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Abstract

Using the L3 detector, the branching ratio BR(b rvX) has been measured using a sample of Z —> bb events tagged 
by high momentum and high transverse momentum Ieptons in one hemisphere and with missing energy in the opposite 
hemisphere. From a sample of 948 000 hadronic events we find BR(b —* rvX) -  (2,4 ±  0.7 (stat.) ±  0.8 (syst.))%.

1. Introduction

The measurement of the branching ratio BR(b 
rvX )  is an interesting test of the Standard Model 
(SM) [1], which predicts a value of (2.3 ±0 .3)%
[2]. Supersymmetric extensions [3] can allow larger 
values (up to 20%), due to additional contributions 
coming from the exchange of charged Higgs bosons
[4], A previous measurement was reported in Ref.
[5].

The main signature of the b rv X , r —► vX  de
cay chain is the large missing energy associated with 
the production of the two neutrinos. The main sources 
of background are hadronic events which have a large 
missing energy due to the finite resolution of the de
tector, and semileptonic b and c decays to electrons 
or muons with highly energetic neutrinos. To reduce 
these backgrounds an enriched sample of b —> rvX  
candidates was selected in two steps. First, a sample 
of Z —> bb events was obtained using high momentum 
and high transverse momentum electrons and muons 
as tags. The events were then required to have large 
missing energy and no electron or muon candidates in 
the hemisphere opposite to the tagging lepton.

1 Supported by the German Bundesministerium für Forschung 
und Technologie.
2 Supported by the Hungarian OTKA fund under contract number 
2970.
3 Also supported by CONICET and Universidad Nacional de La 
Plata, CC 67, 1900 La Plata, Argentina.

2. The L3 detector

The L3 detector [6] measures e, y , ¡x and jets 
with high precision. The central tracking chamber is 
a Time Expansion Chamber (TEC) consisting of two 
coaxial cylindrical drift chambers; the electromag
netic calorimeter is composed of bismuth germanate 
(BGO) crystals; hadronic energy depositions are 
measured by a uranium-proportional wire chamber 
sampling calorimeter surrounding the BGO; scintil
lator timing counters are located between the elec
tromagnetic and hadronic calorimeters. The muon 
spectrometer, located outside the hadron calorimeter, 
consists of three layers of drift chambers measuring 
the muon trajectory in both the bending and the non
bending planes. All subdetectors are installed inside 
a 12 m diameter solenoid which provides a uniform 
field of 0.5 T along the beam direction.

Because this analysis relies on missing energy mea
surements, only data collected during periods in which 
all subdetectors were fully operational was used in this 
analysis.

3. Event selection

Hadronic events were selected by requiring: 0.4 < 
£vis/y/s  <  1.5, where 2sVjS is the total calorimetric 
energy observed in the detector; N c\us >  13, where 
Ncius is the number of energy clusters reconstructed in 
the calorimeters; and at least one charged track. From 
the 1991 and 1992 data a total sample of 948 067 
events was selected. In order for the events to be well
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contained in the central region of the detector, they 
were required to have |cos0/| <  0.72, where 9t is 
the angle between the thrust axis of the event and the 
electron beam direction.

An enriched sample of Z —» bb events was ob
tained by requiring at least one lepton candidate with 
high momentum and high transverse momentum with 
respect to the nearest jet [7]. Electron candidates 
were found by associating a cluster in the BGO bar
rel calorimeter (| cos#| <  0.71), whose lateral shape 
was consistent with an electromagnetic shower, with a 
track in the central tracking chamber. The BGO cluster 
and the TEC track were required to match in azimuth 
within 8 mrad. To reduce hadronic background, the 
energy in the hadron calorimeter behind the electro
magnetic cluster was required to be less than 4 GeV. 
To reject energetic 77-°’s and photons close to a charged 
track, the ratio of the BGO energy to the momentum 
of the TEC track was required to satisfy E /p  < 2.

Muon candidates were identified and measured in 
the muon chamber system within a fiducial volume 
cos0| <  0.72. A muon track was required to have 

track segments reconstructed in at least two out of 
three ref? layers of muon chambers and at least one 
of the two z layers and to point to the interaction re
gion. These requirements are very effective in reject
ing hadronic punchthrough and decay muons.

Selected lepton candidates were required to have a 
momentum larger than 4 GeV for muons and 3 GeV 
for electrons. The momentum transverse to the nearest 
jet, p_l, was required to be greater than 1 GeV both 
for electrons and muons (the measured energy of the 
lepton was excluded in the calculation of the jet di
rection).

After applying these selection criteria, 15761 events 
were tagged by an electron and 19429 by a muon, 
giving

N t ag = 35 190.

To detect the b —> rvX  signal, each event was di
vided into two hemispheres defined by the plane or
thogonal to the thrust axis. The visible energy, in
the hemisphere opposite to the one containing the tag
ging lepton (hereafter referred to as the signal hemi
sphere) was measured. The missing energy in this 
hemisphere was defined to be

Ehemi
miss = Vs/2 hemir?m

vis
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Fig. 1. Momentum distributions of the a) electrons and b) muons 
found in the signal hemisphere for data and Monte Carlo.

To reject events with electrons or muons in this hemi
sphere, looser identification criteria were applied to 
search for candidates: the minimum momentum re
quired of either a muon or an electron candidate was 
2 GeV and, for electron candidates, the cut on az
imuthal angle between the BGO cluster and the TEC 
track was relaxed to 20 mrad. The momentum spectra 
of these electron and muon candidates in the signal 
hemisphere in the rejected events are shown in Fig. 1.

The b —* rvX  fraction was enriched by requiring

Reducing the value of this cut degrades the signal to 
background ratio owing to the contributions of light 
quarks and nonleptonic b decays. The final number of 
events surviving all cuts is

N o b s = 1032.

4, Analysis method

The total number of b —» rv X  events in the sample 
of tagged events was calculated using
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NT =
^obs ^bg^tag 

— 6bg

where eT and are the fractions of signal and back
ground events in the sample of tagged events which 
passed all cuts. BR(b —> r v X ) can be derived from:

^bb

N,
^bb ̂ tag

where Nb5 is the total number of bb events in the 
tagged sample and 7rbg is the purity of this sample,

In order to determine the various acceptances for 
signal and backgrounds, more than 2 million Monte 
Carlo (MC) events were generated with the Lund 
parton shower program, JETSET 7.3 [ 8], using 
BR(b —► iv X )  = 0.110 ± 0 .005  [9], where ¿ = e,yu
and BR(D, t v )  = 0.037 ±  0,023 [ 10]. The latter
process, having the same kinematical signature as the 
signal, constitutes a small but irreducible background. 
The events were passed through the complete L3 
detector simulation [ 1 1 ] which includes the effects 
of energy loss, multiple scattering, interactions and 
decays in the detector materials. Dead or noisy BGO 
crystals, and inefficiencies in the TEC and muon 
chambers were simulated using the time-dependent 
detector status determined using the data. With the 
above simulation the purity of the tagged sample was 
found to be 7Tb5 = 73.7%.

The measurement of iiS™ was checked for system
atic biases by studying the missing energy in the tag
ging hemisphere, where the contribution of the signal 
is expected to be negligible. In the region of positive 
missing energy, the distribution of this quantity is sim
ilar to that in the opposite hemisphere, as the main 
contribution in both cases comes from semileptonic b 
decays. The distributions of missing energy in the tag
ging hemisphere for data and MC events are compared 
in Fig. 2, showing very good agreement for positive 
missing energies. For negative values, corresponding 
to large values of the visible energy, a difference is 
observed. This could be corrected by applying an en
ergy dependent scale factor to the missing energy, but 
it should be noted that no scale factor was necessary 
for > 2 GeV. However, a shift of up to 200 MeV
cannot be excluded and this uncertainty was included 
in the systematic error. The corrected E distribu
tion for the events without a second lepton, is shown 
in Fig. 3 for data and MC. The same figure shows the

10

10
>0)
0
33
0
w

10

1

Tagging hemisphere

Data

n  Me

-30 -20 -10 0 10 20 30 40 50
Missing Energy (GeV)

Fig. 2. Distributions of the missing energy in the tagging hemi 
sphere for data and Monte Carlo.
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40 50

Fig. 3. Distributions of the missing energy in the signal hemisphere, 
» for data and Monte Carlo; the latter is corrected by the scale 

factor described in the text. The cross-hatched area corresponds 
to the expected contribution of b —► tvX .
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Fig. 4. Distributions of for data and predicted backgrounds. 
The solid line shows the total background, while the dashed line 
shows the contributions from light quarks and nonleptonic b de
cays.

expected contribution of b —> r vX  events, assuming 
the SM value for the branching ratio.

In Fig. 4, the data are compared with the predicted 
background in the range where the signal is ex
pected to appear. The clear excess visible in the data 
above about 10 GeV is interpreted as the b —+ tvX  
signal.

5. Results

After all cuts, the efficiency for the signal, obtained 
from the MC, is

€r = 21.1%,

while the fraction of the background events passing 
all cuts was found to be

“  2.6%.

Using the formulae from the previous section, the 
branching ratio is determined to be:

This corresponds to 133 observed signal events calcu
lated from [Nobs -  ebg(Ntag -  Nt )],

The main contribution to the systematic error comes 
from the background subtraction. The major instru
mental uncertainties are due to the lepton candidate 
criteria in the signal hemisphere and to the cut on
phtun 

miss *
In order to study the systematic uncertainty intro

duced by the rejection of events with a second lepton 
the sample of tagged events has been divided into three 
classes: events without a second lepton, events with 
an additional electron and events with an additional 
muon. The comparison of the size of the three classes 
in MC and data showed that the fraction of events in 
the first class are reproduced at the 1 % level, events in 
the second class at the 7% level and events of the third 
class at the 0.5% level. The effect on BR(b —» rvX)  
can then be evaluated by varying the number of events 
without a second lepton found in the final sample by 
1%. An alternative estimate was obtained by varying 
the number of events with an additional electron found 
in the final sample by 7% and those with an additional 
muon by 0.5% and combining the two contributions
in quadrature. The largest error on BR(b ™ x ) ,
0.3%, is given by the second estimate. Another esti
mate of the same error was obtained by varying, sep
arately for electron and muon candidates, the momen
tum cut in the interval from 2 to 3 GeV. This method 
leads to a systematic uncertainty of 0.2%. The branch
ing ratio can also be determined without any veto on 
additional leptons, but with a larger dependence of 
the background on BR(b -» ZvX).  This results in a 
change of BR(b —> rvX)  of only 0.15%. Taking the 
above four studies a conservative uncertainty of 0.3% 
was attributed to the effect of the lepton cuts.

The uncertainty coming from the iSfj™ cut has been
evaluated by varying the value of this cut in the range 
of ±2 GeV around the nominal value of 14 GeV. This 
leads to a systematic error of 0.3%. Below this range 
the systematic error due to the background subtrac
tion increases significantly, while above this range the 
statistical significance decreases. This uncertainty can 
also be estimated by scaling the E\c a lc u la te d  in
the MC by the maximum scale shift of 200 MeV al
lowed by the comparison of the corresponding distri
butions for data and MC in the tagged hemisphere, as 
discussed above. This leads to a change of 0.4% in

BR(b —* rvX)  = (2.4 db 0.7)%. the value of BR(b r v X ), in agreement with the
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Table I
Contributions to the systematic error on BR(b —» rvX)

Monte Carlo statistics 0.4%
Lepton efficiency 0.3%
Cut on miss
Purity of bb sample

0.3%
0.1%

BR(DS -  rv) 0.2%
BR(b -> t vX) 0.5 %

previous estimation.
The error on the purity of the tagged sample, 7rbb, 

arises from uncertainties in the tagging efficiency for 
bb events and in the fraction of events coming from 
lighter quarks. Conservatively allowing a variation of 
3% and 5% in these values respectively, results in an 
uncertainty of 0.1 % in the value of BR(b —> r v X ) .

The value of BR(b —> t v X )  also depends on the 
decay model used to estimate the background: the 
dominant uncertainty in the background comes from 
the semileptonic b decays. The variation of BR(b —* 
E v X )  by one standard deviation around the central 
value used in the simulation results in an error of 0.5%. 
The remaining uncertainty coming from the subtrac
tion of Ds —> t v  decays has also been evaluated by 
changing the value of the branching ratio used in the 
simulation by one standard deviation, and leads to an 
uncertainty of 0 .2%.

The various systematic errors on BR(b —» t v X )  

are summarized in Table 1. Our measurement can then 
be written as:

BR(b -> t v X )

= (2.4 ±  0.7 (stat.) ±  0.6 (syst.) ±  0.5 (B R ))% ,

where the uncertainty due to BR(b —> £vX)  is given 
explicitly and the other systematic errors have been 
added in quadrature. The dependence of the result on 
the deviation of BR(b —► i vX)  from its central value 
is BR(b -+ t v X )  = {2.4 +  0.98 • [1 1 .0 -B R (b  — 
i vX)  ]} %} where BR(b -+ t vX)  is given in percent. 
Combining all the systematic errors in quadrature, our 
final result is:

BR(b t v X )  = (2 .4 ± 0 .7  (stat.) ± 0 .8  (syst.))

This value is in good agreement with the Standard 
Model prediction and with the previous measurement. 
There is no indication of a large enhancement as al
lowed in some theoretical models.
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