC-MS and may serve as a potentially non-

invasive alternative screening (Shackleton et al. 1999). Prenatal screening for SLOS by measuring 

maternal plasma levels of non-conjugated estriol (uE3), as performed at 15-20 weeks of pregnancy to 

determine the risk of Down’s syndrome, trisomy 18 and open neural tube defects, is suggested, since 

uE3 synthesis is dependent on cholesterol produced by the fetal tissue (McKeever et al. 1990). 

 

Molecular Genetics 

Although initial evidence suggested that the human SLOS gene was located at 7q32.1, the human 

DHCR7 (Gen Bank accession number: AF034544) was identified in 1998 and assigned to 

chromosome region 11q13 (Fitzky et al. 1998; Wassif et al. 1998; Waterham et al. 1998). The cDNA 

has an open reading frame of 1,425 base-pair coding for a polypeptide of 475 amino acids. Mutations, 
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expression and genotype/phenotype studies have been performed on SLOS patients. Molecular genetic 

work elucidated many pathogenic mutation and enabled accurate prenatal diagnosis.  

 

Cholesterol and the brain 

Cholesterol in the human brain, developing sheep brain, and rat pup brain is made locally from 

glucose, acetate, or polyunsaturated fatty acids (Jurevics et al. 1995; Likhodii et al. 1995; Snipes et al. 

1997). Sterols formed in the brain by the mevalonate pathway have an active and independently 

regulated biosynthesis. Cholesterol is not imported from peripheral blood across the Blood Brain 

Barrier (BBB) by lipoprotein uptake (Andersson et al. 1990; Björkhem et al. 1997). Even during fetal 

brain development, including the time before closure of the BBB, lipoproteins circulating through the 

central nervous system are not used as a source of cholesterol, but are synthesized locally (Serougne et 

al. 1976; Andersson et al. 1990; Edmond et al. 1991; Saheki et al. 1994; Turley et al. 1996; Björkhem 

et al. 1997). 

Chronic treatment with cholesterol synthesis-blocking agents impaired brain sterols and 

associative learning in rats. Exogenous cholesterol, however, failed to correct for the learning 

impairment produced by the chemical DHCR7-inhibition (O’Brien et al. 2002). Neurons from both 

control and mutant pups exhibited similar reversible, tetrodotoxin-sensitive sodium currents in 

response to a voltage step to –30 mV from a holding potential of –90 mV. Mean peak amplitudes of 

the control and the mutant sodium currents were not significantly different and both were able to 

generate a single action potential upon injection of a depolarising current from a potential of –55 mV. 

However, an impaired glutamate response was detected in mutated pups. How the NMDA receptor 

function could be influenced is not known in SLOS. Neurosteroids are thought to be endogenous 

ligands for sigma 1(σ1) receptors and to modulate NMDA receptor function. Whether elevations of 

sterol biosynthetic intermediates might competitively inhibit neurosteroid synthesis or affect 

neurosteroid interaction with sigma 1(σ1) receptors should be studied in future (Wassif et al. 2001). 

Behavioural phenotypes and autistic behaviour is studied with mouse models and linked to abnormal 

and increased 5-HT (serotonin) neurons and fibres (Waage-Baudet et al. 2003). In the hindbrains of 

mutant (Dhcr7-/-) mice an impressive increase in 5-HT immunoreactivity could be observed. This 

increase in 5-HT immunoreactivity was suggested to represent an increase in total number of 5-HT 

neurons and fibres and may help to explain the behavioural phenotype seen in SLOS (Waage-Baudet 

et al. 2003). SLOS and other disorders in cholesterol biosynthesis can provide new insights in 

development, brain growth and brain function. 
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Other disorders of cholesterol biosynthesis 

Eight distinct inherited disorders have been linked to different defects in cholesterol biosynthesis 

(Table 1 and Figure 5). Two disorders are known to result from an enzyme defect in the pre-squalene 

segment of the pathway: the classical form of mevalonic aciduria and the hyperimmunoglobulinemia 

D/Periodic fever syndrome, also known as Dutch-type periodic fever.  

 All six enzyme defects in the post-squalene segment of the pathway, have been resolved on 

the basis of elevated levels of specific sterol intermediates in tissues of affected patients, followed by 

demonstrating disease-causing mutations in the encoding genes. These include the two X-linked 

dominant inherited and male-lethal disorders Conradi-Hünermann-Happle syndrome and Congenital 

Hemidysplasia with Ichthyosiform erythroderma and Limb Defects: CHILD syndrome, caused by 

deficiencies of sterol Δ8-7 isomerase and sterol C-4 demethylase, respectively. The three extremely rare 

autosomal recessive disorders, Greenberg skeletal dysplasia (=HEM, Hydrops Ectopic calcification 

Moth-eaten skeletal dysplasia), lathosterolosis and desmosterolosis, characterized by multiple 

congenital anomalies, have clinical overlap with the most common inborn error of cholesterol 

biosynthesis: SLOS. Table 1 gives a summary of disorders in cholesterol biosynthesis, genes, 

enzymes, most important features and their references. 
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Figure 5. Pre and post-squalene cholesterol biosynthesis. The eight human disorders are shown in grey boxes.  
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Cholesterol deficiency in teratology and embryogenesis 

Shortly after the discovery of cholesterol impairment in SLOS in the mid 90’s, researchers focused on 

its role in morphogenesis. Cholesterol has a pivotal role during embryogenesis where it functions as a 

transporter molecule for the Sonic hedgehog (Shh) signaling protein, which is essential for normal 

morphogenesis. Without cholesterol, Shh transport and/or function is impaired (Hall et al. 1995; Porter 

et al. 1996; Hall et al. 1997; Lanoue et al. 1997; Cooper et al. 1998). The Cholesterol modification of 

Shh activates signaling molecules such as Patched (Ptc), Smoothened (Smo) and Gli, which function 

in the development of numerous tissues by regulating cellular differentiation and proliferation (Theil 

et al. 1999; Wallis and Muenke 1999; Ogden et al. 2004). 

Teratology 

Some of the major malformations seen in SLOS can be mimicked in animal models utilising specific 

cholesterol-lowering drugs: BM 15.766, AY-9944 and YM 9429 inhibiting the Δ7-reductase enzyme in 

cholesterol biosynthesis (Honda et al. 1996; Kolf-Clauw et al. 1996; Dehart et al. 1997; Roux et al. 

2000). Treatment of pregnant rats with inhibitors of DHCR7, either AY9944 or BM15.766, has 

provided a valuable model to study the pathogenesis in SLOS (Gofflot et al. 1999). In brain tissue a  

7DHC/Cholesterol ratio as high as 3 easily can be detected after treating rats with AY9944 (Keller et 

al. 2004). The most characteristic malformations in this animal "holoprosencephalic syndrome" 

include cyclocephaly, cyclopia, monorhinia, palatoschizis and agenesis of the pituitary gland in up to 

80 % of subjects (Honda et al. 1996; Kolf-Clauw et al. 1996; Incardona et al. 2000). Teratogenic 

compounds/inhibitors used to study SLOS interfere with the morphogenetic Shh-Ptc-Smo-Gli 

signaling pathway. In animal studies, reduced or absent expression of Shh has been proven to 

influence expression of several other important morphogenetic genes in brain, heart, limb and mid-

face development (Gofflot et al. 2003; Digilio et al. 2003; Hill et al. 2003; Cox 2004). Indeed, in a 

large molecular genetic study of 200 holoprosencephaly patients, not only SHH mutations but also 

mutations in ZIC2, SIX3, and TGIF genes could be disclosed (Dubourg et al. 2004). This provides 

further evidence that malformations in several organs may originate directly from cholesterol 

disruption or impaired Shh signaling activity.  

 

SLOS knockout-mice model: Dhcr7-/- 

A targeted mutation of the Dhcr7 gene eliminates enzyme activity, making it virtually undetectable (1 

± 1 pmol/mg protein/min) in mice (Wassif et al. 2001). As in human patients, the SLOS/RSH mouse 

model showed marked reduction of circulating and tissue cholesterol and marked increase of 7DHC. 

Serum 7DHC levels were increased one hundred to one thousand fold and the percentage of 7DHC to 

total sterols of 50-80% in tissues of Dhcr7-/- mice (Wassif et al. 2001). 

Dhcr7-/- pups weighed significantly less: 1.11-1.14 g compared with 1.42-1.44 g for Dhcr7 

+/+ pups (Wassif et al. 2001 ; Fitzky et al. 2001). Homozygotes do not die prenatally but within 18 
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hours, presumably from respiratory failure or dehydration. Dhcr7-/- pups are easily identified shortly 

after birth by their laboured breathing, blue coloration, and lack of movement. Homozygous Dhcr7-/- 

mutant pups had craniofacial malformations, demonstrated decreased movement and none of the pups 

suckled and therefore failed to feed (Wassif et al. 2001). In 30 % of the Dhcr7-/- pups a nasal plug was 

noted and in 9% even the absence of an nasal opening. Mutant pups, rarely vocalised alarm, had a 

hypotonic appearance and had less vigorous movements, compared with control groups. In Dhcr7-/- 

mice isolated cleft palate was noted in 8-12 % (Wassif et al. 2001; Fitzky et al. 2001). 

Surprisingly, histological analysis showed no gross abnormalities of brain, heart, intestine, 

adrenal gland or kidney, as in severe human cases of SLOS. However, microscopic examination of 

fixed and stained sections of lung sections from Dhcr7-/- mice demonstrated compact lungs with 

sparse, unconnected air spaces that were similar in appearance to normal 15 to 16-gestational day 

mice. Diffuse alveolar atelectasis, however, was often detected but no limb or skeletal malformations 

(Wassif et al. 2001; Fitzky et al. 2001). Mutant pups lack a stereotypic rhythmic sucking/swallowing 

reflex leading to aspiration in trachea, bronchi and lung parenchyma. Gross and histological 

examination of the pharynx and trachea revealed no malformation (Wassif et al. 2001). 

Although smaller, mutant brain weights were proportional to body weight; there was no 

increased apoptosis in brains of Dhcr7-/- pups. Cholesterol deficits in homozygous mutant mice were 

most profound in the brain with dehydrocholesterols making up 80% of total sterols. In Dhcr7-/- mice 

sterol biosynthesis is suppressed as in the average child with SLOS, illustrated as a percentage of 

reductions in liver total sterols, HMG-CoA reductase protein levels, and HMG-CoA reductase 

activities (68%, 64%, and 83%, respectively) (Fitzky et al. 2001). In the central nervous system, 3β-

hydroxysterol Δ7-reductase (DHCR7) reduces 7DHC to form desmosterol and, as expected, 

desmosterol levels were markedly reduced in cortex and midbrain from Dhcr7-/- pups, compared with 

levels found in samples from either Dhcr7+/+ or Dhcr7+/- pups. Neuronal impairment might be the 

result of replacement of cholesterol and desmosterol by cholesterol-precursors: 7DHC and 8DHC in 

neuronal membranes. 

 
Pathophysiology 

Hedgehog-signaling proteins are involved in numerous developmental processes. They are modified 

by the addition and presence of cholesterol that appears to be required for the proper action and 

transport of hedgehog morphogens in the cell and tissues (Hall et al. 1997; Ingham 2001; Jeong et al. 

2002). The Sonic hedgehog must be covalently linked to cholesterol to be activated and is essential for 

the development of the brain, limbs and face (Roux et al. 2000). Cooper and co-workers could 

demonstrate a compromised Hedgehog signal in mutant cells from mouse models of SLOS and in 

normal cells pharmacologically depleted of sterols (Cooper et al. 2003). Molecular mechanisms 

underlying limb- (syn/polydactyly) and (non-lobulated) lung anomalies are studied to understand 
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imbalance of hedgehog expression or disruption of cascades as seen in SLOS (Gofflot et al. 2003; Yu 

et al. 2004). Different chemo- and phenotypes in SLOS patients with the same genotype suggest that 

there are more factors that have a pre- and postnatal effect on cholesterol biosynthesis and its 

important signaling cascades (Witsch-Baumgartner et al.  2004). Alternative pathways, maternal apo E 

genotype, LDL receptor gene variations, maternal diet during pregnancy and other factors must be 

studied in relation to modulation of embryonic development and SLOS malformations. 

 

Therapy 

Soon after the discovery of reduced cholesterol synthesis in SLOS, baseline cholesterol and precursor 

levels were associated with severity and developmental impairment. Several trials with dietary 

supplementation were initiated with the aim of increasing cholesterol and reducing the de novo 

synthesis and accumulation of 7DHC and 8DHC. Therapeutic trials in SLOS patients used dietary 

supplementation of cholesterol powder or egg yolk, with or without bile acids. (Xu  et al. 1995a; Xu et 

al. 1995b; Irons et al. 1995; Ulrich et al. 1996; Elias et al. 1997; Irons et al. 1997; Nwokoro et al. 

1997; Linck et al. 2000). The concentration of plasma cholesterol could be increased to subnormal 

levels in some SLOS patients. However, dietary cholesterol could not decrease levels of 7DHC and 

8DHC in plasma or tissues.  

Overall clinical improvement with cholesterol supplementation in SLOS is disappointing (Xu  

et al. 1995a; Xu et al. 1995b; Irons et al. 1995; Ulrich et al. 1996, Elias et al. 1997; Irons et al. 1997; 

Nwokoro et al. 1997; Linck et al. 2000). Cholesterol and bile acid supplementation could improve 

photosensitivity in SLOS in some patients (Elias et al. 1997; Azurdia et al. 2001; Starck et al. 2002) 

Progressive polyneuropathy improved on cholesterol supplementation, whilst stationary forms did not 

(Starck et al. 2002). In a study of 14 SLOS children receiving cholesterol supplementation, 

developmental quotients did not improve over time (Sikora et al. 2004).  
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AIM OF THE STUDY 

 

Following the first clinical description in 1964 and the elucidation of the biochemical defect in 1993, a 

number of questions related to Smith-Lemli-Opitz syndrome remained to be answered. Among these 

were:  

Is there a laboratory test to confirm the clinical diagnosis SLOS and are there any pitfalls ?  

Is substitution of cholesterol or reduction of precursors more effective in the treatment of SLOS ?  

Can we design new treatment stategies to improve neuro-motor development in SLOS patients ? 

What is the gene responsible for SLOS and can we detect mutations in our patients ? 

Could the broad clinical spectrum be explained by a genotype-phenotype correlation in SLOS and 

what is the real incidence of this disease and its carrier frequency in different parts of the world ? 

Is it the deficient cholesterol or the excess of precursors in plasma, membrane and tissue that 

contribute to the pathophysiology of SLOS ? 

Do we understand how an inborn error of metabolism can lead to a multiple malformation syndrome ? 

What is the mechanism of a disturbed cholesterol biosynthesis leading to a human malformation 

syndrome ? 

 

The aim of our study was to 

  

Introduce the reader in the Smith-Lemli-Opitz syndrome and 7-dehydrocholesterol reductase 

(DHCR7) deficiency and to share our current knowledge about diagnosis, clinical 

manifestations, molecular genetic aspects, therapy and pathophysiology in SLOS 

(Chapter 3). 

Investigate plasma of 8 patients, clinically diagnosed with SLOS and furthermore, describe 

pitfalls in measuring plasma cholesterol in SLOS with common oxidase methods used 

routinely in laboratories (Chapter 4). 

Explore new treatment strategies in SLOS. To describe and discuss sterol-exchange kinetics 

between plasma and erythrocyte-membranes, the effect of plasma exchange 

transfusions and longterm effect of HMG-CoA reductase inhibition with simvastatin 

in patients (Chapter 5 and 6). Explain the beneficial effect of simvastatin on plasma 

precursor / cholesterol ratio as observed during long-term therapy in SLOS. 

Understand this effect by studying the molecular effects of simvastatin on DHCR7 

enzyme activity and DHCR7 mRNA levels in SLOS fibroblasts and finally correlate 

biochemical, molecular and clinical effect in SLOS patients (Chapter 7). 

Search for new and known mutations in the DHCR7-gene in 13 patients with SLOS and study 

possible genotype-phenotype correlation (Chapter 8). 
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Describe a patient with a “Smith-Lemli-Opitz-like” phenotype caused by a distal chromosome 

7q36 deletion disrupting the human Sonic Hedgehog (SHH) gene and discuss 

remarkable finding in the perspective of SLOS pathogenesis (Chapter 9). 

Finally, summarize and discus all findings and highlight some specific future perspectives in 

SLOS and cholesterol biosynthesis in general (Chapter 10). 
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SUMMARY 

 

Smith-Lemli-Opitz syndrome, a severe developmental disorder associated with multiple congenital 

anomalies, is caused by a defect of cholesterol biosynthesis. Low cholesterol and high concentrations 

of its direct precursor 7-dehydrocholesterol in plasma and tissues are the diagnostic biochemical 

hallmarks of the syndrome. The plasma sterol concentrations correlate with severity and disease 

outcome. 

Mutations in the DHCR7 gene lead to a deficient activity of 7-dehydrocholesterol reductase (DHCR7), 

the final enzyme of the cholesterol biosynthetic pathway. The human DHCR7 gene is localised on 

chromosome 11q13 and its structure has been characterized. Ninety different mutations in the DHCR7 

gene to date have been published. This paper is a review on clinical, biochemical and molecular 

genetic aspects.   
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INTRODUCTION 

 

 Smith-Lemli-Opitz syndrome (SLOS MIM 270400), a severe developmental disorder associated with 

multiple congenital anomalies, is caused by a defect of cholesterol biosynthesis, i.e. a deficiency of the 

enzyme 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), the final enzyme of the cholesterol 

biosynthetic pathway. Low cholesterol and high concentrations of its direct precursor 7-

dehydrocholesterol (7DHC) and its isomer 8-dehydrocholesterol (8DHC) in blood and tissues are the 

biochemical hallmarks of the syndrome (Smith et al. 1964; Irons et al. 1993; Tint et al. 1995). The 

plasma sterol concentration generally correlates with severity and outcome (Tint et al. 1995; Witsch-

Baumgartner et al. 2000). That a single metabolic (enzymatic) defect in humans could lead to a 

multiple malformation syndrome was new and unexpected. Cholesterol, an important constituent of 

the cell membrane of most eukaryotic cells, has important interaction with proteins, which control 

embryonic development. In addition, cholesterol acts as the precursor for steroid hormones, bile acids 

and myelin formation in the brain, spinal cord and peripheral nervous system (Figure 1).  
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Figure 1. Cholesterol biosynthetic pathway. 



 

 42

Recently, several other reviewers have discussed various aspects of SLOS and other defects of 

cholesterol biosynthesis (Opitz 1999; Fitzky et al. 1999; Kelley & Hennekam 2000; Moebius et al. 

2000; Waterham & Wanders 2000; Battaile & Steiner, 2000; Haas et al. 2001; Nwokoro et al. 2001; 

Kelley & Herman 2001). Here we discuss the clinical, biochemical and molecular genetic aspects of 

SLOS. 

 

 

CLINICAL ASPECTS OF SLOS 

 

 Since the first description of SLOS as a clinical entity in 1964 (Smith et al. 1964) many papers have 

appeared describing a variety of common and less common clinical findings in patients with this 

multiple malformation/retardation syndrome (e.g. Opitz 1999; Kelley & Hennekam 2000; Cunnif et al. 

1997; Ryan et al. 1998). The clinical spectrum includes different morphogenic abnormalities such as 

craniofacial, internal organ, limb/skeletal and urogenital anomalies besides (intrauterine) growth and 

mental retardation, failure to thrive and behavioral problems. The frequently occurring clinical 

symptoms apparent in 164 biochemically confirmed SLOS cases (Kelley & Hennekam 2000) are 

summarized in Table 1. While many of the signs on itself are not disease-specific for SLOS, the 

combination of several may point to this disorder. Indeed the occurrence of second/third toe 

syndactyly, polydactyly, microcephaly, ptosis, long philtrum, (congenital) cataract, photosensitivity, 

Hirschprungs’ disease (colonic aganglionosis), pyloric stenosis, genital developmental anomalies 

(ranging from hypospadias to a complete sex reversal) in combination with neuro-developmental 

delay, should raise the clinical suspicion of SLOS (Figure 2). Through the years attempts have been 

made to distinguish a severe (lethal) type II form from the relatively mild type I form. The 

identification of the biochemical and molecular basis of SLOS however, has made clear that SLOS 

forms a clinical and biochemical continuum ranging from hardly recognizably mild to severe lethal 

forms (Kelley 1998; Kelley 2000; Waterham et al. 1998; Cunnif et al. 1997; Tint et al. 1995; Jira et al. 

2001). The clinical description in the literature on SLOS probably is biased towards more severely 

affected and thus readily recognizable patients. Reviewing published SLOS families, the incidence of 

fetal death and spontaneous abortions is twice as high as in the general population suggesting the 

occurrence of severe cases leading to early death. With the introduction of selective screening and the 

availability of biochemical and genetic testing following the recent elucidation of the underlying cause 

of SLOS, mildly affected cases or even patients without clinical suspicion of SLOS can be readily 

diagnosed. 
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Table 1. Clinical symptoms in SLOS. Findings in 164 biochemically confirmed cases (Kelly & 
Hennekam 2000) 
 
 
 
  Finding     (%)    
 
 

2/3 toe syndactyly   97 
Mental retardation   95     
Microcephaly    84 
Postnatal growth retardation  82 
Anteverted nares   78 
Ptosis     70 
Genital anomalies   65 
Congenital heart defects   54 
Polydactyly†    48 
Cleft palate*)    47 
Abnormal lung lobation   45 
Renal anomalies    43 
Structural brain anomalies  37 
Cataract     22 
Colonic aganglionosis   16 
Pyloric stenosis    14 
 
 

 
*)    Includes cleft soft palate, submucous cleft, and cleft uvula.  
†    Includes postaxial polydactyly of hand(s)/foot. 
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Figure 2. Clinical characteristics in SLOS. Facial dysmorphias including: mild ptosis, a long philtrum, 
anteverted nares in a 5 year old boy (A) and a 3 year old girl (B). Genital anomalies in boys (C) and 2/3 toe 
syndactyly (D) present in respectively 65 % and 97 % of SLOS cases. 
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Therapeutic trials using dietary supplementation of cholesterol with or without bile acids have shown 

that plasma cholesterol levels can be increased in some patients. Concentrations of the precursors 

7DHC and 8DHC, however, were only marginally altered and clinical effects of the treatment so far 

have been rather disappointing (Irons et al. 1995; Ullrich et al. 1996; Elias et al. 1997). An alternative 

therapeutic strategy has been developed, treating 5 SLOS patients with Simvastatin (an oral HMG-

CoA reductase inhibitor) for a median period of 2 years. The overall biochemical effect was 

impressive with a decrease of 7DHC+8DHC and increase of cholesterol in plasma to respectively 28 

% and 162 % of  the initial concentration with promissing clinical improvement (Jira et al. 1997; Jira 

et al. 2000; and unpublished data). This therapeutic statin approach is currently being tested in a 

multicenter European Trial. 

 

 

 BIOCHEMICAL ASPECTS 

 

 SLOS is caused by a deficiency of the enzyme 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), 

the final enzyme of the cholesterol biosynthetic pathway. Molecular cloning of the cDNA showed that 

the human enzyme is a protein with a calculated molecular weight of 54.5 kDa and nine 

putative/predicted transmembrane segments. It is microsomal membrane-bound and in humans the 

mRNA is expressed ubiquitously with the highest expression in adrenal gland, liver, testis, and brain 

(Moebius et al. 1998).  

   Cholesterol is a main endproduct derived from the isoprenoid biosynthetic pathway 

(Goldstein and Brown 1990). This pathway supplies cells with a variety of compounds, collectively 

called isoprenoids, which function in diverse cellular processes. Among these are ubiquinone-10 and 

heme A, involved in electron transport, dolichol, mediator of protein glycosylation, isopentyl tRNAs, 

and farnesyl and geranyl groups for prenylation of proteins that are involved in cell signalling and 

differentiation (Goldstein & Brown 1990). Acetyl-CoA (C2) is converted into the isoprene unit: 

isopentenyl-PP (C5) by six different serial enzyme reactions. After adding C5 to geranyl-PP (C10) 

through farnesyl-PP (C15), squalene (C30) is transformed to lanosterol (4,4,14-trimethylcholesta-8(9), 

24-dien-3-ol) by cyclization. A series of enzyme reactions is required to eventually produce 

cholesterol (Figure 1). Not only humans but the majority of organisms including animals, plants, fungi 

and micro-organisms are equipped with this important de novo (chole)sterol biosynthetic pathway, 

supplying sterols and steroids to cells, membranes and tissues. Cholesterol has a pivotal role during 

embryogenesis where it functions as a transporter-molecule for the Sonic hedgehog (Shh) signalling 

protein, which is essential for normal morphogenesis. Without cholesterol, Shh-transport and/or 

function is impaired (Hall et al. 1995; Porter et al. 1996; Hall et al. 1997; Lanoue et al. 1997; Cooper 

et al. 1998). The sterol derangement in SLOS (accumulation of 7DHC/8DHC and shortage of 

available cholesterol) undoubtedly influences the proper activation of the Shh-receptor. These findings 
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may explain the phenotypic consequences of the DHCR7 deficiency as observed in this syndrome: 

microcephaly, a distinctive facies, cataract, syn/polydactyly, and a variety of organ malformations 

including genital abnormalities ranging from intersex to complete sex reversal in boys. Although the 

mechanism of Shh-induced signaling pathway in vertebrates is not completely defined, it is known to 

regulate dorso-ventral patterning within the neural tube, limb, lung, genital, ocular, and retinal 

development as well as craniofacial morphogenesis (Krishnan et al. 1997; Hayes et al. 1998; Imokawa 

et al. 1997; Levine et al. 1997; Helms et al. 1997; Marigo et al. 1995; Hall et al. 1995; Kumar et al. 

1996). In a recent null mutation mouse model without DHCR7 activity, accumulated 7-

dehydrocholesterol was found to suppres sterol biosynthesis posttranslationally in line with earlier 

observations in skin fibroblasts from SLOS patients (Shefer et al. 1997). This effect might exacerbate 

abnormal development in SLOS by increasing the fetal cholesterol deficiency (Fitzky et al. 2001). 

The most predictive biochemical value in SLOS is the 7DHC/cholesterol ratio in plasma (Tint et al. 

1995; Witsch-Baumgartner et al. 2000). In general, patients with plasma 7DHC/cholesterol ratio 

between 0.5 – 1.0 have moderate SLOS. Patients with a plasma ratio <0.5 have a mild presentation 

and course while plasma 7DHC/cholesterol ratio >1.0 is associated with severe SLOS (Krakowiak.et 

al. 2000; Jira et al. 2001). This biochemical ratio could be a usefull tool for prognosis and treatment in 

SLOS but cannot predict severity accurately. 

 

To date, seven distinct inherited disorders have been linked to different defects in cholesterol 

biosynthesis. Two disorders are known to result from an enzyme defect in the pre-squalene segment of 

the pathway: the classical form of mevalonic aciduria (MIM 251170: Hoffmann et al. 1986; Houten et 

al. 2000; Haas et al. 2001) and the hyperimmunoglobulinemia D and periodic fever syndrome also 

known as Dutch-type periodic fever (MIM 260920: Houten et al. 1999; Drenth et al. 1999; Houten et 

al. 2000). Of the remaining five disorders, all due to different enzyme defects in the post-squalene 

segment of the pathway, four have been resolved at the molecular level recently by the demonstration 

of disease-causing mutations in the encoding genes. These include SLOS and the two X-linked 

dominant inherited and male-lethal disorders Conradi-Hünermann-Happle syndrome (CDPX2; MIM 

302960: Happle 1979 and CHILD syndrome; MIM 308050: Happle et al. 1980) caused by 

deficiencies of sterol Δ8-7-isomerase (EBP gene at Xp11.22-23) or a sterol C-4 demethylase (NSDHL 

gene at Xq28) respectively. In patients with Desmosterolosis, a rare autosomal recessive disorder, 

characterized by multiple congenital anomalies, elevated levels of the cholesterol precursor 

desmosterol, in plasma, tissue, and cultured cells suggested a deficiency of the enzyme 3beta-

hydroxysterol Δ24-reductase (MIM 602398: FitzPatrick et al. 1998). Four mutations in two patients, 

only recently, gave the molecular confirmation of this defect (DHCR24 gene at 1p31.1-p33: Waterham 

et al. 2001). The last, extremely rare and probably autosomal recessively inherited disorder of sterol 

synthesis, namely Greenberg skeletal dysplasia (MIM 215140: Greenberg et al. 1988), presumably 

due to a deficiency of sterol Δ14-reductase, is detected by elevated levels of specific sterol 
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intermediates in conjunction with decreased levels of cholesterol in tissues and cells of affected 

patients. Confirmation at the molecular level of this disorder awaits the identification of the 

corresponding gene and/or molecular analysis in affected patients.  

 

 

 MOLECULAR GENETICS OF THE DHCR7 GENE 

 

Organisation and conservation 

 In 1998, the human 7-dehydrocholesterol reductase gene (DHCR7 Gen Bank accession number: 

AF034544) was identified and assigned to chromosome region 11q13 (Fitzky et al. 1998: Wassif et al. 

1998: Waterham et al. 1998). Ninety different mutations in the DHCR7 gene of patients with Smith-

Lemli-Opitz syndrome have been described to date (Fitzky et al. 1998; Wassif et al. 1998; Waterham 

et al. 1998; Yu et al. 2000; De Brasi et al. 1999; Witsch-Baumgartner et al. 2000; Patrone et al. 2000; 

Waterham & Wanders 2000; Krakowiak et al. 2000; Jira et al. 2001; Witsch-Baumgertner et al. 2001; 

Evans et al. 2001; Prasad et al. 2002). The cDNA has an open reading frame of 1,425 base-pairs 

coding for a polypeptide of 475 amino acids (Figure 3). Alternative splicing has not been described. 

Structurally,  the protein is strongly related to plant and yeast sterol reductases (Rahier et al. 1996: 

Waterham et al. 1998). The percentage of identity of the human DHCR7 with the A. thaliana sterol 

Δ7-reductase and the S. cerevisiae sterol Δ14-reductase is 38 and 34 respectively (Waterham et al. 

1998). 

 

Frequency and ethnic aspects 

SLOS is the most frequently occurring defect of cholesterol biosynthesis known to date. Estimated 

incidences of SLOS have historically been based on clinical diagnosis and initially ranged from 

1:40,000-50,000 births (Opitz et al. 1994; Cunniff et al. 1997). Now that biochemical and genetic 

testing for this trait has become available the incidence turns out to be significantly lower due to 

formerly incorrect inclusions of cases with SLOS-like phenotypes. Based on biochemically confirmed 

cases an incidence of approximately 1:60,000 births has now been reported in the UK and the USA 

(Ryan et al. 1998; Kelley & Hennekam 2000). From the number of biochemically and genetically 

confirmed Dutch SLOS cases we have estimated an incidence of approximately 1:80,000 births in The 

Netherlands (Jira et al. 2001; Waterham & Wanders 2000). On the other hand, an incidence of 1: 

20,000-26,500 of biochemically confirmed SLOS cases has been reported for Slovakia and Canada, 

respectively (Bzduch et al. 2000; Nowaczyk et al. 2001). 

   The reason for the rather high incidence of SLOS is unclear but may be a consequence of 

both founder effects and heterozygote advantage. A founder effect has been suggested to explain the 

fact that SLOS is most common in Caucasian populations from east-European descent. As possible 

advantage for heterozygotes a relative protection from atherosclerosis due to lowered blood 
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cholesterol levels as well as a lower risk for children to acquire rickets due to increased vitamin D 

production from elevated 7-DHC levels has been suggested (Kelley 1998; Kelley & Hennekam 2000). 

 

Pathogenic mutations and polymorphisms 

We performed a survey of the literature on mutations described in patients diagnosed with SLOS. 

Molecular data are presented in Table 2. The position of the mutations related to the position of the 

transmembrane segments and loops of the DHCR7 protein is illustrated in Figure 3.  

 

N

C

Cytoplasm

ER-Lumen

20

40

60

80

120 200

140

220

260

460
440

400

380

360

330

300

290

Null mutations
Missense mutations

175

230

 
 

5’UTR 3’UTR1 4 5 6 7 8 9

Transmembrane segment 1 2 3 4 5 6 7 8 9

2 3

 
 

Figure 3. Predicted membrane topology (upper part) and intron-exon organisation (lower part) of the 7-
dehydrocholesterol reductase, based on the data of Fitzky et al.1998. Transmembrane segments 4 to 8 represent 
the, highly conserved, sterol-sensing domain. The coding sequences of the transmembrane segments are given as 
grey areas in the lower part of the figure. Position of null mutations (black) and missense mutations (grey) are 
indicated. 
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Table 2 summarizes mutations described in SLOS patients by: nucleotide change, effect on coding 

sequence (for numbering of nucleotides and amino acids see: Waterham et al. 1998), affected exon, 

localisation in DHCR7 protein, incidence in study cohorts, their references and overall incidence. 

DNA sequencing of almost 400 SLO-alleles identified 90 different mutations. The DHCR7 gene 

mutations identified in SLOS patients were shown to have deleterious effects on the function of the 

DHCR7 protein (Fitzky et al. 1998; Wassif et al. 1998; Waterham et al. 1998).  

   Apart from the majority of missense mutations, four nonsense mutations (W37X, Q149X, 

W151X, Y217X), eight frameshift mutations leading to a premature stop; four deletions: IVS3-1-195 

del, 384-IVS5+4del, and 720-735del, and 1057Gdel), two splice site mutations (IVS8-1G>C and 

IVS8-1G>T), and two insertions (682insC; and 762insT) have been reported. Recently a 3 bp deletion 

has been detected resulting in the in-frame removal of a single histidine residue from position 356 of 

the DHCR7 protein. This deletion of one codon does not lead to a premature truncation of the protein 

and some residual activity may be expected although expression has not been determined.  

The seven most frequent mutations described to date are: IVS8-1G>C, T93M, R404C, W151X, 

V326L, R352W and E448K with a frequency of: 31.5, 11.2, 10.7, 6.4, 6.3, 3.2 and 3.2 percent, 

respectively, representing two third of the mutations in analysed alleles. Eighty mutations detected in 

SLOS alleles are single amino acid substitutions. 

   Two splice site mutations have been described at the same position (The frequent IVS8-1 

G>C mutation and a rare variant, namely an IVS8-1 G>T ; Jira et al. 2001). The G>C mutation causes 

aberrant splicing producing a mRNA with 134 base-pairs of retained intron 8 sequence at nucleotide 

position 963, which upon translation will lead to a frame shift and a stopcodon at nucleotide 1235 

(TGA) predicted to produce an inactive, truncated protein lacking 154 amino acids of its original C-

terminal sequence (Waterham et al. 1998; Waterham et al. 2000). This was confirmed by enzyme 

activity measurements in patients homozygous for this mutation (Moebius et al.1998; Waterham et 

al.1998; Witsch-Baumgartner et al. 2000; Waterham & Wanders 2000; Yu et al. 2000; Bataille et al. 

1999) which revealed no activity. Severely affected patients with extremely short life span have been 

identified who were homozygous for this mutation (Waterham et al. 1998; Witsch-Baumgartner et al. 

2000) with plasma cholesterol levels as low as 20 μmol/l/ (Jira et al. 2001). The number of 

homozygotes for this mutation, however, is lower than expected on the basis of the Hardy Weinberg 

equation. Hence, homozygosity for this null allele have been predicted to lead to spontaneous 

termination of pregnancy in many cases and consequently to an underestimation of the true incidence 

of SLOS (Kelley & Hennekam 2000; Waterham & Wanders 2000). 

So far fifteen polymorphic silent mutations are found in the DHCR7 gene (Table 2). 
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Localization of mutations in the protein 

Mutations occur further throughout the whole gene/protein without evident hotspots. A substantial 

number of mutations, however, are found in the so called "sterol-sensing domain" encompassing five 

transmembrane segments 4 – 8 as proposed by Fitzky et al. 1999 and Bae et al. 1999 (Figure 3). The 

specific DHCR7 membrane-spanning segments show strong homology to segments found in five other 

human proteins. These proteins in nature all have crucial interaction with sterols: 1] HMG-CoA 

reductase (Olender et al. 1992), 2] Niemann-Pick C1 gene product (Loftus et al. 1997), 3] Sterol 

regulatory element-binding protein-SCAP (Nohturfft et al. 1998), 4] the morphogene receptor 

PATCHED (Loftus et al. 1997) and 5] the DISPATCHED protein (Burke et al. 1999). According to 

the hydrophobicity in the DHCR7 protein, membrane-spanning segments 4 to 8 are closely spaced and 

connected by relatively short hydrophilic amino acid loops. In contrast to DHCR7, SCAP and HMG-

CoA reductase have a long COOH-terminal domain that projects into the cytosol (Nohturfft et al. 

1998).  

   The majority of SLOS patients are compound heterozygous for two different mutations in 

DHCR7. Sibs with the same DHCR7-mutations or genotypically identical patients, reported by 

different groups, may display similar or rather different plasma sterol values and/or different 

phenotypes (Krakowiak et al. 2000; Jira et al. 2001). The mutational site and effect on the coding 

sequence seemed to be only partially predictive for clinical and biochemical severity. 

 

Expression studies and Genotype-Phenotype 

Enzymatic activities of DHCR7 can be determined by assaying the conversion of either isotope-

labeled 7DHC or its precursors such acetate or lathosterol (cholesta-7-en-3β-ol) to cholesterol using 

thin layer chromatography or HPLC (Lund et al. 1996; Shefer et al. 1997; Necklason et al. 1999). An 

alternative is the use of non-radiolabeled ergosterol (ergo-5,7,22-trien-3β-ol) as substrate for DHCR7. 

Incubation of microsomal preparations or cell homogenates from rat and human with ergosterol results 

in the reduction of the Δ7 double bond which produces brassicasterol (ergo-sta-5,22-dien-3β-ol). The 

ergosterol conversion followed by GC-MS detection of produced sterols, although less sensitive than 

the isotope-based assays, avoids the problems caused by the instability and availability of the 

radiolabeled precursors (Honda et al. 1996; Shefer et al. 1998). Functional analysis, by expression of 

DHCR7 mutations in mammalian cells, demonstrated that all but one of the missense (R450L; C-

terminus) mutations result in unstable protein (Waterham et al. 1998; Witsch-Baumgartner et al. 2000; 

Jira et al. 2001). Residual enzyme activity may explain some of the phenotypic variability seen in 

SLOS. Enzyme kinetic studies support this theory (Neklason et al. 1999).  

   Mutations that alter, interfere with or truncate the sterol-sensing domain of the DHCR7 

protein are likely to cause a more severe clinical and biochemical SLOS-phenotype. Making 

predictions of the SLOS phenotype from genotype, however, continues to be difficult since there is 
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significant clinical and biochemical variability among genetically identical infants. A higher incidence 

of severe null mutations (IVS8-1C>G insertion and W151X) in a population could explain a lower 

incidence of SLOS occurring. The 50 % incidence of the IVS8-1G>C mutations observed in our 

European SLOS-study (Jira et al. 2001) exceeds the findings of others who identified the IVS8-1G>C 

mutation in 21 of 66 (32%) and 18 of 52 (35%) SLOS-alleles, respectively (Yu et al. 2000; Bataille et 

al. 2000). The development of a simple PCR-RFLP can be used as a screening-method for detecting 

this frequent SLO-mutation. Data on population screening for the IVS8-1G>C mutation indicated the 

high carrier frequency of about 1 in 100 and 1 in 30 for U.S. Caucasians and European Caucasians, 

respectively (Yu et al. 2000, Nowaczyk et al. 2001). A study of DHCR7 mutations from three 

European areas (Poland, Germany/Austria and Great Britain) revealed extreme frequency gradients for 

this mutation. The frequency gradient of the W151X mutation is in a direction opposite to the gradient 

of  the IVS8-1G>C mutation (Witsch-Baumgartner et al. 2001). 

 

In conclusion, SLOS is a multiple malformation/retardation syndrome with a clinical and biochemical 

spectrum ranging from a lethal to a difficult to diagnose very mild presentation. Among the 90 

different mutations observed and reviewed, the majority are missense mutations (80). There is a 

clustering in three domains of the DHCR7 protein; 1] in the transmembrane domain, 2] in the fourth 

cytoplasmatic loop, 3] and at the C–terminus.  

Twelve null mutations (4 nonsense, 4 deletions , 2 splice site mutation and 2 single nucleotide 

insertions) lead to absent enzyme activity. As far as studied, missense mutations, on the other hand, 

have demonstrated only decreased protein stability in expression studies.  

Severe clinical phenotype in SLOS patients is due to null allele and fourth loop mutations whereas C-

terminal and transmembrane mutations cause a mild to moderate clinical phenotype. Further molecular 

genetic studies will enable insight in carrier frequency of specific DHCR7 mutations in various 

populations. Additional clues for prenatal, maternal, environmental, other genetic and compensatory 

biochemical determinants that can modify the phenotypical consequences of the functional DHCR7 

deficiency in SLOS is needed. 
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ABSTRACT 

 

Correct quantitative results for plasma cholesterol, 7-dehydrocholesterol (7-DHC), and 8-

dehydrocholesterol (8-DHC) are invaluable for making the correct diagnosis in patients with the 

Smith–Lemli–Opitz syndrome (SLO) and for biochemical monitoring of these patients during therapy. 

The enzymatic method for cholesterol measurement based on cholesterol oxidase gives falsely high  

values for plasma cholesterol in samples from patients with SLO. Both 7-DHC and 8-DHC contribute 

substantially to the test result, given that they are accepted substrates of cholesterol oxidase. All 

cholesterol methods making use of this enzyme are expected to give unreliable results with plasma 

samples from SLO patients. Cholesterol values found with these methods may be low-normal in  

individual cases with SLO. Therefore, other techniques for measuring cholesterol, 7-DHC, and 8-

DHC, e.g., gas chromatography, should be used for diagnosing these patients and for follow-up during 

therapy. However, a normal value for plasma cholesterol, as obtained by gas chromatography, does 

not exclude SLO. The diagnosis should always be confirmed or excluded by testing for the presence of 

high concentrations of 7-DHC and 8-DHC in plasma. We found that one patient with a severe form of 

the disease had a plasma cholesterol concentration of 20 µmol/L, to our knowledge, the lowest value 

ever recorded in a human being.  
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INTRODUCTION 

 

In 1964, Smith et al. (Smith et al. 1964) described a syndrome, now generally referred to as the 

Smith–Lemli–Opitz syndrome (SLO), characterized by a number of birth defects affecting nearly 

every organ system.1 The patients are mentally retarded, have a growth disorder, and show failure to 

thrive. Both dysmorphic facial signs (microcephaly, palatoschizis, cataracts, ptosis, micrognathia) and 

limb abnormalities (syndactyly of the second and third toe, polydactyly) occur in the patients. Genital 

disorders, hypospadias, and cryptorchidism have been described.  

The syndrome is estimated to be among the most common autosomal recessive 

disorders among Caucasians, its prevalence being ~1:20 000 births (Opitz 1994). A possible 

abnormality of steroid secretion was first postulated by Chesalow et al. (Chesalow et al. 1985). Since 

then, Irons et al. have shown that SLO is caused by a defect in the cholesterol biosynthesis pathway 

(Irons et al. 1993; Tint et al. 1994). Patients have decreased concentrations of cholesterol in plasma 

and increased concentrations of the precursor 7-dehydrocholesterol (cholesta-5,7-dien-3ß-ol; 7-DHC) 

and its isomer 8-dehydrocholesterol (cholesta-5,8-dien-3ß-ol; 8-DHC) in plasma, erythrocytes, 

cultured skin fibroblasts, amniotic fluid, and various tissues (Irons et al. 1993; Tint et al. 1994; 

McGaugran et al 1994; Johnson et al. 1994; Batta et al. 1995), findings that suggest a block in 

reduction of the C-7 double bond (Irons et al. 1993; Tint et al. 1994). Recently, those researchers 

confirmed that the enzyme defect involved the 7-dehydrocholesterol-7-reductase in liver microsomes 

(Shefer et al. 1995).  

The aim of our study was to evaluate the reliability of the standard enzymatic assay (based on 

cholesterol oxidase) for measuring plasma cholesterol in samples from SLO patients. Because the 

technique for measuring 7-DHC in plasma is not widely available, clinicians may wish to use the 

presence of low concentrations of plasma cholesterol in patients with SLO as a first step towards 

confirming the diagnosis. Furthermore, measurement of plasma cholesterol will play a role in the 

follow-up of therapy strategies with high-cholesterol diets. We also compared the plasma cholesterol 

results obtained with the cholesterol oxidase method with those of a gas-chromatographic (GC) 

technique. 

 

 

MATERIALS AND METHODS 

 

Patients 

We analyzed plasma from eight patients (ages 2 weeks to 33 years) who had the characteristic clinical 

signs and symptoms of SLO. Forty-eight plasma samples, included as a diseased control group, had 

been sent to our laboratory for metabolic screening; however, the patients in this control group did not 

show clinical signs and symptoms characteristic for SLO, and some were under special clinical 
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conditions (e.g., feeding problems, metabolic crises, special dietary formulas). This group provides the 

background against which metabolic screening laboratories have to diagnose patients with SLO. 

Because this study was not devised to obtain reference ranges for cholesterol in various age groups, 

the data presented later (in Table 1) should not be considered as such. 

 

Enzymatic assays  

Plasma cholesterol was measured at 30 °C with an enzymatic test on a Hitachi 747 analyzer 

(Boehringer Mannheim, Mannheim, Germany) according to the instructions of the manufacturer and 

with use of Boehringer reagents (CHOD-PAP test; SYS-3:1127578/1489704). In this test, cholesterol 

and cholesterol esters are converted by the sequential action of cholesterol esterase and cholesterol  

oxidase. The H2O2 formed in the latter reaction is determined quantitatively in the last step by using a 

peroxidase that converts phenol and 4-aminophenazone into 4-(p-benzoquinone-monoimino)-

phenazone. 

 

GC assays  

For GC determination of cholesterol and its precursors (7-DHC and 8-DHC), we combined 60 µL of 

plasma with 7.58 nmol of 5ß-cholestane-3-ol as internal standard (no. C5050; Steraloids, Wilton, NH) 

in 1 mL of a solution of 0.32 mol/L KOH in 95% ethanol. The CFAS-calibrator for cholesterol was 

used (no. 759350; Boehringer Mannheim) in combination with two control sera (Precinorm and  

Precipath; also from Boehringer Mannheim). After an incubation of 15 min at 55 °C, 1 mL of H2O 

and 4 mL of pentane were added and mixed for 5 min. The steroids, which were extracted into the 

pentane layer, were taken up by pipetting after centrifugation (5000g • min). The pentane was then 

evaporated with nitrogen at ~50 °C. To derivatize the steroids, we added 100 µL of an equivolume 

solution of N,O-bis(trimethylsilyl)trifluoroacetamide (no. 15238; Fluka, Buchs, Switzerland) and 

pyridine and incubated at 60 °C for 30 min. GC analysis was performed with a Hewlett-Packard 

(Amstelveen, The Netherlands) Model 5890 GC and a 25 m x 0.25 mm (i.d.) CP-Sil-19 CB column 

(film thickness 0.2 µm; Chrompack, Bergen op Zoom, The Netherlands). The temperature program 

was started at 240 °C, increased to 300 °C at 5 °C/min, and held for 3 min at 300 °C. Temperatures of 

the injector and detector were 280 and 300 °C, respectively. Pure 7-DHC for calibration purposes was 

purchased from Sigma Chemical Co., St. Louis, MO; no. D-3625); to quantify 8-DHC, we used the 

calibration curve for 7-DHC because 8-DHC for calibration was not available commercially. 
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Table 1. Sterol concentrations (μmol/La) in plasma from patients with Smith-Lemli-Opitz syndrome and from 
disease controls. 
 

SLO 

patient 

Sex, age Enzymatic 

cholesterol 

                                     Gas chromatography 

Cholesterol       7-DHC        8-DHC         Totalb                Ratioc 

1 F, 11 d  700 20 430 266 716 34.8 

2 M, 7 m 1000 260 300 385 945 2.6 

3 M, 7 y 1820 975 280 264 1519 0.6 

4 M, 26 y 1560 1118 182 127 1427 0.3 

5 M, 27 y 1300 884 143 107 1134 0.3 

6 M, 28 y 1700 1170 220 284 1674 0.4 

7 F, 29 y 2080 1261 442 308 2011 0.6 

8 F, 33 y 3800 2030 848 555 3433 0.7 

<1 y (12)d 2400-4900 2523-4805 <7 <5  <0.004 

1-5 y (12) 2100-5300 2139-5447 <5 <5  <0.003 

6-15 y (10) 3200-5700 3138-5775 <5 <5  <0.002 

Range, 

disease 

control 

group >15 y (14) 2900-8600 3174-8226 <8 <10  <0.003 

1-3 y 1150-4700 

4-6 y 2800-4800 

Reference 

intervals  

for healthy 

childrene 

7-9 y 2900-6400 

 

a To convert cholesterol from μmol/L to mg/dL: 1000 μmol/L = 38.67 mg/dL. 
b Cholesterol (GC) + 7-DHC (GC) + 8-DHC (GC). 
c [7-DHC (GC) + 8-DHC (GC)]/cholesterol (GC). 
d n for each group is listed in parentheses. 
e 0.025-0.975 fractiles, according to Lockitch et al. 1988 

 

GC-MS  

Mass spectra from peaks separated by GC were obtained by using a VG Trio 2 quadrupole mass 

spectrometer (Micromass, Altrincham, Cheshire, UK) coupled to the Hewlett-Packard 5890 GC. The 

cholesterol peak was characterized by fragments at m/z 329, 353, and 458. 7-DHC and 8-DHC gave 

identical spectra, with characteristic fragments at m/z 351 and 456. 

 

Recovery studies  

To test whether 7-DHC contributes to the result of the enzymatic cholesterol assay, we performed 

recovery experiments for cholesterol and 7-DHC in a human serum matrix and in human serum 

albumin solution (Sigma, no. A 16535; 50 g/L in 0.15 mol/L NaCl). The sterols, which had been 
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dissolved to 33 mmol/L solution in ethanol, were added to both matrices to yield final concentrations 

of 1, 2, and 3 mmol/L. Complete solubilization was obtained by adding Nonidet P-40 (no. N6507; 

Sigma) to a final concentration of 100 mL/L.  

 

 

RESULTS 

 

Enzymatic assay for plasma cholesterol  

Table 1 shows the plasma cholesterol concentrations obtained with the cholesterol oxidase method for 

our diseased control group and the SLO patients. For the group of SLO patients as a whole, the 

cholesterol concentrations generally were below the concentration range found in the control group.  

However, there was an overlap between values for the two groups. One SLO patient (case 8) had a 

plasma cholesterol concentration of 3.8 mmol/L with this test, which would be interpreted as a low but 

normal value for an adult. The values found for the SLO children (cases 1–3) were close to the range 

found in our diseased control group; their diagnosis could easily have been missed if no further data 

had been available. 

 

GC analysis of cholesterol, 7-DHC, and 8-DHC 

The gas chromatograms of the plasma samples from a patient in the diseased control group and from 

two patients with SLO all showed peaks for the internal standard, cholesterol, 8-DHC, and 7-DHC 

(Figure 1). Identification of the compounds was based on their retention times and on mass spectra 

(not shown). In agreement with the data from Axelson (Axelson et al. 1991), we observed that 7-DHC 

occurs in trace amounts in normal human plasma. Using calibration curves for cholesterol, 7-DHC, 

and the internal standard, we confirmed the linearity of the method for the concentration range used in 

this study (data not shown).  
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Figure 1. Capillary-column gas chromatograms of control plasma (top panel) and plasma from two SLO 
patients (the middle panel shows plasma from patient 1 and the bottom panel plasma from patient 5, Table 1 ). 
Peaks: IS, internal standard (5ß-cholestane-3-ol); A, cholesterol; B, 8-DHC; and C, 7-DHC. 
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Capillary-column gas chromatograms of control plasma (top panel) and plasma from two SLO patients 

(the middle panel shows plasma from patient 1 and the bottom panel plasma from patient 5, Table 1 ). 

Peaks: IS, internal standard (5ß-cholestane-3-ol); A, cholesterol; B, 8-DHC; and C, 7-DHC. 

Plasma concentrations of cholesterol measured with GC vary considerably among SLO patients (20–

2030 µmol/L) and also show an overlap in concentrations between the SLO group and the diseased 

control group, similar to the overlap observed in the enzymatic cholesterol assay. In all patients with 

SLO, the concentrations of 7-DHC and 8-DHC were clearly increased (GC results, Table 1 ). These 

data lead to a straightforward diagnosis for all SLO cases in this study. The ratio of (7-DHC + 8-

DHC)/cholesterol may correlate with the severity of the disease. Patients 1 and 2, who had a severe 

form of the disease (type 1), gave higher values for this ratio than did the rest of the SLO group.  

The correlation between the enzymatic assay and the GC assay results for plasma cholesterol was good 

in the diseased control group (Figure 2), the Passing and Bablok (Passing et al. 1983) regression line 

(and 95% confidence intervals) being y = 1.02 (0.95–1.08) x - 0.080 (-0.31 to 0.20). In the SLO group, 

the results of both methods for the plasma samples all deviated from that correlation line, to yield  

y = 0.68 (0.37–1.15) x - 0.211 (-0.84 to 0.44). Because the cholesterol concentrations found for the 

SLO group were systematically higher by the enzymatic test than by GC (Table 1 ), we hypothesized 

that 7-DHC and 8-DHC might contribute to the results of the enzymatic cholesterol assay; 

consequently, we performed recovery experiments with cholesterol and 7-DHC.  

 
Recovery experiments 

Cholesterol recovery in the enzymatic assay was complete, the mean recovery in the serum matrix 

being 108% (n = 9, range 100–120%) and the mean in the albumin matrix being 94% (n = 9, range 90–

100%). Most of the added 7-DHC was also measured: mean in serum matrix, 61% (n = 6, range 5–

70%); mean in albumin matrix, 71% (n = 6, range 70–75%). Possibly, the known instability of 7-DHC  

contributed to the partial recovery of this compound.  
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Figure 2. Correlation between enzymatic cholesterol oxidase results and GC results for plasma cholesterol in 
SLO patients (■) and diseased control patients (◇). 
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DISCUSSION  

 

Reliable quantitative results for cholesterol, 7-DHC, and 8-DHC are invaluable to confirm the 

diagnosis in patients clinically suspected to have SLO, and for follow-up of SLO patients being treated 

with high-cholesterol diets. Until now, studies on reference values for plasma cholesterol have focused 

on the upper limit of the reference range: Very few data are available for the lower limit of the 

cholesterol reference range in plasma from children of various age groups. Lane and McConathy have 

studied changes in serum cholesterol in the first month of life using GC (Lane et al. 1986). Lockitch 

(Lockitch et al. 1988) determined age-related reference values for serum cholesterol in 450 healthy 

children, ages 1 to 19 years. Plasma cholesterol data in our diseased control group are in line with the 

data of Lockitch et al. (Lockitch et al. 1988). The 0.025 fractile those authors found for the age groups 

older than 6 years is similar to the lowest value found in our diseased control group. For the age group 

between 1 and 5 years, Lockitch et al. found a 0.025 fractile value of 1.15 mmol/L, whereas the lowest 

value in our diseased control group was 1.67 mmol/L. Because patients with SLO are often severely 

affected at birth, reference values for plasma cholesterol in the first weeks of life are of special 

interest. Lane and McConathy (Lane et al. 1986) observed that cholesterol at day 28 postpartum 

ordinarily is in the lower 5th percentile of the adult population values; at day 3 postpartum, values 

were even lower (Lane et al. 1986). Age-related reference values are thus invaluable for the correct 

interpretation of plasma cholesterol concentrations in children.  

As Table 1 makes clear, SLO patients measured with the enzymatic assay may give 

plasma cholesterol values close to the lower limit of the range of the diseased control group or even 

within this range. In one of our adult patients (case 8), the plasma cholesterol concentration of 3.8 

mmol/L would be interpreted as normal. We were able to better discriminate between both groups by 

assessing the cholesterol values measured by GC. However, even with this assay, the result for 

cholesterol could easily be misinterpreted. We conclude that the diagnosis of SLO cannot be excluded 

definitely on the basis of the plasma cholesterol results. The control samples gave results by both the 

enzymatic and the GC method for cholesterol that correlated well (Table 1 and Figure 1 ). For SLO 

patients, however, obvious differences between the techniques were apparent, the cholesterol 

concentrations measured with the enzymatic assay being invariably higher than the GC results. As 

Table 1 shows, the summed GC data for cholesterol, 7-DHC, and 8-DHC correlated well with the 

enzymatically determined cholesterol concentration. This suggests that 7-DHC and 8-DHC may 

contribute to the plasma cholesterol results measured by the enzymatic cholesterol assay. We partly 

confirmed this by adding 7-DHC to solutions of albumin and to plasma samples. The majority (61–

71%) of 7-DHC added was measured as cholesterol by the enzymatic cholesterol test, in both the 

serum matrix and the human albumin matrix. The results for cholesterol measured by GC were not 

influenced by these additions (data not shown). Apparently the enzymatic cholesterol test cannot 

discriminate between the various steroids. This may be due to aspecific conversion of 7-DHC and 8-
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DHC by cholesterol oxidase. Using a sterol monolayer system, Slotte has described that cholesterol 

oxidase from Streptomyces cinnamomeus oxidizes 7-DHC at a rate 5.1-fold slower than it oxidizes 

cholesterol (Slotte et al. 1992). We expect that similar results will be found for other commercially 

available reagents for plasma cholesterol determinations that make use of cholesterol oxidase. Our 

results indicate that the enzymatic test for measuring plasma cholesterol gives falsely high results for 

SLO plasma samples. The plasma cholesterol concentration in our youngest patient with SLO was 20 

µmol/L, whereas the (7-DHC + 8-DHC)/cholesterol ratio for this patient was by far the greatest we 

saw. This is, to our knowledge, the lowest plasma cholesterol ever reported in humans. Clinically, the 

affected girl had a very severe form of the disease (type I), with major malformations; the patient died 

at age 5 weeks. As also described by Tint (Tint et al. 1995), we observed that the plasma cholesterol 

concentration in older SLO patients is generally higher than in young, more severely affected patients. 

In our study the lowest and the highest cholesterol values we saw differed by 20-fold. Those for 7-

DHC differ by only 6-fold, and the concentrations of 7-DHC and 8-DHC are not significantly different 

between younger and older patients in our study. The (7-DHC + 8-DHC)/cholesterol ratio, however, is 

clearly higher in the young patients (cases 1 and 2 in Table 1 ). The differences in plasma cholesterol 

concentrations of SLO patients at different ages might result from a higher dietary intake of 

cholesterol in older, clinically more mildly affected patients. Kelley (Kelley et al. 1994) suggested that 

higher cholesterol concentrations correlate more with the length of survival and the amount of dietary 

cholesterol than with clinical severity. Another explanation for higher cholesterol concentrations in 

older SLO patients could be the residual activity of the cholesterol biosynthesis pathway in older 

patients, as was suggested by Tint (Tint et al. 1995). This would also explain the milder course of the 

disease in this group. At present, it is unknown whether the shortage of cholesterol and the abundance 

of cholesterol precursors both contribute to the development of the clinical signs and symptoms of 

SLO. As with cholesterol oxidase, other enzymes involved in cholesterol-converting pathways may 

also accept a 7-dehydro or 8-dehydro variant of their normal substrates. This would give rise to 

unexpected intermediates with unpredictable functional characteristics. This concept may give further 

impetus to attempts to understand the importance of cholesterol precursors in the development of the 

clinical picture. 

Summarizing, we conclude that the enzymatic test for measuring plasma cholesterol 

gives unreliable results in SLO patients. For diagnosis of patients clinically suspected to have the 

disease, measurements of plasma cholesterol (by any method) should not be used. Obviously, 

quantification of plasma 7-DHC and 8-DHC is the method of choice here (Irons et al. 1993; Tint et al. 

1994; Tint et al. 1995). For follow-up studies of SLO patients receiving high-cholesterol dietary 

treatment, the enzymatic test for measuring plasma cholesterol is also not suitable. Instead, the method 

of choice for this purpose may be GC, which provides reliable quantitative data for plasma cholesterol, 

7-DHC, and 8-DHC.  
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The Smith-Lemli-Opitz syndrome is caused by deficient activity of Δ7-dehydrocholesterol reductase, 

the final enzyme of the cholesterol biosynthetic pathway, resulting in low cholesterol and high 

concentrations of its direct precursors, 7-dehydrocholesterol (7DHC) and 8DHC in blood and tissues 

(Irons et al. 1993; Tint et al. 1995). Cholesterol fulfils an essential role during embryogenesis where it 

functions as a transporter-molecule for hedgehog signalling proteins required for normal 

morphogenesis (Porter et al. 1996). Without cholesterol their transport is impaired (Porter et al. 1996).  

These findings may explain the phenotypic consequences of  Δ7-reductase deficiency as observed in 

Smith-lemli-Opitz syndrome: microcephaly, distinctive facies, organ malformations, syndactyly, and 

genital abnormalities. Once morphogenesis is complete, it is not known whether the low cholesterol or 

the increased concentration of precursors is more harmful. In abetalipoproteinaemia, cholesterol 

concentrations are similar to those in Smith-Lemli-Opitz syndrome without clinical side-effects; we 

thus postulated that 7DHC, 8DHC, or both may be the toxic substances. Therapeutical trials of dietary 

supplementation of cholesterol with or without bile acids have shown that plasma cholesterol 

concentrations can be increased in some patients. Concentrations of the precursors 7DHC and 8DHC, 

however, were only marginally altered and clinical results so far have been disappointing (Irons et al. 

1995; Ullrich et al. 1996).  

 

We performed repeated exchange transfusions in combination with inhibition of de-novo cholesterol 

synthesis with a HMG CoA reductase-inhibitor in a 3-month old girl with this disorder, after having 

obtained informed parental consent. This strategy aimed for simultaneously to remove precurors while 

supplying extra cholesterol from the donor blood and inhibit renewed de-novo production of 

precursors at a higher level in the cholesterol pathway. The girl underwent eight whole-blood 

exchange transfusions during a period of 5 months. Total exchanged volume accounted approximately 

for eight times her circulating blood volume. Oral simvastatin treatment was begun on day 20. No 

complications or drugrelated adverse effects were documented. Sterol plasma and erythrocyte-

membrane concentrations during the treatment period of 190 days showed a substantial decrease of 

7DHC (and 8DHC), as well as an increase in and finally a normal cholesterol (table).  
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Table. Gas chromatograph analysis of sterols in plasma (μmol/L) and erythrocyte membrane (μmol/60μL) 
isolated erythrocytes during therapy and percentage of initial concentration 
 

Plasma Erythrocyte membrane Day 

Cholesterol 7DHC 7DHC/CH 

Ratio 

Cholesterol 7DHC 7DHC/CH 

Ratio 

0* 1338 (100) 362 (100) 0.27 1273 (100) 1087 (100) 0.85 

38* 1196 (89) 272 (75) 0.23 1454 (114) 830 (76) 0.57 

93 1608 (120) 149 (41) 0.09 1762 (138) 388 (36) 0.22 

147* 2312 (173) 191 (53) 0.08 2621 (206) 470 (43) 0.18 

190 2594 (194) 160 (44) 0.06 2700 (212) 400 (37) 0.15 

 

Exchange transfusions were on day 1, 4, 11, 39, 40, 148, 150, and 152. Simvastatin was begun on day 

20, daily dose 0.2 mg/kg increasing to 0.4 mg/kg at day 30, and 0.6 mg/kg from day 40. * Immediately 

before exchange transfusions. CH=Cholesterol; percentages shown in parentheses. 

 

After the first three exchange transfusions, plasma 7DHC increased from 151 to 332 μmol/L over 5 

days. After exchange transfusions four and five (days 39 and 40) plasma 7DHC concentrations 

remained stable. Mental, motor, and social development improved. At age 8 months, the child’s 

neuromotor development corresponded to a child of 5 months on the Bayley scales of infant 

development. Measurements of head circumference, height, and weight followed the same percentage 

as before the start of treatment. 

Repeated exchange transfusions in combination with a HMG CoA-inhibitor reduced plasma and 

erythrocyte membrane precursor concentrations and improved the plasma 7DHC/cholesterol ratio 

greatly in this child. We are encouraged to explore the long-term effects of this treatment strategy as a 

potentially useful therapeutic option in the treatment of young patients with Smith-Lemli-Opitz 

syndrome. 
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ABSTRACT 

 

The Smith-Lemli-Opitz syndrome (SLOS) is caused by deficient 7-dehydrocholesterol reductase, 

which catalyzes the final step of the cholesterol biosynthetic pathway, resulting in low cholesterol and 

high concentrations of its direct precursors 7-dehydrocholesterol (7DHC) and 8DHC. We 

hypothesized that i) 7DHC and 8DHC accumulation contributes to the poor outcome of SLOS patients 

and ii) blood exchange transfusions with hydroxymethylglutaryl (HMG)-CoA reductase inhibition 

would improve the precursor-to-cholesterol ratio and may improve the clinical outcome of SLO 

patients. First, an in vitro study was performed to study sterol exchange between plasma and 

erythrocyte membranes. Second, several exchange transfusions were carried out in vivo in two SLOS  

patients. Third, simvastatin was given for 23 and 14 months to two patients. The in vitro results 

illustrated rapid sterol exchange between plasma and erythrocyte membranes. The effect of exchange 

transfusion was impressive and prompt but the effect on plasma sterol levels lasted only for 3 days. In  

contrast, simvastatin treatment for several months demonstrated a lasting improvement of the 

precursor-to-cholesterol ratio in plasma, erythrocyte membranes, and cerebrospinal fluid (CSF). 

Plasma precursor concentrations decreased to 28 and 33% of the initial level, respectively, whereas the  

cholesterol concentration normalized by a more than twofold increase. During the follow-up period all 

morphometric parameters improved. The therapy was well tolerated and no unwanted clinical side 

effects occurred.  

This is the first study in which the blood cholesterol level in SLOS patients is normalized with 

a simultaneous significant decrease in precursor levels. There was a lasting biochemical improvement 

with encouraging clinical improvement. Statin therapy is a promising novel approach in SLOS that 

deserves further studies in larger series of patients. 
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INTRODUCTION 

 

The Smith-Lemli-Opitz syndrome (SLOS) is caused by a deficient 7-dehydrocholesterol reductase 

activity, the final enzyme of the cholesterol biosynthetic pathway. Low cholesterol and high 

concentrations of its direct precursors 7-dehydrocholesterol (7DHC) and its isomer, 8-

dehydrocholesterol (8DHC), in blood and tissues are the biochemical hallmarks of the syndrome 

(Smith et al. 1964; Irons et al. 1993; Tint et al. 1995). Plasma sterol concentrations generally correlate 

with syndrome severity and outcome (Tint et al. 1995). 7-Sterol reductase activity in the liver of SLOS 

patients is markedly decreased (Shefer et al. 1995). The human 7-sterol reductase gene has been 

characterized and assigned to chromosome 11q12-13. Mutations in this gene cause SLOS (Fitzky et al. 

1998; Waterham et al. 1998; Wassif et al. 1998). Cholesterol fulfills an essential role in 

embryogenesis, during which it functions as a transporter molecule for sonic hedgehog signaling 

proteins required for correct morphogenesis. Without sufficient cholesterol their transport and function 

are impaired (Porter et al. 1996; Cooper et al. 1998). These findings may explain the phenotypic 

consequences of the 7-reductase deficiency as observed in SLOS: microcephaly, a distinctive facies, 

cleft palate, various organ malformations, syn/polydactyly, and genital abnormalities. 

It is still a matter of debate whether the low cholesterol or the increased concentration of 

precursors or both is the most harmful component in growth and development of these patients. On the 

basis of experience with familial hypobetalipoproteinemia (Linton et al. 1993), in which plasma 

cholesterol in heterozygotes is as low as in some SLOS cases, without any clinical effect, we 

hypothesized that the cholesterol precursors 7DHC and 8DHC may be toxic. Both precursors are 

structurally similar to cholesterol (differing only in having an extra double bond in the cholesterol B-

ring) and therefore may interfere with the important role of cholesterol. Cholesterol is the precursor of 

steroid hormones; therefore, a reduction of the availability of cholesterol or incorporation of 

precursors by adrenal and testicular cells may reduce or interfere with normal synthesis of 

corticosteroids and androgens. Steroid hormones also affect a wide variety of behavioral and 

psychological states. In SLOS abnormal bile acid profiles already have been documented (Natowicz et 

al. 1994). Furthermore, some enzyme systems accepting cholesterol as substrate have also been shown 

to accept 7DHC and 8DHC as a substrate (Jira et al. 1997).  

So far, therapeutic trials in SLOS patients used dietary supplementation of cholesterol with or 

without bile acids. The concentration of plasma cholesterol could be increased to subnormal levels in 

some patients. The concentrations of the precursors 7DHC and 8DHC, however, were only marginally 

influenced in patients and animal experiments, and clinical improvement until now was in general 

disappointing (Xu et al. 1995a; Irons et al. 1995; Ullrich et al. 1996; Elias et al. 1997; Irons et al. 

1997; Nwokoro et al. 1997; Xu et al. 1995b). We here report the results of a study performed to 

investigate i) the in vitro exchange kinetics of cholesterol and precursors between plasma and 

erythrocyte membranes, ii) the in vivo effect of exchange transfusions in SLOS patients, and iii) the 
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effect of simvastatin (hydroxymethylglutaryl [HMG]-CoA reductase inhibitor) on cholesterol and 

precursor levels in two young unrelated SLOS patients. The exchange transfusions aimed 

simultaneously to remove precursors while supplying additional cholesterol from the donor blood. 

Simvastatin inhibits de novo production of precursors at the level of HMG-CoA reductase in the 

cholesterol biosynthetic pathway (Figure 1). 

 

 

 
 

 

CLINICAL AND LABORATORY INVESTIGATIONS 

 

Subjects 

In the Pediatric Clinic (University Hospital Nijmegen, Nijmegen, The Netherlands) two patients with 

SLOS were treated with exchange transfusions and simvastatin. Parents were informed about the aim 

of the study, study protocol, and potential side effects. Informed parental consent was obtained on 

behalf of both patients for the application of repeated exchange transfusions and for the use of 

simvastatin as an investigational drug, based on previously published evidence of the safety and 

efficacy of statins in children. The consent to participate in the study was strictly voluntary and could 

be renounced at any time by the parents without disadvantage for further medical care of their  

child.  

Patient A  
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Patient A, a girl, first child of healthy unrelated parents, was born after an uneventful pregnancy. A 

cesarean section was performed at 38+4 weeks gestational age because of breech position. Apgar 

scores were 8 and 10 after 1 and 5 min, respectively. Birth weight was 3,520 g (97th percentile), 

length was 50 cm (75th percentile) and head circumference was 33 cm (50th percentile). The observed 

facial dysmorphias, ptosis, syndactyly of second and third toes, and failure to thrive gave rise to the 

suspicion of SLOS. At the age of 2 months she was admitted to our clinic, where the diagnosis was 

confirmed biochemically. Organ malformations were not present. Brain magnetic resonance imaging 

(MRI) was normal. Ophthalmological and neurophysiological (electroencephalogram [EEG], 

brainstem auditory evoked potential [BAEP]) examinations revealed no  

abnormalities.  

 

Patient B  

Patient B, a boy, was born after the second pregnancy of unrelated parents. At 37 weeks gestational 

age he underwent an external cephalic version due to a breech position and was born at 40 weeks. 

Apgar scores were 10 and 10 after 1 and 5 min, respectively. Birth weight was 2,570 g (5th 

percentile), length was 51 cm (90th percentile), and head circumference was 31.5 cm (25th percentile). 

He had mild facial dysmorphias, syndactyly of the second and third toe, and failure to thrive. 

Diagnosis of SLOS was confirmed biochemically in plasma at the age of 5 months. No organ 

malformations could be detected. MRI of the brain showed normal structures and myelinization and 

the EEG was normal. Ophthalmological examination showed no cataract or other abnormalities.  

 

Biochemical studies 

The initial diagnosis and the biochemical effect of our therapeutic approaches on cholesterol and 

precursors in plasma, erythrocyte membranes, and cerebrospinal fluid (CSF) were investigated by gas 

chromatography and gas chromatography/mass spectrometry as described previously (Jira et al. 

1997a; Van Rooij et al. 1997).  

 

In vitro sterol exchange study  

To study sterol exchange kinetics between plasma and erythrocyte membranes two in vitro 

experiments were designed: i) Erythrocytes from patient A were isolated, washed three times with 

saline, and incubated at 37°C in normal donor plasma. The patient's erythrocytes again were isolated 

after an incubation time of 0, 20, 40, 60, 120, and 240 min, washed  

three times with saline, and analyzed; ii) similarly, donor erythrocytes were incubated with plasma 

from patient A and studied after 0, 20, 60, 120, and 360 min of incubation. 

 

 

In vivo exchange transfusions 
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After surgical insertion of a subclavian venous catheter eight blood exchange transfusions with 800 

mL of donor blood were performed in patient A. The 2-h procedures took place on days 1, 4, 11, 39, 

40, 148, 150, and 152, in total accounting for eight times her circulating blood volume. In patient B 

three exchange transfusions were performed, on days 1, 4, and 7 with 800 mL each, accounting for 

five times his blood volume.  

 

HMG-CoA reductase inhibition by simvastatin therapy 

Simvastatin was started on day 20 and gradually increased from 0.2 to 1.0 mg/kg per day (two daily 

doses) during 23 months in patient A. In patient B the simvastatin dosage was not altered and was 

maintained at 0.6 mg/kg per day for 14 months. Study methods consisted of baseline hematological 

investigations and blood chemistry profiles. These were repeated at 2- to 6-week intervals from the 

start of therapy. Both children received standard pediatric formula without dietary supplementation of 

cholesterol or bile acids. Patient B was, in addition, treated during the last 3 months with oral 

cholesterol supplementation (100 mg/kg per day; cholesterol-module available from Nutricia (product 

code number 18,012; Special Product Service, Zoetermeer, The Netherlands) in combination with 

simvastatin therapy. Sterol analysis in plasma, erythrocytes and CSF was carried out before and during 

therapy. Clinical course, neuromotor development, neuroimaging by MRI, and growth were 

monitored, scored, and compared with normative data from the Dutch population (Gerver et al. 1996). 

Informed parental consent was obtained for the application of repeated exchange transfusions and for 

the use of simvastatin as investigational drugs based on previously published evidence of the safety 

and efficacy of statins in children (Stein 1989; Ducobu et al. 1992; Sinziger et al. 1992; Patterson et 

al. 1993; Knipscheer et al. 1996; Lambert et al. 1996; Coleman et al. 1996; Sanjad et al. 1997;).  

 

 

RESULTS 

 

Both patients had total cholesterol concentrations below the age-related reference values and 100-fold 

higher concentrations than the upper reference range limits for 7DHC and 8DHC in plasma, 

erythrocytes, and CSF before treatment, confirming the diagnosis of SLOS as shown in Table 1. 

Mutation analysis will be reported elsewhere.  
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Table 1. Sterol effect of simvastatin during a 23- and 14 month period in two young infants with SLO 
syndrome. 
 

 

Patient A 

 

 

Patient B 

 
Months of Therapy 

 
Months of Therapy 

 

0 
 

3 6 14 23 0 3 6 14 

 
 
 
 
Controls 

Age 
(Months) 

3 6 9 17 26 10 13 16 24  

Biochemistry 
Plasma 
Cholesterol 
(mmol/L) 

1.338 1.608 2.549 2.916 2.815 1.281 1.567 2.050 3.312 2.600-5.200 

7DHC+8DHC 
(mmol/L) 

0.625 0.289 0.289 0.212 0.172 0.407 0.147 0.178 0.136 < 0.01 

Ratioa 

 
0.47 0.18 0.11 0.07 0.06 0.32 0.09 0.09 0.04 < 0.01 

Erythrocytes 

Cholesterol 
(mmol/L) 

1.273 1.762 2.700 2.368 2.499 1.846 2.230 2.706 2.997 2.400-3.200 

7DHC+8DHC 
(mmol/L) 

1.547 0.583 0.577 0.372 0.299 1.137 0.388 0.451 0.212 < 0.01 

Ratioa 
 

1.22 0.33 0.21 0.16 0.12 0.62 0.17 0.17 0.07 < 0.01 

CSF 

Cholesterol 
(nmol/L) 

3.217 2.564 1.938 2.776 - 1.972 - 2.656 2.902 3.500-5.100d 

7DHC 
(mmol/L) 

610 340 168 160 - 404 - 276 280 < 20 

Ratiob 
 

0.19 0.13 0.09 0.06 - 0.20 - 0.10 0.10 < 0.01 

Morphometrics 
 
Length  
(cm) 

55 62 70 78 - 65 68 76 83 

SD -3.2 -1.8 -0.5 -1.2 - -6.6 -5.0 -1.9 -1.3 
Weight 
(kg) 

4.11 5.95 7.25 9.75 - 5.15 6.55 7.20 8.60 

SD -3.5 -1.9 -1.5 -0.7 - -5.6 -3.7 -2.7 -2.4 
Head 
Circumference 
(cm) 

34.0 38.0 40.5 43.2 - 40.4 42.3 43.2 44.0 

SDc -6.8 -4.7 -3.3 -2.6 - -5.2 -4.4 -3.5 -3.5 

 

a (7DHC+8DHC)/cholesterol 
b 7DHC/cholesterol ratio 
c Standard deviation below 50th percentile 
d Range of values from van Rooij et al. 1997 
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Sterol exchange study 

SLO erythrocytes were incubated in donor plasma with cholesterol, 7DHC, and 8DHC concentrations 

of 5,038, 6, and 16 µmol/L, respectively. A rapid increase in cholesterol in membranes of SLO 

erythrocytes in 240 min was observed, from 1,070 to 2,019 µmol/L. Simultaneously, the 7DHC + 

8DHC concentration in SLO erythrocytes decreased from 1,180 to 613 µmol/L, improving the (7DHC 

+ 8DHC)/cholesterol ratio from 1.10 to 0.30 (Figure 2, experiment 1).  

In the second incubation normal human donor erythrocytes were incubated in SLO plasma 

with concentrations of cholesterol, 7DHC, and 8DHC of 1,228, 326, and 274 µmol/L, respectively. A 

significant and rapid increase in the (7DHC + 8DHC)/cholesterol ratio from 0.01 to 0.32 occurred over 

6 h (Figure 2, experiment 2). These experiments show that cholesterol, 7DHC, and 8DHC exchange 

easily and rapidly between plasma and membrane compartments, which encouraged us to proceed in 

performing exchange transfusions in our two patients. Cholesterol exchange between red cell 

membrane and serum lipoproteins has been studied previously. In accordance with our observations, 

these investigators documented a rate constant for movement of cholesterol from erythrocytes to 

plasma and from plasma to erythrocytes with the half-time for efflux of 4 to 6 h (Gold et al. 1990; 

Gottlieb 1980). 

 

 

 
Figure 2. In vitro sterol exchange kinetics between erythrocyte membranes and plasma. Sterol composition of 
SLOS erythrocytes incubated in normal plasma (experiment 1) and sterol composition of normal erythrocytes 
incubated in plasma of an SLOS patient (experiment 2). 
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Exchange transfusions 

The effect of exchange transfusion on correcting plasma cholesterol, 7DHC, and 8DHC is prompt as 

illustrated by the plasma sterol concentrations in the period of three exchange transfusions on days 1, 

4, and 11 in patient A (Figure 3). A significant amount of cholesterol could be delivered to the patient. 

Also, a substantial quantity of precursors could be removed from the patient. The plasma precursor-to-

cholesterol ratio improved significantly. The beneficial effect on the plasma levels lasted for only 3 

days (Figure 3). 

 

 

 
Figure 3. Effect of the first three exchange transfusions (days 1, 4, and 11) on plasma cholesterol (solid 
squares) and precursor (solid triangles) concentration in time in patient A. 
 

 

The patient total body/tissue cholesterol uptake from donor blood, calculated from initial donor blood 

concentrations and the concentrations in the remaining exchanged blood in patient A during the 

exchange transfusions on days 148, 150, and 152, was 1.7 g (0.4 + 0.6 + 0.7 g, respectively). For 

patient B, cholesterol uptake was 1.9 g (0.6 + 0.6 + 0.7 g, respectively) during his three exchange 

transfusions. This body cholesterol delivery of 300–400 mg/kg, achieved by donor cholesterol uptake 

through three exchange transfusions in both patients, is substantial when seen from the perspective of 

a normal daily cholesterol synthesis of 8.3;–14.5 mg/kg documented in healthy children (Illingworth et 
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al. 1997; Illingworth et al. 1980). The mean amount of plasma precursors (7DHC + 8DHC) for both 

patients removed by one exchange transfusion is 53 mg (variation, 32–92 mg).  

Unfortunately, the effect of a single exchange transfusion on the plasma sterol levels was 

limited to 2–3 days. Also, repeated exchange transfusions did not result in a lasting change in either 

the plasma cholesterol or the plasma precursor concentrations (Figure 4). This limited effect motivated 

us to evaluate the effect of HMG-CoA reductase inhibition by simvastatin therapy for several months. 

 

Simvastatin effect 

Patients A and B were treated with simvastatin for 23 and 14 months, respectively. Precursor levels 

decreased significantly to 28 and 33% of the initial (pretreatment) level in plasma, in erythrocyte 

membranes, and CSF (Table 1 and Figure 4). Surprisingly, an increase and finally a normalization of 

the plasma cholesterol concentration (>2.6 mmol/L) was observed after several months. As mentioned 

earlier, patients did not receive cholesterol supplementation during the simvastatin treatment period 

(except for the last 3 months for patient B). The plasma (7DHC + 8DHC)/cholesterol ratio finally 

decreased from 0.47 to 0.06 in patient A and from 0.32 to 0.04 in patient B. Although promising, it is 

important to note that despite the significant reduction in precursor plasma level and the increase in 

cholesterol plasma level with this therapy, the (7DHC + 8DHC)/cholesterol ratio was still above 

normal. The 7DHC/8DHC ratio in the plasma of both patients remained unchanged during treatment 

(0.82–1.42), uninfluenced by the decrease in total precursor values. In erythrocyte membranes the 

7DHC/8DHC ratio was significantly higher (1.66–2.78) compared with plasma. These data suggest 

that erythrocyte membranes incorporate 7DHC more readily than 8DHC.  

During the months of treatment cholesterol precursor concentrations decreased in the CSF of 

both patients, improving the precursor-to-cholesterol ratio as illustrated in Table 1. During treatment, 

brain-specific proteins (neuron-specific enolase, S-100, and myelin basic protein) and neurotransmitter  

metabolites (homovanillic acid [HVA], 5-hydroxyindoleacetic acid [5-HIAA], and 3-methoxy-4-

hydroxy-phenylethyleneglycol [MHPG]) in the CSF of both patients remained in the normal range 

(results not shown). The blood–brain barrier (BBB) function was intact both before and during the  

therapy period. Simvastatin supplementation therapy was well tolerated. Neuromuscular complications 

were not observed. Plasma enzymatic activity of aminotransferases and creatine kinase remained in 

the normal range. No cataract developed.  
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Figure 4. Effect of exchange transfusions (solid triangles) and simvastatin on plasma cholesterol (solid squares) 
and precursor (solid diamonds) levels (mmol/L) in patient A (A) and patient B (B). Simvastatin dosage is 
illustrated by the black bars, which represent oral simvastatin dosage in mg per kilogram per day. 
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Patient outcome  
 
Mental, motor, and social development of both patients shows constant improvement. At the age of 17 

months (patient A) and 24 months (patient B), the neuromotor assessment of both patients, as 

determined by the Hoskins–Squires test (Hoskins et al. 1993), and cognitive skills corresponded to 11 

and 14 months, respectively. Weight, length, and head circumference during treatment are shown in 

Table 1. Eating behavior, however, was unchanged. Patient A received a percutaneous gastrostomy 

after prolonged nasogastric tube feeding while patient B is eating orally with substantial effort of his 

parents. By the age of 2 years both patients walked with help and started to communicate by word 

expression.  

Our results suggest that simvastatin therapy may represent a simple, effective, and safe way to 

reduce accumulated cholesterol precursors while improving cholesterol plasma levels in patients with 

SLOS.  

 

 

DISCUSSION 

 

Our therapeutic approach aimed at a fast supply of cholesterol and removal of a substantial amount of 

precursors by blood exchange therapy. Thereafter use of simvastatin was aimed at blocking the 

cholesterol biosynthesis pathway as a way to avoid the formation of large amounts of the cholesterol 

precursors 7DHC and 8DHC, which may be potentially harmful to patients. Both aims were met in our  

first patient, where we accomplished a significant reduction in the plasma levels of 7DHC and 8DHC 

as published earlier (Jira et al. 1997b). We were encouraged by this biochemical response and decided 

to continue therapy, using simvastatin as the only medication. Also, a second patient was included to 

confirm our findings. In this second patient three exchange transfusions were carried out for rapid 

supplementation of cholesterol and removal of part of the precursor load. The patient received 

simvastatin without dietary cholesterol for 11 months. As in our first patient the precursor levels in 

plasma, erythrocytes, and CSF declined significantly, fully confirming our findings in the first patient. 

 

This is the first time that a therapeutic approach has succeeded in normalizing plasma cholesterol 

levels with simultaneous significant reduction of cholesterol precursor levels in plasma. We believe 

that our therapeutic approach is superior to the approach of dietary cholesterol with or without bile 

acid supplementation (Irons et al. 1995; Ullrich et al. 1996; Elias et al. 1997; Irons et al. 1997; 

Nwokoro et al. 1997). In 11 SLOS patients, treated with cholesterol and bile acids, the mean 

cholesterol-to-total sterol ratio in plasma only increased from 55% to 72% (Irons et al. 1997). In 6 

other SLOS patients treated with cholesterol and bile acids this ratio did not exceed 60% (Nwokoro et 

al. 1997). These data are comparable to our own experience with 2 other SLOS-patients treated with 
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cholesterol and bile acid supplementation for more than 1 year. In these patients there was no 

significant decline in plasma precursor levels and only a temporary and limited increase in plasma 

cholesterol that never reached normal levels. The cholesterol-to-total sterol ratios were unchanged 

during therapy and remained below 79 and 68%. In contrast, the two patients in this study reached 

cholesterol-to-total sterol ratios of 94 and 96%.  

The gradual disappearance of cholesterol precursors 7DHC and 8DHC under statin therapy is 

relatively easy to understand. The statin blocks the de novo synthesis of the precursors at the level of 

HMG-CoA reductase. The simultaneous rise in plasma cholesterol is unexpected. It is difficult to 

understand because our patients did not receive extra cholesterol supplementation. Simvastatin may 

influence the expression level of the deficient 7-reductase. Such an effect was described for the 

combination of cholestyramine and lovastatin in rats (Bae et al. 1999). Moreover, Shefer (Shefer et al. 

1997) showed an upregulation of the 7-reductase in human fibroblasts in cholesterol-deficient medium 

supplemented with lovastatin.  

We observed in both patients an impressive improvement in all morphometric parameters 

(Table 1). In most of the described SLOS patients the head circumference, height, and weight stay 

below the third percentile, even during conventional therapy (Ullrich et al. 1996; Elias et al. 1997; 

Irons et al. 1997; Nwokoro et al. 1997). Whether growth and developmental progress are, in fact, the 

result of therapy and relate to the biochemical corrections, or might have occurred otherwise, is 

difficult to prove. Data derived from rats, however, support the view that oxidized 7DHC derivates 

play a role in embryo toxicity and growth retardation (Gaoua et al. 1999). Confirmation with a larger 

group of patients over a longer period of time is needed. Studies of cholesterol metabolism ultimately 

will result in more understanding of the origin and metabolism of cholesterol that is used in growth, 

development, and myelin in the CNS in children. 

A small number of studies demonstrated the efficacy and safety of statin therapy in childhood. 

Pediatric studies showed that statins were well tolerated by children with familial ypercholesterolemia 

(Knipscheer et al. 1996; Lambert et al. 1996; Ducobu et al. 1992; Sinziger et al. 1992; Stein 1989;), 

nephrotic syndrome (Sanjad et al. 1997; Coleman et al. 1996), and Niemann;–Pick disease type C 

(Patterson et al. 1993). One study, however, in which an attempt was made to reduce mevalonate 

accumulation by administering simvastatin to two children with mevalonate kinase deficiency 

(Hoffmann et al. 1993), documented impressive acute adverse effects. In adults the use of simvastatin 

did not show any significant adverse effects on brain activity measured by EEG, evoked potentials, 

mood, sleep, or cognitive performance (Harrison et al. 1994). The beneficial effects of simvastatin 

used in our study without any unwanted clinical side effects encouraged us to proceed to use this 

therapy in our patients. Of course, a careful clinical follow-up of the patients is required to prevent any 

complications in liver function or other unwanted side effects of the drug. It remains to be established 

whether simvastatin use will also work to the same extent in other, perhaps more severely affected 

SLOS patients. Further studies will also be required in new SLOS cases to find out whether the initial 
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exchange transfusions really are required. The transfusions have a relatively high clinical risk. When a 

similar effect of statin use on plasma cholesterol and precursor levels can be found without exchange 

transfusions this approach would of course be preferred. Also, it remains to be established in further 

studies whether dietary cholesterol supplementation therapy with simultaneous statin use can add to 

the success of statin use.  

Brain is the most cholesterol-rich organ in the body. Cholesterol in the human brain, 

developing sheep brain, and rat pup brain is made locally from glucose, acetate, or polyunsaturated 

fatty acids (Jurevics et al. 1995; Likhodii et al. 1995; Snipes et al. 1997). Sterols formed in the brain 

by the mevalonate pathway have an active and independently regulated biosynthesis. Cholesterol is 

not imported from peripheral blood across the BBB by lipoprotein uptake (Turley et al. 1996; Edmond 

et al. 1991). Even during fetal brain development, including the time before closure of the BBB, 

lipoproteins circulating through the central nervous system are not used as a source of cholesterol, but 

are synthesized locally (Edmond et al. 1991; Andersson et al. 1990; Bjorkheim et al. 1997; Serougne 

et al. 1976). In our two treated patients we demonstrated that precursor concentrations are highly 

increased and that cholesterol concentrations in CSF are decreased in comparison with controls. 

Dietary supplementation of cholesterol alone, in SLOS, will not influence an impaired (7DHC + 

8DHC)/cholesterol ratio in the central nervous system. In line with previously described evidence 

(Jurevics et al. 1995; Likhodii et al. 1995; Snipes et al. 1997; Turley et al. 1996; Edmond et al. 1991; 

Andersson et al. 1990; Bjorkheim et al. 1997; Serougne et al. 1976) the only way to reduce cerebral 

accumulation of cholesterol precursors in SLOS individuals is by means of local inhibition of brain 

cholesterol biosynthesis. Statins with lipophilic properties (simvastatin and lovastatin) cross the BBB 

(Saheki et al. 1994) and are potential inhibitors of cerebral cholesterol precursor accumulation in 

SLOS. The half-life for cholesterol calculated in rat brain studies was found to be about 5;–6 months 

(Snipes et al. 1997; Andersson et al. 1990; Bjorkheim et al. 1997). Elimination of brain cholesterol 

precursors is therefore not expected to be a rapid process. This could explain why in our patients the 

sterol improvement in plasma and erythrocyte membranes was faster and superior to the correction 

observed in CSF.  

In conclusion, simvastatin therapy reduced 7DHC and 8DHC and normalized cholesterol 

concentrations in two children with SLOS and was well tolerated without side effects. Blocking the de 

novo synthesis of cholesterol precursors reduced accumulation of these intermediates in plasma, 

membranes, and CSF. Biochemical and clinical follow-up was 23 and 14 months, respectively, and we 

are encouraged to explore the long-term beneficial effects of this new treatment strategy in these and 

other SLOS patients.  
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SUMMARY 

 

Background 

 Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal recessive developmental disorder 

characterized by facial dysmorphisms, mental and developmental retardation, and multiple congenital 

anomalies. The disorder is caused by a reduced activity of the cholesterol biosynthetic enzyme 7-

dehydrocholesterol reductase (7DHCR), due to mutations in the encoding DHCR7 gene. As a 

consequence, patients have low cholesterol and elevated 7-dehydrocholesterol levels in plasma and 

tissues, correlating rather well with clinical severity.  
 

Methods  

We treated 3 relatively mild SLOS patients for 80, 49 and 31 months, respectively, with simvastatin, 

an oral HMG-CoA reductase inhibitor and determined the effect and efficacy of the treatment on 

development and general well being of the patients. In addition, we studied in vitro the effect of 

simvastatin on 7DHCR expression and activity in primary skin fibroblast cells of the patients. 

 

Findings  

All patients tolerated the simvastatin therapy well without apparent clinical side effects. During 

treatment, we observed a marked decrease of plasma 7-dehydrocholesterol levels in all three and a 

concomitant increase of the plasma cholesterol concentration in two patients. Moreover, two patients 

showed a good and one patient a moderate clinical improvement of growth and development.  

The in vitro studies with cultured primary skin fibroblast cells of the patients showed that simvastatin 

induces an increase in gene transcription of the DHCR7 gene, which results in an increase of 7DHCR 

protein and, consequently, an increase in (residual) 7DHCR activity. Since 7DHCR catalyses the rate-

limiting step in SLOS, this increase in residual 7DHCR activity leads to an increased flux through the 

cholesterol biosynthetic pathway resulting in lower 7-dehydrocholesterol and increased cholesterol 

levels, as observed in the treated patients.  

 

Interpretation  

Simvastatine treatment in SLOS patients with a mild phenotype and residual activity of 7DHCR in 

cells results in increased 7DHCR expression and activity levels leading to a lowering of 7-

dehydrocholesterol and an increase of cholesterol levels. 

 

Relevance  

The data provide an explanation for the unexpected rise of plasma cholesterol in SLOS patients upon 

simvastatin treatment. Simvastatin treatment may be a good long-term therapeutic option in SLOS 

patients with residual 7DHCR activity and a mild clinical presentation. 
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INTRODUCTION 

 

Smith-Lemli-Opitz syndrome (SLOS; MIM 270400) is an autosomal recessive inborn error of 

cholesterol biosynthesis with an incidence of 1:20,000-60,000 dependent on the geographic region. 

Patients with SLOS may display a variety of morphogenic and congenital anomalies, including 

dysmorphic craniofacial features, microcephaly, multiple internal organ, limb/skeletal, and urigenital 

malformations, (intrauterine) growth and mental retardation, and behavioural problems (Smith et al.  

1964; Cunniff et al. 1997; Kelley et al. 2000; Waterham et al. 2000) After the identification of the 

biochemical and molecular basis of SLOS (see below) it has become clear that patients with SLOS 

constitute a clinical and biochemical continuum ranging from hardly recognizably mild to a severe, 

lethal form. 

 SLOS is caused by a deficiency of the enzyme 3β-hydroxysterol Δ7-reductase (7DHCR; 

E.C.1.3.1.21 Tint et al. 1994; Irons et al. 1993) due to mutations in the encoding DHCR7 gene located 

at chromosome 11q13 (Fitzky et al. 1998; Waterham et al. 1998; Wassif et al. 1998). 7DHCR 

catalyses the predominant final step in cholesterol biosynthesis, which is the reduction of the C7-C8 

(Δ7) double bond of 7-dehydrocholesterol (7DHC; cholesta-5,7-dien-3β-ol) to produce cholesterol 

(cholest-5-en-3β-ol). As a consequence of the 7DHCR deficiency, patients with SLOS typically have 

reduced plasma and tissue cholesterol concentrations and elevated levels of 7DHC, constituting the 

major biochemical hallmark used to confirm the clinical diagnosis of the syndrome. In addition, 

elevated 8-dehydrocholesterol (8DHC; cholesta-5,8(9)-dien-3β-ol) levels are observed, presumably 

synthesized from the accumulating 7DHC by the enzyme sterol Δ8-Δ7 isomerase functioning in the 

reverse direction. 

Several studies have shown that overall clinical severity in SLOS correlates best either with 

the absolute cholesterol levels or with the sum of 7DHC plus 8DHC expressed as the fraction of total 

sterol (Tint et al. 1995; Cunniff et al.1997; Witsch-Baumgartner et al. 2000) Indeed, patients with 

only very minimal symptoms have been identified with (near) normal cholesterol levels and barely 

elevated levels of 7DHC and 8DHC reflecting partially reduced 7DHCR activities ranging from ~20 to 

50% of the activities in controls (Kelley et al. 2001; Langius et al. 2003). 

It is generally considered that the availability of cholesterol during development of the foetus 

is one of the major determinants of the phenotypic expression in SLOS. Since most anomalies 

occurring in SLOS are of early-embryonic origin, it will not be feasible to develop a postnatal therapy 

to entirely cure the patients. The therapy currently mostly employed aims to replenish the lowered 

cholesterol levels in the patients through dietary supplementation of cholesterol with or without bile 

acids. This treatment indeed leads to a substantial elevation of plasma cholesterol concentrations in 

patients, but plasma concentrations of 7DHC and 8DHC are only marginally altered. Moreover, this 

treatment does not significantly change the sterol levels in brain, which are dependent on de novo 
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cholesterol synthesis due to the limited ability of cholesterol to cross the blood-brain barrier (Jurevics 

& Morell 1995). Nevertheless, several reports have indicated that dietary cholesterol supplementation 

may improve behaviour, growth and general well being in children with SLOS (Nwokoro & Mulvihill 

1997; Elias et al. 1997; Irons et al. 1997). However, a recent standardized study with 14 patients 

indicated that cholesterol supplementation has hardly any effect on developmental progress Sikora et 

al. 2004). 

 

We recently reported promising results of an alternative therapeutic strategy aimed primarily at 

lowering of the elevated 7DHC and 8DHC levels through treatment with simvastatin, an oral HMG-

CoA reductase inhibitor. The observed biochemical effects in two treated SLOS patients were a 

marked decrease of 7DHC and 8DHC levels and, somewhat unexpectedly, a concomitant increase of 

cholesterol in both plasma and cerebrospinal fluid in conjunction with promising clinical improvement 

(Jira et al. 1997; Jira et al. 2000). We now report the results of a long-term biochemical and clinical 

follow-up of three SLOS patients treated with simvastatin. In addition, we studied the effect of 

simvastatin on the regulation of cholesterol biosynthesis in cultured primary skin fibroblast cells of 

these patients to provide an explanation for the effect on the patients’ sterol levels upon the 

simvastatin treatment. Our results show that the simvastatin treatment leads to an increased expression 

of the rate-limiting 7DHCR in SLOS patients, and thus results in an increased flux through the 

cholesterol biosynthesis pathway. The efficacy of the simvastatin treatment appears to correlate well 

with the residual activity of 7DHCR and clinical severity in patients.  

 

 
METHODS  

 

Patients 

Parents were informed about the aim of the study, study protocol, and potential side effects. Informed 

parental consent was obtained on behalf of the patients for the use of simvastatin as an investigational 

drug, based on previously published evidence of the safety and efficacy of statins in children (de 

Jongh et al. 2002). The consent to participate in the study was strictly voluntary and could be 

renounced at any time by the parents without disadvantage for further medical care of their child. 

Three young patients, diagnosed with SLOS based on clinical signs and confirmed at the biochemical 

and molecular level (Table 1), were treated for 80, 49 and 31 months, respectively with oral 

simvastatin (Zocor®; Merck Sharp & Dome) at a daily dose of 0.6 – 1.0 mg / kg body weight. During 

the first year of simvastatin therapy, all three patients received cholesterol supplementation at a dosage 

of 40 mg/kg/day. After one year the cholesterol supplementation was stopped without any noticeable 

effects.  
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Procedures 

To study the effect of simvastatin in vitro we used primary skin fibroblasts of 4 patients with SLOS, 

one carrier of SLOS and one control subject. These included fibroblasts of the three patients included 

in the simvastatin therapy and fibroblasts of a severe patient reported previously (Waterham et al. 

1998; Jira et al. 2000). Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

containing 10% Foetal Calf Serum (FCS) and 1% penicillin/streptomycin in a temperature and 

humidity controlled incubator (95% air, 5% CO2 as the gas phase) at 37°C. At day 1, the cells were 

trypsinized and seeded in duplo in T75 culture flasks (Costar) at 60% confluency in DMEM 

containing 10% FCS. At day 2, the medium was substituted for DMEM containing 10% lipoprotein 

(cholesterol)-depleted FCS to induce de novo cholesterol synthesis. At day 3, simvastatin (1 μM final 

concentration; for preparation of stock solution see (Houten et al. 2003) was added to one set of cells 

while a second set received the solvent without simvastatin. At day 8, all cells were harvested by 

trypsinization, washed twice with PBS, aliquoted, snap-frozen as pellets in liquid nitrogen and stored 

at –80oC until further use. 

For sterol analysis, fibroblasts were saponified for 2 h at 70°C in alkaline ethanol after which 

sterols were extracted with hexane, converted to trimethylsilyl derivatives using 

bis(trimethylsilyl)trifluoroacetamide-trimethylchlorosilane and analysed by gas chromatography/mass 

spectrometry as described previously (Waterham et al. 1998). Sterol analysis in plasma was performed 

as described previously (Jira et al. 2000). 

The enzyme activity of 7DHCR in homogenates of cultured fibroblasts was determined by 

measuring the time-dependent conversion of ergosterol into brassicasterol by sterol analysis using gas 

chromatography/mass spectrometry similar as described previously by (Langius et al. 2003; Honda 

et al. 1996). Protein concentrations of the lysates were determined with the bicinchoninic acid protein 

assay (Sigma).  

Mutations in the DHCR7 gene of the patients were identified after PCR amplification of 

coding exons 3-9 plus flanking intron sequences followed by sequencing of the DNA fragments on an 

ABI 377A automated DNA sequencer as described previously (Jira et al. 2001). 

Antibodies were produced in a rabbit against a fusion protein composed of amino acid 

residues D359 until K393 of 7DHCR (corresponding to a large cytosolic loop of the protein) fused to 

the C terminus of glutathione-S-transferase (GST) and expressed in Eschericha coli. The crude 

antiserum was affinity-purified on a column with an immobilized fusion protein composed of the same 

7DHCR peptide but then fused to the carboxyl terminus of maltose binding protein (MBP) expressed 

in E. coli and coupled to cyanogen bromide sepharose (Pharmacia) as described previously 

(Hogenboom et al. 2002). For the generation of the GST-7DHCR and MBP-7DHCR fusion proteins, a 

cDNA fragment comprising bp 1075 until 1179 of the DHCR7 coding region was amplified by PCR 

from human control cDNA using as forward primer  
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DHCR71075-1092  5’-TAATAGGATCCGACCTGTTCCGCCGCACG -‘3 (introduces a BamHI site) and 

as reverse primer DHCR71179-1160 5’-TATATGAATTCTCACTTGCTGTGGTGCCTCTGC-3’ 

(introduces an in-frame stop codon and an EcoRI site). After amplification, the DNA fragment was 

subcloned into the pGEM-T vector (Promega) followed by sequencing to verify the absence of PCR-

induced errors. Subsequently, the DHCR7 insert was released from pGEM-T as a BamHI-EcoRI 

fragment and ligated into the BamHI and EcoRI sites of pGEX-4T (Pharmacia; for GST-7DHCR 

expression) or as an BamHI-SalI fragment into the BamHI and SalI sites pMALC2 (New England 

Biolabs; for MBP-7DHCR expression).  

For immunoblot analysis, equal amounts of proteins were separated on a 10 % SDS-

polyacrylamide + 8M urea gel and transferred onto nitrocellulose by wet blotting. After blotting, the 

blots were stained reversibly with Ponceau-S to verify the equal transfer of proteins. Immunoblot 

analysis was performed using the western-light detection kit of Applied Biosystems. The affinity-

purified anti-7DHCR antibody was used in a 1:1000 dilution. 

The expression levels of DHCR7 mRNA in the various cell lines were determined and 

related to the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

mRNA using the LightCycler system (Roche). Total RNA, free from genomic DNA, was 

isolated with the SV RNA total isolation system (Promega) and used to prepare first strand 

cDNA as described previously (26). Quantitative real-time PCR analysis was performed with 

the LightCycler FastStart DNA Master SYBR green I kit (Roche) using the following 

primers: DHCR7-Fw 5’-TCGGGAAGTGGTTTGACTTC-‘3; DHCR7-Rev 5’-

TGTGGTTCATGTCTGGGACG-‘3; GAPDH-Fw 5’-ACCACCATGGAGAAGGCTGG-‘3; 

and GAPDH-Rev 5’-CTCAGTGTAGCCCAGGATGC-‘3. Expression levels in each sample 

were determined in triplicate. 

 
Role of the funding source 

No external funding was obtained for this study. 
 

 

 RESULTS 

 

We treated three SLOS patients with 0.6-1.0 mg simvastatin per kg body weight per day, following 

our previously described protocol (Jira et al. 2000). Patients SLOS-1, SLOS-2 and SLOS-3 were 

treated for 80, 49 and 31 months, respectively (Table 1). In this period, the combined plasma 7DHC  
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and 8DHC levels showed a marked decrease to 28, 32 and 22% of the levels at the start of the 

simvastatin therapy. Moreover, a concomitant increase of the plasma cholesterol concentration was 

observed in patients SLOS-1 and SLOS-3 eventually leading to normalization (i.e. >2.5 mmol/L). This 

effect on sterol levels was already apparent after two months on simvastatin and was independent of 

the supplementation of cholesterol. Although in all three patients a clear decrease in precursor to 

cholesterol ratio was observed, this ratio remained relatively high in patient SLOS-2, primarily due to 

the fact that his plasma cholesterol levels did not increase during the treatment. 

     All patients tolerated the simvastatin therapy well and no clinical side effects were evident. No 

neuromuscular complications or development of cataracts were observed and the enzyme activities of 

aminotransferases and creatine kinase in plasma remained within the normal range.  

During the course of the simvastatin treatment, all three patients showed clinical improvement 

of growth and development with the exception of length in patient SLOS-2 (Table 1). Accordingly, the 

improvement was judged as good in patients SLOS-1 and SLOS-3 and moderate in patient SLOS-2.  

Also the neuro-motor development improved during therapy in all three patients. Patient SLOS-1, who 

started simvastatin therapy at 3 months of age, was able to rotate at 11 months and could stand with 

some help at 22 months. At 36 months, she could speak a few words and understand simple 

instructions. She walked with help at 3.5 years and without help at 4 years. She currently enjoys horse-

riding and swimming.  

    Patient SLOS-2 was 5 years old at the start of the simvastatin therapy and at that time could 

only walk with extensive help. He currently walks independently with help of a rollator walker. 

Although his awareness and social behaviour improved during simvastatin therapy, his language 

perception and speech performance has only marginally improved. During therapy he learned to eat. 

His photosensitivity was not influenced by the statin treatment.  

    Patient SLOS-3, who started simvastatin therapy at 10 months, was able to crawl at 15 

months, to sit stable at 18 months, and to walk independently at 2 years and 1 month. He is currently 

able to climb stairs and to eat with a spoon.   

    To evaluate the effect of simvastatin on the cholesterol biosynthesis in SLOS, we incubated 

primary skin fibroblasts of four SLOS patients, one obligate heterozygote and one unaffected control 

subject with 1 μm simvastatin for six days in lipoprotein (cholesterol)-depleted medium. As a control, 

we treated in parallel cells in the same manner except for the addition of simvastatin. Sterol analysis 

after the six days incubation period showed that the cells of the SLOS patients treated with simvastatin 

did no longer contain detectable levels of 7DHC, except for the IVS8-1G>C homozygous cell line 

SLOS-4, which still contained a moderate 7DHC level. In contrast, all untreated SLOS cells contained 

significantly elevated 7DHC levels (Figure 1A; Table 2). 



 

 101

 
Figure 1. In vitro biochemical and molecular analysis of cells incubated with simvastatin. Primary skin 
fibroblasts of a control subject (CTR-1), an obligate heterozygote (CTR-2), the three SLOS patients treated with 
simvastatin (SLOS-1-3) and a severe SLOS patient (SLOS-4) were incubated for six days with (+) or without (-) 
1 μm simvastatin in lipoprotein (cholesterol)-depleted medium. After harvesting, the cells were analysed for 7-
dehydrocholesterol concentrations (A; expressed as μmol/mg protein), 7DHCR activity (B; expressed as 
pmol/min.mg protein) and DHCR7/GAPDH mRNA ratios (C). 
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Enzyme activity measurements in homogenates prepared from the cells after the six days incubation 

showed a 3-4-fold increase in 7DHCR activity in the simvastatin-treated control and heterozygote 

cells when compared to the same cells without treatment. An increase in 7DHCR activity was also 

observed in homogenates of the simvastatin-treated SLOS-1 and SLOS-3 cells, while the activity in 

the SLOS-2 and SLOS-4 cells remained below detection levels (Figure 1B; Table 2). 

  The increase in 7DHCR enzyme activity in the simvastatin-treated cells was paralleled by an 

increase of 7DHCR protein as demonstrated by immunoblot analysis of homogenates using affinity-

purified antibodies generated against a portion of 7DHCR (Figure 2).  

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2. Immunoblot analysis of 7DHCR in cells incubated with simvastatin. Primary skin fibroblasts of a 
control subject (CTR-1), an obligate heterozygote (CTR-2), the three SLOS patients treated with simvastatin 
(SLOS-1-3) and a severe SLOS patient (SLOS-4) were incubated for six days with (+) or without (-) 1 μm 
simvastatin in lipoprotein (cholesterol)-depleted medium. After harvesting, equal amounts of cell homogenates 
were analysed by immunoblot analysis for the presence of 7DHCR protein using affinity-purified antibodies 
raised against 7DHCR.  
 

 

We observed a significant increase in 7DHCR protein levels in the control cells and the SLOS1-3 

cells, but not in the SLOS-4 cells. It should be noted here, however, that our antiserum would not be 

able to detect any 7DHCR protein in the SLOS-4 cells, since it was raised against a portion of 7DHCR 

that is not synthesized due to the shift in reading frame resulting from the IVS8-1G>C mutation for 

which this cell line is homozygous. In accordance with this, the observed increase of 7DHCR protein 

observed in the SLOS1-3 cells and the CTR-2 cell line (which are all heterozygous for IVS8-1G>C) is 

solely due to the expression of the non-IVS8-1G>C allele, while in the control line both DHCR7 

alleles are responsible for the increase.  

  Quantitative real-time RT-PCR using primers that only identify and amplify the DHCR7 mRNA 

derived from the non-IVS8-1G>C allele (amplification of nt 686-979 of DHCR7 cDNA) revealed that 

the increase in 7DHCR protein upon simvastatin treatment can be explained by an increased 

transcription rate of the DHCR7 gene (Figure 1C; Table 2).  

 

 

Simvastatin     -    +    -    +     -    +    -    +     -    +    -    +    -     +
CTR-1 CTR-2 SLOS-1 SLOS-2 SLOS-3 SLOS-4 CTR-1
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 DISCUSSION 

 

SLOS is the most common defect among the various inborn errors of cholesterol biosynthesis known 

to date (Kelley & Hennekam 2000; Waterham & Wanders 2000; Kelley & Herman 2001; Waterham 

2002; Porter 2002). Cholesterol is one of the end products of the isoprenoid biosynthesis pathway, 

which, in addition to cholesterol, provides the cell with a variety of other important non-sterol 

isoprenoids involved in various cellular processes. The flux through the isoprenoid biosynthesis 

pathway is tightly regulated by the levels of its end products to prevent shortage of these or over-

accumulation of intermediates (Goldstein & Brown 1990). Under normal conditions, the rate-limiting 

step of the pathway is catalysed by the enzyme HMG-CoA reductase, which is subject to different 

regulatory mechanisms. For example, the translation efficiency of HMG-CoA reductase mRNA is 

dependent on the cell’s requirement of non-sterol isoprenoids, while the degradation rate of the protein 

is dependent on the cell’s requirement of both sterol and non-sterol isoprenoids (Goldstein & Brown 

1990). In addition to these post-transcriptional regulatory mechanisms involving primarily HMG-CoA 

reductase, all genes encoding the enzymes involved in cholesterol biosynthesis are subject to a 

coordinate transcriptional feedback regulation via the so-called sterol regulatory element binding 

protein type 2 (SREBP2; Brown & Goldstein 1997; Kim et al. 2001; Sakakura et al. 2001). SREBP2 is 

a conditional positive transcription factor that enhances transcription when sterols are absent, but is 

not required for basal transcription when sterols are present.  

     Statins, including simvastatin, are potent competitive inhibitors of HMG-CoA reductase 

and are widely used to treat atherosclerosis and familial hypercholesterolemia. These drugs reduce the 

synthesis of mevalonate by HMG-CoA reductase, which results in a decreased synthesis of isoprenoid 

end products, including sterols. This reduction in end products leads to activation of the SREBP 

regulatory pathway resulting in an increased transcription of the genes encoding the various enzymes 

involved in isoprenoid/cholesterol biosynthesis and, consequently, in elevated levels of proteins.  

      While under normal conditions the rate-limiting step in cholesterol biosynthesis is 

catalysed by HMG-CoA reductase, in SLOS patients the conversion of 7DHC into cholesterol has 

become rate-limiting due to the reduced activity of 7DHCR, the enzyme catalysing this conversion. 

Remarkably, however, despite the lower levels of the end product cholesterol in SLOS patients, there 

appeared no elevation of HMG-CoA reductase activity in SLOS cells and liver tissue, although two 

other enzymes of the pathway, HMG-CoA synthase and squalene synthase, were elevated (Honda et 

al. 1998; Honda et al. 2000). These findings point to a defective coordinate regulation between HMG-

CoA reductase and the other enzymes in the cholesterol biosynthetic pathway in SLOS patients. 

Indeed, it appeared that 7DHC is a much more potent feedback inhibitor of HMG-CoA reductase than 

cholesterol, suggesting that 7DHC is responsible for the uncoupled regulation in SLOS (Honda et al. 

1998; Honda et al. 2000). This was confirmed in more recent studies with a mouse model of SLOS in 
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which it was shown that 7DHC accelerates the proteolysis of HMG-CoA reductase protein (Fitzky et 

al. 2001), which results in a reduced flux through the cholesterol biosynthetic pathway independent of 

the feedback regulation by SREBP2 (Steiner et al. 2000). 

      Our results show that one direct effect of simvastatin treatment in SLOS is the lowering of 

the 7DHC levels, most probably due to a further inhibition of HMG-CoA reductase activity as can be 

deduced from the decreased 7DHC levels observed in the SLOS-4 cells, which completely lack 

7DHCR activity. In line with the feedback regulation mechanism discussed above, this induces an 

increase in gene transcription of the genes encoding cholesterol biosynthetic enzymes including 

DHCR7, which results in an increase of 7DHCR protein and, consequently, an increase in residual 

7DHCR activity. Since in SLOS, 7DHCR catalyses the rate-limiting step, this increase in residual 

7DHCR activity will lead to an increased flux through the cholesterol biosynthetic pathway causing a 

further lowering of 7DHC levels and an increase in cholesterol levels, as observed in the patients. The 

advantage of using simvastatin is that the drug passes the brain-blood barrier and thus also has this 

effect in the brain, as was confirmed by the previously reported decrease in 7DHC and increase in 

cholesterol levels in cerebrospinal fluids of patients SLOS-1 and SLOS-3 (Jira et al. 2000). This 

concept predicts that milder patients with relatively high residual 7DHCR activity should show the 

best response to simvastatin treatment. Indeed, in our study we found a good correlation between the 

clinical severity of the patient, the residual activity of 7DHCR in cells of the patient and the efficacy of 

the simvastatin treatment. Patients SLOS-1 and SLOS-3 displayed higher residual 7DHCR activities 

and showed a better response, biochemically as well as clinically, than patient SLOS-2. This is also 

supported by the reported outcome of simvastatin treatment in two more severely affected SLOS 

patients, who did not clinically benefit from the treatment and of whom the most severely affected 

patient showed hepatoxic side effects (Starck et al. 2002).   

 

 In conclusion, our combined results show that simvastatin treatment may provide a good long-term 

therapeutic option in SLOS patients with a mild presentation, but not in severe SLOS cases. Based on 

our promising results, the simvastatin treatment is currently tested in a larger cohort of SLOS patients 

in a multicenter European trial.  
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SUMMARY 

 

Smith-Lemli-Opitz syndrome (SLOS) is caused by mutations in the DHCR7 gene leading to a 

deficient activity of 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), the final enzyme of the 

cholesterol biosynthetic pathway resulting in low cholesterol and high concentrations of its direct 

precursor 7-dehydrocholesterol in plasma and tissues. We here report mutations identified in the 

DHCR7 gene of 13 children diagnosed with SLOS by clinical and biochemical criteria. We found a 

high frequency of the previously described IVS8-1G>C splice acceptor site mutation (two 

homozygotes, eight compound heterozygotes). In addition, thirteen missense mutations and one splice 

acceptor mutation were detected in eleven patients with a mild to moderate SLO-phenotype. The 

mutations include three novel missense mutations (W182L, C183Y, F255L) and one novel splice 

acceptor site mutation (IVSG-1G>T). 

Two patients, homozygous for the IVS8-1 G>C mutation, presented with a severe clinical phenotype 

and died shortly after birth. Seven patients with a mild to moderate SLO-phenotype disclosed 

compound heterozygosity of the IVS8-1 G>C mutation in combination with different novel and 

known missense mutations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KEY WORDS: Smith-Lemli-Opitz Syndrome, 7-DHCR, 7-dehydrocholesterol-7-reductase, 

mutations, cholesterol 
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INTRODUCTION 

 

 Smith-Lemli-Opitz syndrome (SLOS MIM 270400) is an inherited disorder of variable severity 

caused by a deficient activity of 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), the final 

enzyme of the cholesterol (Kandutsch-Russell) biosynthetic pathway. Low cholesterol and high 

concentrations of its direct precursor 7-dehydrocholesterol (7DHC) and its isomer 8-

dehydrocholesterol (8-DHC) in blood and tissues are the biochemical hallmarks of the syndrome 

(Smith et al. 1964; Irons et al. 1993; Tint et al. 1995). The plasma sterol concentration generally 

correlates with severity and outcome (Tint et al. 1995; Witsch-Baumgartner et al. 2000). Cholesterol 

has a pivotal role during embryogenesis where it functions as a transporter-molecule for the sonic 

hedgehog (Shh) signalling protein, which is essential for normal morphogenesis. Without cholesterol, 

Shh-transport and/or function is impaired (Porter et al. 1996; Lanoue et al. 1997; Cooper et al. 1998). 

The sterol derangement in SLOS (accumulation of 7DHC/8DHC) may influence the activation of the 

Shh-receptor. These findings may explain the phenotypic consequences of the DHCR7 deficiency as 

observed in this syndrome: microcephaly, a distinctive facies, cataract, syn-/polydac-tyly, and a 

variety of organ malformations including genital abnormalities ranging from intersex to complete sex 

reversal in boys. 

   The human 7-dehydrocholesterol reductase gene (DHCR7) was identified recently and 

assigned to chromosome region 11q13 (Fitzky et al. 1998; Wassif et al. 1998; Waterham et al. 1998). 

Over 60 different mutations in the DHCR7 gene of patients with Smith-Lemli-Opitz syndrome have 

been described (Fitzky et al. 1998; Wassif et al. 1998; Waterham et al. 1998; Yu et al. 2000; De Brasi 

et al. 1999; Witsch-Baumgartner et al. 2000; Patrone et al. 2000; Krakowiak et al. 2000). Molecular 

cloning of the cDNA showed that the human enzyme is a microsomal membrane-bound protein with a 

calculated molecular weight of 54.5 kDa and nine putative transmembrane segments (Moebius et al. 

1998). The cDNA has an open reading frame of 1,425 bp coding for a polypeptide of 475 amino acids. 

Structurally,  the protein is strongly related to plant and yeast sterol reductases (Rahier et al. 1996; 

Waterham et al. 1998). In humans the mRNA is expressed ubiquitously with the highest expression in 

adrenal gland, liver, testis, and brain (Moebius et al. 1998). 

   We performed sequence analysis of the DHCR7 gene of 13 children diagnosed with 

SLOS. Clinical, biochemical and molecular data are presented. This paper is a further delineation of 

DHCR7-mutations in man. 
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MATERIALS AND METHODS 

 

Patients 

 The clinical diagnosis of SLOS in patients included in this study was based on clinical manifestations 

as previously described (Smith et al. 1964; Irons et al. 1993. Tint et al. 1995). Patients were 

characterized by a revised scoring system wherein malformations in each of ten embryologically 

distinct areas were scored to weigh embryologically separate organ systems equally (Kelley et al. 

2000). The clinical diagnosis was biochemically confirmed by analysis of sterols in plasma and/or 

tissue by gas chromatography as described earlier (Jira et al. 1997). Patient 2, 4 and 13 are Dutch 

SLOS-patients reported previously (Waterham et al. 1998).  

 

Mutation analysis of DHCR7 gene 

Genomic DNA was extracted from skin fibroblasts or lymphocytes from patients using the Wizard 

Genomic DNA Purification Kit according to the instructions of the supplier (Promega). Four sets of 

DHCR7-specific primers with either -21M13 (5'-TGTAAAACGACGGCCAGT-3') or M13-Rev (5'-

CAGGAAACAGCTATGACC-3') extensions were used to amplify by PCR the coding exons 3-9 of 

the DHCR7 gene. Sequences of these primers are as follows: primer set A for amplification of exons 

3+4: DHCR7-IVS2-fw (5'-[-21M13]-GGTGGATGCAACAGGGAAAG-3') and DHCR7-IVS4-rev 

(5'-[M13-Rev]-GCTCCCCACCTGCTGTGTC-3'); primer set B for amplification of exons 5+6: 

DHCR7-IVS4-fw (5'-[-21M13]-GTGATCAGGCTGCTTGTGTG-3') and DHCR7-IVS6-rev (5'-[M13-

Rev]-TTCTACATCAGGCTGGACCC-3'); primer set C for amplification of exons 7+8: DHCR7-

IVS6-fw (5'-[-21M13]-TGGGCTCTCGCTAAGTAAGG-3') and DHCR7-IVS8-rev (5'-[M13-Rev]-

TAGCATGTGTCTGCCAAATGC-3'); primer set D for amplification of coding part of exon 9: 

DHCR7-IVS8-fw (5'-[-21M13]-CGTGTGTCAGAGGCAGAGC-3') and DHCR71510-1490 (5'-[M13-

Rev]-AGTTGGAGCTGGGATGCCAG-3'). PCR reactions contained 0.4 m of each primer, 10 mM 

Tris/HCl pH8.4, 50 mM KCl, 1.5 mM (primer set A) or 2 mM MgCl2 (primer sets C-D), 0.01% w/v 

BSA, 0.2 mM dNTPs and 1.5 U Taq DNA polymerase (Promega). PCR amplification involved 2 min 

of denaturation at 96C followed by 17 cycles during which the annealing temperature was lowered 

with 1C per cycle from 72C to 55C. Every cycle started with 30 s of denaturation at 94C followed by 

30 s of annealing and 1.5 min of extension at 72C. These 'touchdown' cycles were followed by 12 

cycles composed of 30 s of denaturation at 94C and 1.5 min of annealing/extension at 72C followed 

by a final extension step of 15 min at 72C. PCR fragments were sequenced by means of -21M13 or 

M13-Rev fluorescent primers on an Applied Biosystems 377A automated DNA sequencer according 

to the manufacturer's protocol (Perkin-Elmer). 
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RESULTS 

 

 Thirteen patients (8 Dutch, 4 German and 1 Scottish) with biochemically confirmed SLOS were 

studied. All had mental retardation, facial anomalies, bilateral second-third toe syndactyly, and failure 

to thrive. Three patients had a cleft palate and two Hirschsprungs’ disease. 

   Table 1 summarises the patients: karyotyping, plasma (or tissue) sterol concentrations, 

7DHC/cholesterol ratio, ancestry, clinical presentation, clinical severity score and age at biochemical 

diagnosis (age of death in patients 1, 2 and 5). Plasma sterol concentrations are initial values on 

standard diet without supplemental cholesterol. The patients in both tables are ordered based on the 

mutational findings shown in Table 2. Clinical severity and outcome in our cohort was strongly 

correlated with the plasma sterol abnormality. The most predictive biochemical value is the 

7DHC/cholesterol ratio in plasma. In general patients with plasma 7DHC/Cholesterol ratio between 

0.5 - 1.0 had moderate SLOS. Patients with a plasma ratio <0.5 had a mild presentation and course 

while plasma 7DHC/Cholesterol ratio >1.0 was associated with severe SLOS. This chemical ratio is a 

usefull tool considering prognosis and treatment in SLOS but cannot predict severity accurately. 

   Table 2 shows the results of mutation analysis in the 13 patients by: affected exon and 

transmembrane domain, nucleotide position of the mutation, amino acid substitution and their effect 

on the coding sequence (for numbering of nucleotides and amino acids see: Waterham et al. 1998) and 

clinical phenotype. DNA sequencing of 26 SLO-alleles identified 13 different mutations. Among these 

mutations we detected 4 novel mutations; 3 missense (W182L, C183Y and F255L) and one IVS8-1 

G>T splice acceptor site mutation. 

   Patients 1-11 were either homozygotes or compound heterozygotes for a IVS8-1 splice 

acceptor mutation. This mutation causes aberrant mRNA splicing which leads to the introduction of 

134 basepairs and a frameshift resulting in a truncated protein lacking 154 amino acids of its original 

C-terminal sequence (Waterham et al. 1998). Patient 6 contained a new variant of the IVS8-1 G>C, 

namely an IVS8-1 G>T resulting in the same truncated protein. In this patient, with a mild SLOS-

phenotype, the mutation was combined with a missense 765 C>A (Phe255Leu) mutation at the other 

allele. 

   Eleven of the 13 patients (patients 3 - 13) were compound heterozygous for two different 

mutations altering the sequence of the 7-sterol reductase. The mutational site and effect on the coding 

sequence seemed to be only partially predictive for clinical and biochemical severity. Although 

unrelated, patients 7 and 8 had the same genotype with, a mild phenotype, however, the girl was 

diagnosed earlier in life and had a significantly different plasma sterol level and clinical course. Two 

sibs (patients 9 and 10) with the same DHCR7-mutations but differing in age, had different plasma 

sterol values with a similar clinical presentation.  
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DISCUSSION 

 

 SLOS is an autosomal recessive disorder. The DHCR7 gene mutations identified in our SLOS-cohort 

and by others (Fitzky et al. 1998; Wassif et al. 1998) are likely to have deleterious effects on the 

function of the DHCR7 protein. Cholesterol is an important constituent of the cell membrane of most 

eukaryotic cells and has important interaction with proteins, which control embryonic development. In 

addition, cholesterol acts as the precursor for steroid hormones, bile acids and myelin formation in the 

brain, spinal cord and peripheral nervous system. 

   The IVS8-1 G>C mutation causes aberrant splicing producing an mRNA with 134 base-

pairs of retained intron 8 sequence at nucleotide position 963 which leads to a frame shift and a 

stopcodon at nucleotide 1235 (TGA). This premature termination of translation results in a truncated 

and inactive DHCR7 protein as was confirmed by enzyme activity measurements in the patients 

homozygous for this mutation (Waterham et al. unpublished). Fitzky predicted that homozygotes for 

this mutation would be lethal if affected, which is confirmed by patients 1 and 2 from our study. These 

two SLOS individuals manifest a severe and lethal phenotype with microcephaly, cataract, 

polydactyly, multiple organ (cardiac, renal and intestinal) malformations leading to early death. In 

patient 2, with a 46 XY karyotype, this mutation led to apparent sex reversal (Waterham et al.1998). 

Remarkably, in a recent paper it has been reported that not all SLOS-individuals with two null 

mutations, although severely affected, are lethal (Witsch-Baumgartner et al. 2000). 

   Patients 3 - 11, who overall presented with a moderate to mild SLOS phenotype all were 

compound heterozygotes for a IVS8-1 splice acceptor site mutation on one allele in combination with 

a missense mutation on the other allele. Patient 5, with a severe clinical phenotype, is the only 

exception. The Leu109Pro mutation may affect the enzymatic activity more severly than the other 

missense mutations in this group. The clinical severity and biochemical features of our patient 5 are 

similar to patient D73 with the same combination of mutations described by Witsch-Baumgartner et 

al. 2000. 

   The five most frequent mutations described by Witsch-Baumgartner et al. 2000 in 168 

SLOS-alleles are: IVS8-1 G>C, R404C, T93M, W151X, V326L with a frequency of: 29, 11, 8, 8 and 

7 percent, respectively. Apart from the IVS8 G>C mutation, most of the mutations detected in SLOS 

are single amino acid substitutions. Mutations occur further throughout the whole gene without 

evident hotspots. In the region between codon 242 to 248, however, 5 different mutations have been 

detected until now (R242C, A247V: Witsch-Baumgartner et al. 2000; G244R, W248C: Waterham et 

al. 1999; R242H: Patient 12 from this paper). In two of these SLOS patients codon 247 and 248 are 

affected by a point mutation, changing an alanine into a valine and a tryptophan into a cystein, 

respectively. These two missense mutations are found within ten basepairs downstream of a  "TGGA" 

motif at nucleotide 742 (according to the nucleotide sequence of Waterham et al. 1998). This motif is 

hypothesised to be, in general, a hotspot for point mutations or deletions (Cooper et al. 1995). 
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   Most of the missense mutations found in patients 3, 4, 6, 9-13 are within the so called 

"sterol-sensing domain" containing five transmembrane segments as proposed by Fitzky et al. 1999 

and Bae et al. 1999 (Figure 1).  

 

 
 

Figure 1. Predicted membrane topology of the 7-dehydrocholesterol reductase. The topology model for 
DHCR7 is based on the data of Fitzky et al., 1998. Transmembrane segments 4 to 8 (dark grey) represent the 
putative, highly conserved, sterol-sensing domain (Bae et al. 1999). Arrows (↓) mark the position of the various 
mutations found in patients 1 to 13. 
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Sequence comparisons of these specific DHCR7 membrane-spanning segments show strong homology 

to segments found in four other human proteins. These proteins in nature all have crucial interaction 

with sterols: 1] HMG-CoA reductase (Olender et al. 1992), 2] Niemann-Pick C1 gene product (Loftus 

et al. 1997), 3] Sterol regulatory element-binding protein-SCAP (Nohturfft et al. 1998), and 4] the 

morphogene receptor PATCHED (Loftus et al. 1997). In HMG-CoA reductase the orientation of the 

sterol-sensing domain (membrane-spanning segments 2 to 6) has a similar configuration as segments 4 

to 8 of DHCR7. According to the hydrophobicity in the DHCR7 protein, membrane-spanning 

segments 4 to 8 are closely spaced and joint by relatively short hydrophilic amino acid loops. In 

contrast to DHCR7, SCAP and HMG-CoA reductase have a long COOH-terminal domain that 

projects into the cytosol (Nohturfft et al. 1998). Mutations that alter, interfere with or truncate the 

sterol-sensing domain of the DHCR7 protein are likely to cause a more severe biochemical and 

clinical SLOS-phenotype however making predictions of the SLOS phenotype from genotype, 

continues to be difficult since there is significant clinical and biochemical variability among 

genetically identical or comparable infants (see patients 7, 8 and 10, 11). 

   In our study, six of the eight Dutch SLOS patients were carriers for the IVS8-1 G>C 

mutation on one or both alleles. The high proportion of this severe frameshift mutation could explain 

the lower incidence of SLOS occurring in the Dutch population. One could hypothesise that in 

homozygous individuals this particular genetic defect may lead to intra-uterine or early neonatal death 

before the diagnosis SLOS is made. On the other hand, in healthy carriers, mutations in cholesterol 

biosynthesis could result in an evolutionary advantage either reducing the risk of cardiovascular 

morbidity by decreasing individual plasma cholesterol levels or by increased Vitamin D levels, 

preventing the occurrence of rickets (a common pediatric disease in the past) as suggested by Kelley 

and Hennekam (2000). We analysed plasma of some parents of our SLOS-patients (data not shown) 

and found plasma cholesterol levels below the 50th centile with a mean of 4.4 mmol/l. We found the 

IVS8-1 G>C in SLOS-patients not only from different sites in the Netherlands but also in patients 

from Germany. The same IVS8-1 G>C mutation was detected in one of 90 normal adult Caucasian 

Americans; but not among 121 Africans from Sierra Leone, 120 Caucasians from Finland, 95 Chinese 

or 103 Japanese adults by Yu et al. 2000. From the number of cases diagnosed in our laboratories we 

estimate a SLOS frequency of ~ 1/100,000 in the Netherlands. This frequency is lower than the 

incidence of 1 / 40,000 - 50,000 for the SLOS described by Opitz et al. 1994 and Cunniff et al. 1997. 

Currently, we are working on a more accurate estimation of the carrier frequency of the mutation in 

the Dutch population. The high incidence found in our European SLOS-study (50%) confirms and 

exceeds the findings of Yu et al. 2000 and Bataille et al. 2000 who identified the IVS8-1G>C 

mutation in 21 of 66 (32%) and 18 of 52 (35%) SLOS-alleles, respectively. The development of a 

simple PCR-RFLP can be used as a screening-method for detecting this frequent SLO-mutation (Yu et 

al. 2000). The mutation seems to be an ancient variant frequently occurring in SLOS. In order to 

determine whether this and other mutations have been introduced into the European, and later 
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American, population by a single founder, it is necessary to study the chromosome 11 haplotype of the 

patients carrying mutations. 

 

In conclusion, our study showed that of the known SLOS mutations (including missense, nonsense, 

frameshift and deletions) the IVS8-1 G>C is the most frequent one occurring in our cohort of SLOS 

patients from Western-Europe and found in 13 of 26 studied alleles. This occurrence of 50% is the 

highest of all published studies, leading to lethal phenotypes in two homozygotes, and mild to 

moderate SLOS-phenotype when combined with missense mutations. We identified four novel 

mutations in the DHCR7 gene. Further molecular genetic studies will enable insight in genotype-

phenotype correlations in SLOS and determine carrier frequency of specific DHCR7 mutations in 

various populations. Additional search for environmental, other genetic and compensatory 

determinants that can modify the phenotypical consequences of the functional DHCR7 deficiency in 

SLOS is needed. 
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ABSTRACT 

 

We report on a newborn boy with clinical manifestations of the Smith-Lemli-Opitz syndrome (SLOS, 

also known as RSH syndrome) including prenatal growth retardation, microcephaly, hyperplasia of the 

upper alveolar ridges, micropenis with glandular hypospadias and bilateral 2-3-toe syndactyly, he also 

had unilateral choanal atresia and severe an/microphthalmia. Gas chromatographic analysis of plasma 

sterols showed normal concentrations of the cholesterol precursor 7-dehydrocholesterol, thereby 

excluding a Δ7-dehydrocholesterol reductase deficiency, the primary cause of SLOS. Chromosome 

analysis demonstrated a distal 7q36.1 deletion. Extensive fluorescence in situ hybridization analysis 

showed that the holoprosencephaly (HPE3) critical gene region on chromosome band 7q36, inclusive 

the Sonic Hedgehog (SHH) gene, was deleted. A mutation in the SHH gene of the non-deleted allele 

could be excluded. This case suggests that in addition to patients with a defect in cholesterol biosyn-

thesis, patients with a distal 7q deletion may present with a SLOS-like phenotype. Some, if not all, of 

the clinical findings of SLOS may be due to a defective SHH signalling pathway caused by sterol 

disturbances, which is consistent with results obtained in experimental animals.   
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INTRODUCTION 

 

Smith-Lemli-Opitz (SLOS or RSH syndrome), is a multiple congenital anomalies/mental retardation 

syndrome caused by a deficient Δ7-dehydrocholesterol-reductase activity, the final enzyme of the 

cholesterol biosynthesis pathway (Smith et al. 1964; Tint et al. 1994; Tint et al. 1995; Kelley & 

Hennekam, 2000). The clinical diagnosis of SLOS requires experience in clinical morphology. The 

holoprosencephaly (HPE) sequence is a genetically heterogeneous malformation complex that affects 

midline development of forebrain and midface. The strongly variable clinical presentation within types 

of HPE ranges from severe brain malformations (lethal expression) to minimal facial anomalies 

(single central maxillary incisor). Distal deletions of the long arm of chromosome 7 are associated 

with HPE (Young et al. 1984; Lurie et al. 1990; Bogart et al. 1990; Frints et al. 1998a). 

  Sonic Hedgehog (SHH) is one of the human segmentation genes. Mutations in this gene have 

been shown to cause familial holoprosencephaly in the subset linked to chromosome band 7q36 

(Roessler et al. 1996; Belloni et al. 1996). Cytogenetic deletions and/or rearrangements of this region 

on the distal long arm of chromosome 7 containing SHH, and translocations that may suppress gene 

expression through a position effect are common mechanisms leading to HPE (Gurrieri et al. 1993; 

Benzacken et al. 1997; Roessler et al. 1997; Frints et al. 1998b; Vance et al. 1998). Evidence was 

obtained from animal experiments that cholesterol biosynthesis is essential for normal SHH protein 

function and suggested that the phenotypic characteristics of SLO syndrome may be mediated by 

SHH.  Here we describe a patient with apparent SLOS and HPE with a terminal deletion of the long 

arm of chromosome 7. This observation reinforces the notion that the pathogenesis of SLOS involves 

dysfunction of the SHH signalling pathway and that impairment of sterol disturbances causes a wide 

range of genetic defects. 

 

 
CLINICAL REPORT 

 

The index patient, a boy, the first child of nonconsanguineous caucasian parents, was born at term, 

after an uneventful pregnancy. His birthweight was 2,590 g (15th centile), length was 43 cm (3rd 

centile), and occipitofrontal circumference (OFC) was 29 cm (<< 3rd centile, -3 SD). Clinical 

examination showed microcephaly, inner canthal distance/outer canthal distance = 1.8 cm / 6.5 cm 

(10th centile / 60th centile), deeply set invisible eyes, bilateral epicanthus, narrow upslanting palpebral 

fissures, midface hypoplasia, depressed nasal bridge, small nose, microphthalmia, retro/micrognathia 

with upper alveolar ridge hyperplasia. His ears were small, malformed, and apparently low-set with a 

prominent antihelix, and large earlobes (Figure 1A and 1B). There was complete bilateral syndactyly 

of toe 2 and 3 (Figure 1C). External genitalia were abnormal with a chordee and micropenis of 1.5 cm 

(-2SD) (Figure 1D).  



 

 124

 
Figure 1. Patient’s appearance at birth.  

 

Unilateral choanal atresia was suspected and confirmed on CT-scanning. Deep tendon reflexes were 

diminished. MRI-scanning, ophthalmic examination and orbital ultrasonography showed bilateral 

anophthalmia with a dysgenetic cyst on the right with normal corpus callosum and (midline) brain 

structures (Figure 2).  
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Radiological examination of the spine and hips showed a normal vertebral spine and sacrum but left 

hip dysplasia with an acetabular angle of 36 degrees. Echocardiography excluded cardiac 

malformations. No renal abnormalities were detected by ultrasound. The electro-encephalography was 

normal. Since early detection of deafness in this blind patient is important, a brain stem auditory 

evoked potential investigation was performed. No respons could be obtained with this test, suggesting 

the patient might be deaf. Endocrine status was normal; gonadotrophins, LH: 2.0 U/l, FSH: <0.6 U/l, 

testosterone: 6.0 nmol/l, ACTH: 4.1 pmol/l, cortisol: 0.20 mmol/l, TSH: 2.47 mU/l, tyroxine; 191 

nmol/l, free T4: 16.6 pmol/l. TORCHES screening negative. 

 Feeding problems were treated by initial nasogastric tube feeding. At the age of 4 months he 

developed severe vomiting, pyloric stenosis was surgically corrected and during this operation a 

percutaneous gastric tube was implanted. At this age his weight was 5220 g (3rd  centile) and the OFC 

36.2 cm (still below 3rd centile). The inner canthal distance measured 22 mm (50th centile). He was 

delayed in psychomotor development, however, due to his severe sensory impairment a judgement 

about the severity of the development retardation could not be made at that age. At the age of 14 

months a central maxillary incisor became visible. At the age of 16 months he started to roll over and 

at 24 months he was able to sit without support.  

 At the age of 5 years and 9 months the boy still has a percutaneous gastric tube and is not 

interested in oral feeding. His height is 104 cm (-3.3 SD), weight is 16.5 kg (-2.5 SD) and OFC 45.5 
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cm (-4.9). Although he can stand and walk independently from the age of four his gait is limited. 

Hearing has improved gradually and a slight hearing impairment of 25 dB is detectable after one 

adenoidectomy and three times placement of bilateral myringotomy tubes between the age of 2 ½  and 

5 ½ years. Nevertheless there is no passive or active language development.  At the age of 5 9/12 years 

his developmental status was examined in the context of degree of visual the Reynell-Zinkin scales 

(Reynell 1978). His scores on the five developmental areas of social adaptation, sensori-motor 

understanding, exploration of environment, verbal comprehension and  expressive language were 9-11 

months, 1.1-1.4 years, 9-11 months, 1.2-1.7 years and 5-7 months, respectively.   

 

 

MATERIALS AND METHODS 

 

Defects of cholesterol biosynthesis investigated at birth by gas chromatographic analysis of plasma 

sterols and chromosome analysis of two peripheral blood lymphocyte cultures were performed. 

Parents had normal chromosomes, establising a de novo origin of the 7q deletion. In order to define 

more precisely the deletion-breakpoint and the presence/absence of genes located at this chromosomal 

region, which are important for normal extremity, facial and brain development, we performed 

fluorescence in situ hybridization (FISH) analysis on metaphase chromosomes.  A panel of 

informative C.E.P.H. yeast artificial chromosomes (YACs) was selected all containing well-defined 

marker loci and one cosmid clone; 738D7, 761H5, 744A8, 850G5, Y965C12, COS2000 (Morton et al. 

1987). The deletion-breakpoint was concluded to reside between YACS 761H5 and 744A8, as 

illustrated in Fig. 3.  

 

To exclude the possibility of a coincidental mutation on the other allele we performed mutational 

analysis of the complete coding region and intron-exon junctions of the non-deleted SHH gene by 

direct sequencing using primers as described before (Roessler et al. 1996, 1997a; Nanni et al. 1999). 

No mutation in the other SHH allele could be detected. 

 

 

RESULTS AND DISCUSSION 

 

Sterol analysis revealed normal concentrations of cholesterol (2235 μmol/l), 7-dehydrocholesterol 

(<15 μmol/l) and 8-dehydrocholesterol (<15 μmol/l) (Jira et al. 1997). Chromosome analysis of two 

peripheral blood lymphocyte cultures demonstrated a terminal 7q deletion: 46,XY,del(7)(q36.1→qter). 

The patient reported here illustrates the clinical presentation of SLOS and minimal expression of HPE. 

After ruling out a Δ7-sterol reductase deficiency, the hallmark of SLOS, chromosomal investigation 
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Figure 3.  A. Chromosomes 7 of the patient. De left chromosome has a terminal deletion. The size of the 
deletion is indicated by a bar along the normal chromosome 7. B. Ideogram of the entire (left) and terminal part 
of the long arm (right) of chromosome 7. The deletion extends from band q35 to qter. C. Location of the yacs 
(CEPH-probes) and cosmid used for in-situ-hybridisation. The probes located in band q36are deleted on the 
derivative chromosome 7. The SHH-gene is located between CEPH850G5 and cos2000 and thus deleted in the 
patient. D. FISH results with the subterminal probe cos2000. A fluorescence signal is visible on the normal, but 
not on the derivative chromosome 7. 
 

 

applying FISH showed a deletion of the terminal long arm of chromosome 7. The deletion-breakpoint 

resides between YAC clone markers 761H5 and 744A8, preserving the Eng2 (Hox1) gene but 

eliminating the SHH gene. The deleted distal arm contains about 12 cM and at least 30 known human 

genes. 

 SLOS is an autosomal recessive disorder showing considerable phenotypic variability 

including craniofacial abnormalities (microcephaly, ptosis, cataract, cleft palate, upper alveolar ridge 

hyperplasia), limb anomalies (postaxial syndactyly and/or polydactyly), incomplete development of 

male genitalia, failure to thrive, gastrointestinal abnormalities such as pyloric stenosis and 

Hirschprung disease, mental retardation and various internal anomalies including holoprosencephaly 

in some cases (Smith et al. 1964; Tint et al. 1994; Tint et al. 1995; Nowaczyk et al. 2001). Defective 

conversion of 7-dehydrocholesterol (7-DHC) to cholesterol in SLOS patients is due to mutations in the 
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Δ7-sterol-reductase gene that was mapped to chromosome band 11q13 (Fitzky et al. 1998; Waterham 

et al. 1998; Wassif et al. 1998). Less severe symptoms of HPE can occur in SLOS (Kelley et al. 

1996). However, not all patients clinically suspected of SLOS can be confirmed biochemically 

(Guzetta et al. 1996; Krajewska-Walasek et al. 1999). 

 Some of the malformations seen in SLOS can be mimicked in experimental animal models 

utilizing specific cholesterol lowering drugs: BM 15.766, AY-9944 and YM 9429 inhibiting the Δ7-

reductase enzyme in cholesterol biosynthesis (Honda et al. 1996; Kolf-Clauw et al. 1996; Dehart et al. 

1997; Roux et al. 2000). The most characteristic malformations of this rat/mouse "holoprosencephalic 

syndrome" include cyclocephaly, cyclopia, monorhinia, palatoschisis and agenesis of the pituitary 

gland in up to 80 % of subjects (Honda et al. 1996; Kolf-Clauw et al. 1996). 

 Although some of these defects, especially holoprosencephaly, were described previously in 

cholesterol-deficient rats (Dehart et al. 1997), limb and external genital defects as seen in SLOS have 

not been seen in animal experiments. Some similarities between the SLO syndrome in humans and the 

AY-9944/BM 15.766 animal experimental teratogenic effects suggest, but do not explain, that the Δ7-

reductase enzyme deficiency is directly responsible for the malformations. 

 SHH (MIM 600725) is one of the genes identified to cause HPE in humans. It maps to 7q36 

that is near the HPE3 locus (MIM 142945) (Gurrieri et al. 1993; Belloni et al. 1993; Muenke et al. 

1994; Roessler et al. 1997). SHH mutations have been identified in HPE patients and include 

missense, nonsense, deletion, insertion, and frameshift mutations located throughout the gene 

(Roessler et al. 1996; Roessler et al. 1997; Nanni et al. 1999; Odent et al. 1999; Wallis et al. 2000). 

Proper function of SHH depends on cholesterol modification. Specifically, cholesterol is important for 

the way Hedgehog proteins spread through tissues where they split in two. The hydrophobic 

modification is apparently necessary to restrict hedgehog signaling to the proper spatial pattern in the 

developing embryo (Porter et al. 1996a; Porter et al. 1996b; Cooper et al. 1998). The cholesterol-

Hedgehog complex attaches to its 12-span transmembrane receptor proteins Patched-1 and Patched-2 

in target cells (Villavicencio et al. 2000; Ingham and McMahon, 2001). Although the mechanism of 

Shh-induced signaling pathway in vertebrates is not completely defined, it is known to regulate dorso-

ventral patterning within the neural tube, limb, lung, genital, ocular, and retinal development as well as 

craniofacial morphogenesis (Marigo et al. 1995; Hall et al. 1995; Kumar et al. 1996; Krishnan et al. 

1997; Imokawa et al. 1997; Levine et al. 1997, Helms et al. 1997; Hayes et al. 1998; Ingham and 

McMahon 2001). Dysregulation of the sonic Hedgehog-Pathed-Gli pathway leads to several human 

diseases, including birth defects and cancers (Villavicencio et al. 2000). 

 Through recent animal studies there is growing evidence linking cholesterol deficiency-based 

birth defect and the SHH gene. In SLOS the effects of perturbed cholesterol biosynthesis are shown 

confirming the important role of cholesterol in transport, activation and receptor-binding of embryonic 

signaling SHH proteins (Porter et al. 1996a; Porter et al. 1996b; Cooper et al. 1998; Ingham and 

McMahon 2001). SHH gene studies in the mouse showed that this gene plays a critical role in 
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patterning of vertebrate embryonic tissues, including brain, spinal cord, axial skeleton and limbs. Shh 

mutated mice show a SLOS-like phenotype with craniofacial and limb abnormalities (Chiang et al. 

1996). 

 

Cholesterol deficiency in utero, whether genetic, environmental or multifactorial, can result in 

malformations representing a wide spectrum of severity. In patients presenting with malformation of 

brain, face, eye, limbs, or genitalia defects in cholesterol biosynthesis and SHH-functioning should be 

considered and ruled out (Lanoue et al. 1997; Kelley et al. 1996). 

 Our patient presented with a SLOS more than an HPE phenotype. MRI scanning of the brain 

revealed no gross abnormalities. Initially there were no signs of holoprosencephaly at all. Later 

development of a single central maxillary incisor disclosed a minor HPE-variant. Microphthalmia has 

been reported once previously in a fetus with holoprosencephaly and sacral agenesis due to a deletion 

7q36→qter (Morichon-Delvallez et al. 1993). Thus, we would like to reinforce two other observations 

made by Berry (et al. 1998) and Warburg (et al. 1995). The first described a family of apparent SLOS 

and Miller-Dieker syndrome (MDS) with segregating translocation t(7;17)(q34;p13.1) presenting with 

a phenotype similar to that of our patient. The patient with MDS had inherited the derivative 

chromosome 17, thus lacking 17p13.1, resulting in MDS. The patient with SLOS phenotype had 

inherited the abnormal chromosome 7 with a deletion of 7q34→qter. The latter authors documented 

the clinical findings of a boy with blepharophimosis, epicanthus inversus, right atresia and left choanal 

stenosis and developmental delay with genital malformations. This patient had a single mesial 

maxillary incisor suggesting the HPE anomaly but a normal CT scan of the brain. Chromosome 

analysis showed a de novo terminal deletion of the long arm with a breakpoint at band 7q36.  

 In the perspective of the facial anomalies (a long philtrum, upper alveolar ridge hyperplasia, 

and microcephaly) documented above we conclude that the patient had the SLOS. A single central 

maxillary incisor, as apparent in our patient, can also occur in biochemically and genetically proven 

SLO patients (own observation). In SLOS genital anomalies (65%) 2-3 toe syndactyly (97%) and 

pyloric stenosis (14%) as disclosed by our patient are common (Kelley, Hennekam, 2000). These 

phenomena have to be mediated by impaired SHH function rather than a primary disruption of 

cholesterol biosynthesis. Mental retardation and failure to thrive are non-specific manifestations in 

many syndromes. 

 The existence of phenocopies of SLOS after exclusion of a Δ7-reductase deficiency may point 

to a defect in important morphogenetic signaling pathways, such as the Sonic Hedgehog-Patched-Gli 

pathway, causing similar malformations. High-resolution cytogenetic studies and mutation analyses 

focusing on chromosome band 7q36, and other pathway genes in these patients therefore should 

always be considered. 
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SUMMARY AND GENERAL DISCUSSION 

 

The Smith-Lemli-Opitz syndrome (SLOS) is a developmental disorder associated with a broad 

spectrum of congenital anomalies and is one of the recently discovered defects of cholesterol 

biosynthesis in humans (Smith et al. 1964; Irons et al. 1993; Tint et al. 1995; Fitzky et al. 1999; 

Battaile & Steiner 2000). In chapter 1 the Smith-Lemli-Opitz syndrome and its enzymatic defect, the 

7-dehydrocholesterol reductase (DHCR7) deficiency, is introduced. The aim of our study is described 

in chapter 2 and current knowledge about diagnosis, clinical presentation, therapy, molecular genetics 

and pathophysiology in SLOS are reviewed in chapter 3 (Jira et al. 2003). 

 

Biochemical Diagnosis 

The biochemical hallmark of SLOS was disclosed in 1993 (Irons et al. 1993). In chapter 4 we studied 

cholesterol levels in plasma of 8 SLOS patients with gas-chromatography (GC) and with the common 

oxidase method used routinely in clinical chemistry laboratories to measure cholesterol in body fluids. 

We described pitfalls in measuring plasma cholesterol in SLOS with this common cholesterol-oxidase 

method. 

 First of all, healthy newborns normally may have low plasma cholesterol levels around or even 

below 2000 μmol/L. All SLOS patients studied had increased 7DHC (143 - 848 μmol/L) and 8DHC 

(107 - 555 μmol/L) plasma levels, diagnostic for SLOS. In healthy control groups, cholesterol-

precursor concentrations are below 10 μmol/L. Secondly, we could demonstrate that the oxidase 

method for measuring cholesterol in plasma cannot discriminate between cholesterol, 7DHC or 8DHC. 

When measured with GC, all patients had a plasma cholesterol concentration (20 - 2030 μmol/L) 

below the reference range for age. In contrast, only 6 of 8 patients had decreased cholesterol plasma 

levels when measured with the cholesterol-oxidase method. Since this method in fact measures the 

sum of cholesterol and its precursors 7DHC and 8DHC, it gives falsely high cholesterol levels. This 

could potentially lead to erroneous conclusions. The GC technique detects separate precursor and 

cholesterol peaks. This enables a proper biochemical diagnosis and can be of use in scoring severity 

and in monitoring therapy in SLOS (Jira et al. 1997a). 

 

Therapy 

Chapter 5 and 6 describe new treatment strategies in SLOS. Conventionally, patients were treated 

with cholesterol and/or bile acid suppletion without impressive biochemical or clinical response.  

 In chapter 5 erythrocytes of SLOS patients were incubated in normal donor plasma and we 

observed a rapid exchange between precursors (7DHC and 8DHC) from the erythrocyte membrane 

and cholesterol from the plasma. When normal erythrocytes were incubated in SLOS plasma, a similar 

uptake velocity of precursors into normal erythrocyte-membranes could be detected. This motivated 

our group to evaluate the effect of blood exchange transfusions in two young SLOS patients. Repeated 
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blood exchange transfusions showed a significant reduction in circulating cholesterol-precursor levels 

and increases of cholesterol to normal levels in plasma. The procedure, however, is invasive for the 

patient, time-consuming and the biochemical effect of blood exchange transfusions in plasma was 

limited to three days (Jira et al. 1997b). Therefore, this cannot be considered as a long-term 

therapeutical approach.  

 We incubated cultured SLOS fibroblasts with a HMG-CoA reductase inhibitor, simvastatin, to 

study its effect on sterol synthesis. As expected, we observed a marked reduction of accumulated 

7DHC and 8DHC precursors. However, the unexpected observation that cholesterol concentration 

increased was surprising. This improvement in precursor/cholesterol ratio in cultured SLOS 

fibroblasts motivated us in treating SLOS patients with simvastatin. Chapter 6 describes the long-

term effect (23 and 14 months) of oral HMG-CoA reductase inhibition with simvastatin in two SLOS 

patients. A significant reduction of total precursors (7DHC+8DHC), to 28% and 33% of the initial 

plasma values, could be documented. Cholesterol concentration normalised unexpectedly by a more 

than two-fold increase in that period for both patients. The 7DHC+8DHC/Cholesterol ratio improved 

from 0.47 to 0.06 and 0.32 to 0.04 in plasma and from 1.22 to 0.12 and from 0.62 to 0.07 in 

erythrocyte membranes, respectively. During the follow-up period, morphometric parameters (length, 

weight, head circumference) and neuromotor development improved in both patients. The therapy was 

well tolerated and no unwanted clinical or biochemical side effects occurred. This is the first study in 

which the blood cholesterol level in SLOS patients normalised with a simultaneous significant 

decrease in precursor levels. There was a lasting biochemical improvement with an encouraging 

clinical effect (Jira et al. 2000).  

 The decreased accumulation of 7DHC and 8DHC in SLOS patients treated with an oral HMG-

CoA reductase inhibitor could be expected. The beneficial effect in increasing cholesterol 

concentration in SLOS patients treated with statin, however, was unexpected. Further studies were 

designated to explain this observation in both fibroblasts and patients' plasma. Chapter 7 describes 

three relatively mild SLOS patients treated with simvastatin for 80, 49 and 31 months, respectively. 

We determined the efficacy of the treatment on development and general well being of the patients. In 

addition, we studied in vitro the effect of simvastatin on DHCR7 expression and activity in primary 

skin fibroblast cells of the patients. All patients tolerated the simvastatin therapy well without apparent 

clinical or biochemical side effects. During treatment, a marked decrease of plasma 7DHC levels in all 

three and a concomitant increase of the plasma cholesterol concentration was observed in two patients. 

Moreover, two patients showed good and one patient moderate clinical improvement of growth and 

development. The in vitro studies with cultured primary skin fibroblast cells of the patients showed 

that simvastatin induces an increase in gene transcription of the DHCR7 gene, which results in an 

increase of DHCR7 protein and enzyme activity. An increase in (residual) DHCR7 activity by a factor 

6.1, 3.6 and 4.2, respectively could be documented in the three SLOS cell lines. DHCR7 catalyses the 

rate-limiting step in SLOS, and an increase in residual DHCR7 activity leads to an increased flux 
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through the cholesterol biosynthetic pathway and explains lower 7DHC and (almost normalizing) 

cholesterol levels, as observed.  

 Biochemical and clinical improvement was strongly correlated with the residual DHCR7 

activity. Up-regulation of DHCR7 activity in cultured fibroblasts by simvastatin was also correlated 

with the patients' clinical severity and genotype. Our study is the first to demonstrate that simvastatin 

therapy in SLOS patients with a relatively mild phenotype and residual activity of 7DHCR in cells 

results in increased DHCR7 expression. This increased DHCR7 activity level leads directly to a 

lowering of 7DHC and an increase of cholesterol levels. Since the efficacy and outcome of the 

simvastatin treatment appears to correlate well with the residual 7DHCR activity and clinical severity 

in patients, the treatment may provide a good therapeutic option in SLOS patients with a mild to 

moderate presentation (Jira et al. 2005a, submitted). Statin therapy is a promising, novel approach in 

SLOS that deserves further studies in larger series of patients. Currently, the European NISLOS 

(Nijmegen International Simvastatin SLOS) Study is being performed on the long-term biochemical 

and clinical effects of simvastatin with and without cholesterol suppletion. Estimation of residual 

DHCR7 enzyme activity, without any doubt, will be useful in predicting statin effect in SLOS patients 

before therapy is initiated (Ginat et al. 2004). From the initial precursor/cholesterol ratio or genotype, 

an attempt will be made to predict the SLOS patients that will benefit most from long term treatment 

with simvastatin. 

 

Molecular Genetics 

In 1998, the human DHCR7 gene was identified and assigned to chromosome region 11q12-q13. 

More than one hundred different mutations in the DHCR7 gene have been described to date. In 

chapter 8 we describe new and known mutations found in the DHCR7 gene in 13 European patients 

with SLOS. We, and other groups, observed that most (∼80%) of the patients are compound 

heterozygous for a severe and a mild mutation in the DHCR7 gene. The most frequent mutation in 

Western Europe is the severe IVS8-1G>C mutation, causing aberrant splicing. This mutation results in 

a mRNA with 134 base-pairs of retained intron 8 sequence at nucleotide position 963. Upon 

translation, this leads to a frame shift and a stop codon at nucleotide 1235 (TGA), producing an 

inactive, truncated protein lacking 154 amino acids of its original C-terminal sequence. The patient in 

our study, who was homozygous for the IVS8-1G>C null mutation, indeed showed a very severe 

lethal phenotype with the lowest plasma cholesterol concentration (20 μmol/L) ever reported (Jira et 

al. 2001).  

 A severe clinical phenotype in SLOS patients is due to null allele and fourth loop mutations, 

whereas C-terminal and transmembrane mutations cause a mild to moderate clinical phenotype. 

Further molecular genetic studies will enable insight in carrier frequency of specific DHCR7 

mutations in various populations. Making predictions of the SLOS phenotype from genotype, 

however, continues to be difficult since there is significant clinical and biochemical variability among 
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genetically identical SLOS patients (such as siblings). Additional clues for prenatal, maternal, 

environmental, other genetic and compensatory biochemical determinants that can modify the 

phenotypical consequences of the functional DHCR7 deficiency in SLOS is needed. 

 

Pathogenesis 

Chapter 9 describes a patient with a “Smith-Lemli-Opitz-like” phenotype caused by distal 

chromosome 7q36 deletion disrupting the human Sonic Hedgehog (SHH) gene. This remarkable 

finding is in line with SLOS pathogenesis and the role of cholesterol in the important, recently 

revealed morphogenetic Cholesterol-SHH-Patched-Smoothened-Gli cascade. The newborn boy 

presented clinical manifestations of SLOS, including prenatal growth retardation, microcephaly, 

hyperplasia of the upper alveolar ridges, micropenis with glandular hypospadias and bilateral 2-3-toe 

syndactyly. He also revealed an unilateral choanal atresia and severe an/microphthalmia. Gas 

chromatographic analysis of plasma sterols showed normal concentrations of the cholesterol 

precursors 7DHC, 8DHC and also of cholesterol, thereby excluding a DHCR7 deficiency, the primary 

cause of SLOS. Chromosome analysis demonstrated a distal 7q36.1 deletion. Extensive fluorescence 

in situ hybridization analysis showed that the holoprosencephaly (HPE3) critical gene region on 

chromosome band 7q36, including the SHH gene, was deleted. Mutations in or microdeletion of the 

SHH gene of the non-deleted allele could be excluded. This case suggests that, in addition to patients 

with a defect in cholesterol biosynthesis, patients with a distal 7q deletion may present a SLOS-like 

phenotype (Jira et al. 2005b, submitted). 

 

Morphogenesis 

SHH genes are highly conserved and have been identified within a variety of species, including 

humans, mice, frogs and chickens. Mouse and human Shh protein are 92% identical at the amino acid 

level. In the human embryo, Shh is expressed in the notochord, the floor plate of the neural tube, the 

gut, and in the developing limbs. The Shh protein is a secreted intercellular signaling molecule , which 

is synthesized as a precursor, that undergoes autocatalytic cleavage into a highly conserved N-terminal 

domain (Shh-N) and a more divergent C-terminal domain (Shh-C), as shown in the Figure. During the 

auto-processing reaction, a cholesterol moiety is covalently attached to the C-terminus of Shh-N 

(Porter et al. 1996). Shh-N contains all the known signaling activities. In contrast, Shh-C mediates 

both the enzymatic cleavage and cholesterol modification of the protein. This modification is crucial 

for proper patterning activity. The covalently attached moiety tethers the N-terminal signaling 

fragment to the cell membrane proteins Patched and Smoothened. Cholesterol-modified Shh-N binds 

to Patched. Binding results in the dissociation and activation of Smoothened. Active Smoothened 

triggers the activation of transcription factor Gli-1 and subsequent factors involved in a variety of 

developmental processes, including neurogenesis, myogenesis, skeletal patterning, and left-right axis 

establishment (Lum & Beachy 2004; Ogden et al. 2004). Some, if not all, of the clinical findings of 
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SLOS may be due to a defective SHH signaling pathway caused by sterol disturbances, which is 

consistent with results obtained in experimental animals. Much has been learned about the 

mevalonate-cholesterol biosynthetic pathway in the last decade. Eight clinical entities are caused by 

defects in the cholesterol biosynthesis (Table in Chapter 1).  

 In addition, several malformation syndromes, diseases and malignancies are associated with 

genes involved down-stream in the Cholesterol-SHH-Patched-Smoothened-Gli signaling pathway, as 

illustrated below; 

 

Sonic Hedgehog   Holoprosencephaly (MIM 236100) 

Patched 1 and 2   Gorlin syndrome (MIM 109400) 

    basal cell carcinoma, medulloblastoma, trichoepithelioma 

    oesophageal squamous cell carcinoma ,  

    bladder transitional carcinoma 

Smoothened   basal cell carcinoma,  medulloblastoma 

Gli-1    basal cell carcinoma, glioblastoma, rhabdomyosarcoma,  

    osteosarcoma, predicts sarcoma grade 

Gli-3    Greig syndrome (MIM 175700) 

    Pallister-Hall (MIM 146510) 

    Postaxial polydactyly A/IV and pre-axial polydactyly A/B 

CBP    Rubinstein-Taybi (MIM 180849)  

Twist    Saethre-Chotzen (MIM 1014000)  

 

 Recently, disruption of the SHH pathway genes has been associated with small-cell lung cancer 

(Watkins et al. 2003) and colon cancer (Oniscu et al. 2004). Finally, the Hedgehog-Gli1 signaling 

pathway is a new candidate, therapeutic target for breast cancer (Kubo et al. 2004) and prostate cancer 

(Sanchez et al. 2004). 
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Figure. Removal of the N-terminal signal peptide from the initial Shh-translation product yields the 20-kDa 
precursor, which is covalently attached to cholesterol. This “Cholesterol-Shh-N” molecule attaches to Patched 
(Ptch) and this activates the protein Smoothened (Smo) by uncoupling. This in turn activates nuclear Gli and 
subsequently Gli-target genes. SSD marks the homologous “Sterol Sensing Domain” present in two key 
pathway-enzymes (HMG-CoA reductase and DHCR7) and the membrane-bound receptor Patched. 
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Precursor toxicity 

The main question in the pathogenesis of SLOS remains: Is it the lack of cholesterol in plasma and 

tissue or the accumulation of harmful sterol precursors that cause disease? There are firm clues that the 

primary precursor accumulation in SLOS may lead to secondary negative effects on cholesterol 

metabolism and disturb intracellular trafficking. 

 7DHC binds to the "sterol sensing domain" site of the DHCR7 enzyme that encompasses five 

central transmembrane segments 4 – 8 (Fitzky et al. 1999; Bae et al. 1999). This specific DHCR7 

membrane-spanning segment shows strong homology to the SSD found in five other human proteins. 

These proteins in nature all have crucial interaction with sterol-synthesis, metabolism, trafficking or 

signaling: 1] HMG-CoA reductase (Olender et al. 1992); 2] Niemann-Pick C1 gene product (Loftus et 

al. 1997); 3] Sterol regulatory element-binding protein-SCAP (Nohturfft et al. 1998); 4] the 

morphogene receptor PATCHED (Loftus et al. 1997); 5] the DISPATCHED protein (Burke et al. 

1999). 7DHC may interfere with proper function of the five proteins that contain a similar SSD. When 

the SDD of DHCR7 normally recognises 7DHC, other homologous enzymes should in theory be 

influenced when 7DHC accumulates in hundred-to-thousand-fold increased concentrations, as in 

SLOS.  

There are three possible sites where accumulation of 7DHC precursors can interfere with 

cholesterol synthesis and signaling: HMG-CoA reductase, DHCR7, and Patched (Figure). Low plasma 

and tissue cholesterol do not lead to poor growth, organ malformations or individual lethality, per se, 

as illustrated by familial abetalipoproteinaemia and many living species such as rodents. Increased 

7DHC concentration in cultured skin fibroblasts from SLOS patients has been shown to lead directly 

to a reduced HMG-CoA reductase activity, suppressing cholesterol synthesis in the cell. HMG-CoA 

synthase and LDL binding were inhibited equally by 7DHC and cholesterol. Not only cholesterol but 

also 7DHC is a very effective feedback inhibitor of HMG-CoA reductase (Honda et al. 1998).  

 Using filipin staining, it has been shown that SLOS fibroblasts accumulate unesterified sterols 

(Wassif et al. 2002). Further studies showed that this increased filipin staining was due to an abnormal 

accumulation of LDL-derived cholesterol rather than to storage of endogenously synthesized 7DHC. 

SLOS fibroblasts failed to degrade LDL at a normal rate. Examination of SLOS fibroblasts by 

electron microscopy demonstrated the formation of lysosomal inclusions similar to those seen in 

Niemann-Pick type C (NPC) cells. 7DHC may directly or indirectly inhibit the function of the NPC 

protein through its sterol-sensing domain (SSD). 7DHC accumulation may have a negative effect on 

the function of other SSD containing proteins (Wassif et al. 2002). These observations and insights 

stress that in the future not only the important role of cholesterol but the possible negative toxic role of 

cholesterol precursors, intermediates and sterol-like compounds such as dietary plant sterols 

(phytosterols) should be intensively studied in humans and other species. 
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Medical management 

SLOS demonstrates the fundamental importance of understanding the pathogenesis of dysmorphology 

in multiple malformation syndromes. The key role of sufficient and structurally normal (chole)sterol 

in humans, animals and plants is illustrated by several organ malformations and developmental delay 

in SLOS.  

 Important clinical progress however, has to be made in the near future on syndrome-specific 

behaviour in SLOS. Patients have severe sleep disorders, feeding problems and auto-mutilating 

behaviour. Autism or autistic symptoms have been observed in most SLOS patients and have great 

impact on patients and their families. Other medical complications may include cholestatic liver 

disease, subclinical or apparent adrenal insufficiency, recurrent infections and a multifactorial, severe 

feeding intolerance. Anaesthetic management, when needed, should use propofol and fentanyl, to 

prevent malignant hyperthermia, as reported after using of halothane or suxamethonium (Petersen & 

Crouch 1995). Further intubations could be difficult because of micrognatia, cleft palate or tongue 

abnormalities. The variability and complexity of features and symptoms in SLOS requires a 

multidisciplinary approach providing optimal care for children and their families. 

 

Future Perspectives 

In the future, against the background of the broad spectrum of the SLOS, phenotypes with only 

mild/moderate retardation and/or minor dysmorphias should be screened biochemically and 

genetically. These individuals may have two mild missense mutations in the DHCR7 gene, since the 

carrier frequency for some DHCR7 mutations is quite high, with 1 in 30 to 1 in 100 individuals, 

suggesting an incidence of 1 in 1,700 to 1 in 13,400. This high number is supported by observation of 

newborn and prenatal incidence of 1 in 22,000 in the Caucasian population (Witsch-Baumgartner et 

al. 2000; Waterham et al. 2000). In the future, patients with pylorus stenosis, intersex, hypospadias, 

polydactyly, single central incisors, Hirschprungs’ disease, bilateral cataract, II-III toe syndactyly, 

microcephaly or unexplained mental retardation without other signs of SLOS may be screened 

biochemically for sterol abnormalities and at the molecular genetic level for mutations in the DHCR7 

gene or in other genes involved in the post-squalene biosynthesis. Sterols prove to be crucial and 

essential for cell survival in micro-organisms, yeast, plants, animals and humans.  

 Millions of people being treated for hypercholesterolemia with statins showed not only a 

decrease in circulating lipids but statins also revealed cardio protection, even within weeks after 

initiation. One should explore the anti-bacterial potency of statins in inhibiting the essential 

cholesterol biosynthesis in the bacteria. Cholesterol biosynthesis is not only extensively studied in 

designing lipid-lowering agents but is also a target for antifungals. Sterol 14α-demethylase is inhibited 

by azole antifungals as fluconazole and ketoconazole, which are widely used for the treatment of 

fungal infections (Nakayama et al. 2001). The wide range of species that need (chole)sterol synthesis 

for survival and the multiple enzymes involved in this process affords researchers many opportunities. 
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Study designs can focus on growth and signaling cascades, hormone-production, myelin formation 

and cell survival. Future studies should investigate the potential benefit of statins and lipid-lowering 

agents in cancer research by inhibiting malignant cell division through its vital cholesterol 

biosynthesis. 

At the end of the past millennium new insights were gained on the impressive role of 

cholesterol on prenatal and postnatal growth, neuromotor development, behaviour, morphogenic and 

signaling pathways. The Smith-Lemli-Opitz malformation syndrome is the most frequent and most 

widely studied inborn error of cholesterol biosynthesis. It confronted us with lack of basic knowledge 

about cholesterol biosynthesis. It motivated scientists, biologists, molecular engineers and physicians 

to enlarge their knowledge about healthy humans, patients and design new treatment strategies. These 

insights have opened new opportunities in understanding and improving growth, cell signaling, 

development, cancer treatment, and their possible use in autoimmune and infectious diseases in the 

twenty-first century. 
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SAMENVATTING  

 

Het Smith-Lemli-Opitz Syndroom (SLOS) is een zeldzame, autosomaal recessief erfelijke 

stofwisselingsziekte. De belangrijkste symptomen bij patienten zijn een ontwikkelingsachterstand en 

overeenkomstige kenmerken zoals een karakteristiek gelaat, kleine schedelomtrek, syndactylie 

(versmelting) van de tweede en derde teen en een onduidelijk geslacht bij jongens. Afwijkingen 

kunnen verder voorkomen in alle inwendige organen inclusief cataract (staar) en hersenafwijkingen. 

De eerste klinische beschrijving van drie jongens die op elkaar leken dateert van 1964 en verbond het 

syndroom aan de namen van de drie artsen; William Smith, John Opitz en Luc Lemli. 

 De ontdekking in 1993 dat een stoornis in de aanmaak van cholesterol leidt tot het SLOS was een 

doorbraak. Er is een deficiëntie (onvoldoende werkzaamheid) van het enzym 7-dehydrocholesterol 

reductase (DHCR7), onmisbaar voor de cholesterol biosynthese. Dit defect geeft aanleiding tot lage 

concentraties van cholesterol en een ophoping van twee voorlopers van cholesterol; 7-dehydro-

cholesterol (7DHC) en 8-dehydrocholesterol (8DHC) in plasma en weefsels. Deze observatie heeft 

talloze opwindende vragen opgeworpen zoals beschreven in hoofdstuk twee. De kennis en inzichten 

betreffende SLOS worden uiteengezet in hoofdstuk drie. 

 Dit proefschrift beschrijft de resultaten van klinisch-, biochemisch-, moleculair genetisch-,  

therapeutisch- en pathofysiologisch onderzoek. Hoewel het bij SLOS gaat om een zeldzaam 

ziektebeeld waarvan in Nederland slechts enkele patienten per jaar geboren worden is dankzij de 

bereidheid en enthousiasme van enkele ouders en hun kinderen dit onderzoek mogelijk gemaakt.    

 

Biochemische diagnostiek 

In hoofdstuk vier wordt middels gas-chromatografie (GC) de analyse van cholesterol waarden in 

plasma van acht SLOS patienten vergeleken met de gangbare oxidase-methode die routinematig in 

klinisch chemische laboratoria gebruikt wordt om cholesterol in lichaamsvloeistoffen te meten. Wij 

beschrijven valkuilen in de bepaling van plasma cholesterol indien de gangbare cholesterol-oxidase 

methode in SLOS wordt toegepast.  

 Allereerst hebben gezonde pasgeborenen uitgesproken lage plasma cholesterol concentraties 

rond of zelfs onder de 2.0 mmol/l. Alle SLOS patienten die wij bestudeerden hadden verhoogde 

7DHC (143-848 μmol/l) en 8DHC (107-555 μmol/l) plasma concentraties, diagnostisch voor SLOS. In 

een gezonde controle-groep, zijn cholesterol-precursor concentraties onder de 10 μmol/l. Als tweede, 

konden wij aantonen dat de oxidase methode om cholesterol in plasma te meten geen onderscheid kan 

maken tussen respectivelijk cholesterol, 7DHC of 8DHC. Indien de analyse middels GC wordt 

toegepast, bleken alle SLOS patienten een plasma cholesterol concentratie (20 - 2030 μmol/l) te tonen 

onder de referentie waarden voor de leeftijd. Na toepassing van de cholesterol-oxidase methode, 

hadden daarentegen slechts 6 van de 8 patienten, verlaagde plasma cholesterol waarden. Doordat deze 

methode in feite de som van cholesterol en haar precursors 7DHC en 8DHC samen meet, komt het tot 
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vals hoge cholesterol-waarden. Dit kan in potentie tot foutieve conclusies leiden. De GC methode 

detecteert separate precursor- en cholesterol-pieken. Deze methode maakt het derhalve mogelijk bij 

SLOS de juiste diagnose te stellen en is bruikbaar om de biochemische ernst en de effectiviteit van 

behandeling te evalueren. 

 

Behandeling 

 Hoofdstukken vijf en zes beschrijven nieuwe behandelstrategieën in SLOS. Conventioneel werden 

patienten behandeld met cholesterol en/of galzuur suppletie zonder indrukwekkende biochemische 

dan wel klinische verbetering. In hoofdstuk vijf worden allereerst erythrocyten van SLOS patienten 

geincubeerd in normaal donor plasma en konden wij een snelle uitwisseling tussen precursors (7DHC 

and 8DHC) van het eryhrocyten membraan en cholesterol uit het plasma observeren. Indien normale 

erythrocyten werden geincubeerd in SLOS plasma, konden wij een vergelijkbare opname-snelheid van 

precursors in de normale erythrocyten membranen vaststellen. Dit motiveerde onze onderzoeksgroep 

om het effect van bloed-wisseltransfusie bij twee jonge SLOS patienten te evalueren. Herhaalde 

bloed-wisseltransfusies toonden een significante daling van circulerende cholesterol-precursor 

spiegels en verhoogden het cholesterol in plasma tot normale concentraties. Deze procedure is echter 

invasief voor patienten, tijdrovend en het biochemische effect van bloed-wisseltransfusie was slechts 

beperkt tot drie dagen. In dit kader kan deze behandelstrategie niet beschouwd worden als een 

blijvende curatieve lange termijn optie. Vervolgens incubeerden wij gekweekte SLOS 

huidfibroblasten met een HMG-CoA reductase remmer (simvastatine) om het effect op de sterol 

synthese te bestuderen. Zoals verwacht, konden wij een significante daling in accumulatie van 7DHC 

en 8DHC aantonen. De observatie dat de cholesterol concentratie steeg kwam echter als een positieve 

verrassing. De indrukwekkende verbetering van de precursor/cholesterol ratio in gekweekte SLOS 

huidfibroblasten motiveerde ons uiteindelijk om SLOS patienten met simvastatine te gaan behandelen. 

    In hoofdstuk zes worden de lange termijn effecten (23 en 14 maanden) van de orale HMG-

CoA reductase remming door simvastatine bij twee SLOS patienten beschreven. Wij konden een 

significante reductie van totale precursors (7DHC+8DHC) tot respectivelijk 28% en 33% van de 

initiële plasma waarden waarnemen. De cholesterol concentratie normaliseerde onverwacht door een 

meer dan verdubbeling in de behandelperiode bij beide patienten. De 7DHC+8DHC/Cholesterol ratio 

verbeterde in plasma van 0.47 naar 0.06 en 0.32 naar 0.04, respectievelijk, en van 1.22 naar 0.12 en 

van 0.62 naar 0.07 in erythrocyten membranen. Gedurende de follow-up periode verbeterden zowel de 

morphometrische parameters (lengte, gewicht, schedelomtrek), als de neuromotore ontwikkeling bij 

beide patienten. De therapie werd goed verdragen zonder dat er klinische- dan wel biochemische 

bijwerkingen optraden. Dit was de eerste studie waarin een simultane stijging en normalisering in 

bloed cholesterol naast een significante daling van precursor spiegels in SLOS patienten kon worden 

aangetoond. De simvastatine behandeling resulteert in een langdurige en bijvend biochemisch effect 

met een hoopgevende klinsche verbetering. De daling in accumulatie van 7DHC en 8DHC in SLOS 
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patienten behandeld met een orale HMG-CoA reductase-remmer kon worden verwacht. Het gunstige 

effect met stijging van de plasma cholesterol concentratie in SLOS patienten behandeld met een 

statine was echter onverwacht. Volgende studies werden ontwikkeld om deze observatie in gekweekte 

huidcellen en in plasma van patienten te verklaren.  

   Hoofdstuk zeven beschrijft drie klinisch relatief milde SLOS patienten die gedurende 

respectievelijk 80, 49 en 31 maanden, met simvastatine werden behandeld. Wij vervolgden de 

effectiviteit van de behandeling op hun ontwikkeling en algemeen welbevinden. In aanvulling 

bestudeerden wij in vitro het effect van simvastatine op de DHCR7-expressie en DHCR7-activiteit in 

primaire gekweekte huidfbroblasten van deze patienten. De simvastatine therapie werd door de 

patienten goed verdragen zonder evidente klinische en biochemische bijwerkingen. Gedurende de 

behandeling kon een duidelijke daling van de plasma 7DHC concentratie bij allen en een simultane 

stijging van de  cholesterol concentratie in plasma bij twee van de drie patienten worden 

waargenomen. Belangrijker nog, twee patienten toonden een goede en één patient een matige 

klinische respons in groei en ontwikkeling.  

 De in vitro studies in gekweekte huidfibroblasten van de patienten toonden  aan dat simvastatine 

een toegenomen gen transcriptie van het DHCR7-gen induceert,  hetgeen resulteert in een toegenomen 

DHCR7 eiwit- en enzym-activiteit. In de drie SLOS cellijnen kon een toename in residuele activiteit 

worden aangetoond met respectivelijk een factor 6.1, 3.6 en 4.2. DHCR7 katalyseert de 

snelheidsbepalende stap in SLOS, en een toename in residuele DHCR7 activiteit leidt tot een 

toegenomen flux in de cholesterol biosynthese en verklaart de verlaging van 7DHC en (vrijwel 

normalisering) van cholesterol concentraties zoals aangetoond. De biochemische en klinische 

verbetering was bovendien sterk gecorreleerd met de residuele DHCR7 activiteit. De opregulatie van 

de DHCR7 activiteit in gekweekte huidfibroblasten door simvastatine in onze studie was eveneens 

sterk gerelateerd aan de klinische score en het genotype (mutaties) van de betreffende SLOS patient.  

 Onze studie is het eerste onderzoek dat aantoont dat simvastatine behandeling van SLOS 

patienten met een relatief mild phenotype en residuele DHCR7-activiteit in gekweekte huidcellen 

resulteert in een toegenomen DHCR7-expressie. Deze toegenomen DHCR7-activiteit leidt 

rechtstreeks tot een verlaging van 7DHC en een toename in cholesterol concentratie. Doordat de 

effectiviteit en verbetering van de simvastatine therapie goed correleert met de residuale 7DHCR- 

activiteit en de klinische ernst van de patienten, kan deze behandel-strategie beschouwd worden als 

een goede behandel optie bij SLOS patienten met een licht tot matig ernstige klinische presentatie. 

Statine therapie is een veelbelovende, nieuwe benadering in SLOS dat verder onderzoek rechtvaardigt 

in een grotere serie patienten. Thans vindt een Europese NISLOS studie (Nijmegen International 

Simvastatin SLOS Study) plaats naar de lange termijn biochemische- en klinische effecten van 

simvastatine in combinatie met of zonder cholesterol suppletie. Bepaling van de residuele DHCR7 

enzym activiteit kan inzicht geven of statine-behandeling effectief zal zijn in SLOS patienten voor 

start van de behandeling. Gepoogd zal worden met behulp van de initiele precursor/cholesterol ratio of 



 

 150

van het genotype, te voorspellen welke SLOS patienten het meest kunnen/zullen profiteren van de 

lange termijn behandeling met simvastatine. 

 

Moleculaire Genetica 

In 1998, kon het humane DHCR7 gen worden geidentificeerd en gelocaliseerd op chromossom 11q12-

13. Inmiddels zijn er ruim honderd verschillende mutaties in het DHCR7 gen beschreven. In 

hoofdstuk acht beschrijven wij nieuwe en reeds bekende mutaties in het DHCR7 gen bij 13 Europese 

SLOS patienten. Zoals andere onderzoeksgroepen konden ook wij aantonen dat de meeste (∼80%) 

patienten compound heterozygoot zijn voor combinaties van zowel een ernstige als een milde mutatie 

in het DHCR7-gen. De meest frequente mutatie in West-Europa is de ernstige IVS8-1G>C mutatie, 

die aanleiding geeft tot abberante splicing. Deze mutatie resulteert in een mRNA  met een insertie van 

134 baseparen vanaf intron 8 op nucleotide-postie 963. Na translatie leidt dit tot een frame shift en een 

stop codon ter hoogte van nucleotide 1253 (TGA), waardoor een getrunceerd eiwit wordt 

geproduceerd dat 154 van zijn oorspronkelijke C-terminale aminozuren mist. Bij de patient in onze 

studie die homozygoot was voor de IVS8-1G>C nul mutatie was inderdaad sprake van een ernstig en 

lethaal phenotype. De patient presenteerde zich met de laagste plasma cholesterol concentratie (20 

μmol/l) ooit beschreven.  

 Het ernstige phenotype bij SLOS is vaak het gevolg van nul mutaties en mutaties in de vierde 

eiwit-loop, terwijl C-terminale- en mutaties in het transmembraan gedeelte aanleiding geven tot milde- 

en matig ernstige klinische phenotypes. In de toekomst zal verder moleculair genetisch onderzoek de 

dragerschap-frequentie van specifieke DHCR7 mutaties mogelijk maken. Het voorspellen van 

klinische ernst van het SLOS op basis van het genotype zal moeilijk blijven daar er een aanzienlijke 

klinische en biochemische variabliteit aanwezig is tussen genetisch identieke SLOS patienten (zoals 

bij verwanten). Gezocht zal moeten worden naar additionele mechanismen als verklaring voor het 

uiteindelijke phenotype bij de functionele DHCR7 deficiëntie in deze cholesterol aanmaakstoornis.   

 

Pathogenese 

Hoofdstuk negen beschrijft een patient met een op “Smith-Lemli-Opitz-gelijkend” phenotype dat 

wordt veroorzaakt door een terminale 7q36 deletie leidend tot afwezigheid van het Sonic Hedgehog 

(SHH) gen. Deze opmerkelijke bevinding bekrachtigt de pathogenese van het SLOS en de rol van 

cholesterol in de belangrijke, recent ontdekte, cholesterol-SHH-Patched-Smoothened-Gli cascade. 

Deze morphogenetische pathway is belangrijk bij de aanleg van vele organen en weefsels. 

 De pasgeboren jongen, toonde een aantal kenmerken zoals gezien worden bij het SLOS: een 

prenatale groeiachterstand, microcephalie, hyperplasie van de bovenkaak, een micropenis met een 

glandulaire hypospadie, en een bilaterale syndactylie van de tweede en derde teen. Verder was er 

sprake van een unilaterale choane (neusholte) atresie en een ernstige an/microphtalmie. Gas 

chromatografische analyse van de plasma sterolen toonde normale concentraties van cholesterol 
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precursors 7DHC, 8DHC en tevens van cholesterol waardoor een DHCR7 deficiëntie (zoals bij SLOS) 

kon worden  uitgesloten. Chromosoom analyse toonde een distale 7q36.1 deletie aan. Uitgebreide 

fluorescentie in situ hybridisatie analyse bevestigde de afwezigheid van de holoprosencephaly (HPE3) 

critical gene region waaronder het SHH gen. Mutaties in of microdeletie van het nog aanwezig SHH 

gen op het nog aanwezige allel konden worden uitgesloten. Deze casus suggereert dat naast patienten 

met een stoornis in de cholesterol biosynthese tevens patienten met een distale 7q deletie zich kunnen 

presenteren met een op SLOS-gelijkend phenotype. 

 

In hoofdstuk tien worden onze onderzoeksbevindingen samengevat en bediscussieerd. Het Smith-

Lemli-Opitz syndroom is één van de acht recent ontdekte defecten in de cholesterol biosynthese. Dat 

verschillende specifieke defecten allen aanleiding geven tot ernstige ziektebeelden en syndromen, 

vaak met malformaties, geeft aan hoe belangrijke cholesterol is voor iedere cel. Tot slot belichten wij 

de rol van cholesterol en SHH voor toekomstig wetenschappelijk onderzoek naar celgroei, kanker- en 

infectiebehandeling. 
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