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Abstract. We study two- and three-particle correlations 
as a function of invariant mass. Using data on n +p  and 
K +p  collisions at 250 GeV/c, we compare correlation 
functions and normalised factorial cumulants for various 
charge combinations. Strong positive correlations are ob­
served only at small invariant masses. The normalised 
cumulants for “exotic” [(-----), ( + + ) ]  and “non­
exotic” pairs (H— ) and triplets decrease in power­
like fashion with increasing invariant mass. The mass 
dependence is not incompatible with the power-law be­
haviour as expected in a Dual Mueller-Regge framework. 
Comparison with FRITIOF reveals strong disagree­
ments, which are due to too large production rates of 
resonances, such as p° and /ƒ, and the absence of a Bose- 
Einstein low-mass enhancement in JETSET.

1 Introduction

For many years, correlations among hadrons produced 
in high-energy multi-particle processes have been studied 
in a variety of variables. Of obvious importance are 
analyses of multiparticle spectra in terms of the invariant 
mass of two- and more particle systems, which allowed 
identification of hadronic resonances.

a Now at Universitaire Instelling Antwerpen 
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d Partially supported by grants from CPBP 01.06 anf 01.09 
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Studies of correlations in rapidity have helped to es­
tablish the fruitful concept of short-range order in mo­
mentum space, a dynamical property already present in 
the earliest multiperipheral pictures of particle produc­
tion, later extended to ladder diagrams with Regge ex­
changes. In these, propagators are functions of nearest- 
neighbour invariant-masses which, at high energy and 
large mass, are conveniently expressed in terms of rapid­
ity distances.

Correlations attributed to Bose-Einstein symmetrisa- 
tion of identical boson amplitudes have been much dis­
cussed in the literature (for recent reviews see [1,2]). They 
are often studied in terms of the difference of particle- 
pair four-momenta, a traditional choice being 0 5  =
-  («/ -  ?y ?■

Recently, correlation studies have attracted renewed 
attention in connection with the search for self-similar 
particle-density fluctuation phenomena, commonly 
known as “Intermittency” [3,4]. Intermittency means that 
the normalised factorial moments Fq of the multiplicity 
distribution in a phase-space volume S are power-be­
haved

Fq(0)o c* -* , (<j)g >  0) (1)

over a range of scales, down to the experimental reso­
lution. This further implies that the ^-particle densities 
and correlation functions are singular in the limit Ô-+Q. 
The present status of this field is reviewed in [5].

A significant step towards better understanding of the 
physics behind intermittency was made by Fialkowski [6], 
Using data in three-dimensional phase space on pp,  
n / K p , pA  and A A collisions, he noted that F2 shows a
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surprisingly high degree of “universality”. Writing F2 (S) 
as

(2)

<fi 2 was found to be around 0.4-0.5 in all processes con­
sidered. The B-values also turn out to be quite similar. 
The author, therefore, speculated that intermittency may 
be a “universal collective” effect.

As remarked in [6], ö in (2) is related, albeit non-
uniquely, to Q2 or M = \ / Q 2 +  4jli2, the invariant mass 
of the particle pairs {p. is the pion mass). The functional 
form of (2) would then mean that the normalised two- 
particle cumulant K2 is power-behaved in M  or in Q2. 
The latter is singular at Q2 ~  0, while the former remains 
finite at threshold. This argument suggests that it may be 
rewarding to study correlation functions and factorial 
moments directly in terms of invariant mass. This is the 
subject of the present paper.

The idea to study correlations as a function of in­
variant-mass was, to our knowledge, first used in [7]. 
This analysis was based on low statistics pp  data at 205 
GeV/c. It demonstrated that the factorial cumulant K2 s  
F2— 1 (see further below) follows an approximate 
power law with very different powers for like-charge 
(“exotic”) and unlike-charge (“non-exotic”) hadron pairs. 
In [7] this is written as:

K2( M) cc ( M2y x (0)- 1. (3)

The notation reminds of the interpretation of (3) in terms 
of the Mueller-Regge formalism. The power ax (0) is the 
appropriate Regge-intercept; X ~ R  for non-exotic pairs 
and X = E  for exotic ones. The ratio K2 ~ / K 2 ~ was 
further seen to fall as M ~ 2, consistent with a^(0)
— a £ (0) =  l. Not relying on Mueller-Regge theory, the 
authors argued that most of the correlations at small M  
are due to resonance decays into three or more pions and 
to interference of amplitudes [8].

In this paper we study the invariant-mass dependence 
of two- and three-particle correlations in a combined
sample of n +p  and K +p interactions at ]/7  = 22GeV. 
The experimental procedure and the formalism used are 
described in Sect. 2. Results and their implications for 
intermittency are discussed in Sect. 3. The data are com­
pared to the Lund FRITIOF model for hadron-hadron 
interactions in Sect. 4. Conclusions and a summary are 
given in Sect. 5.

2 Experimental procedure

2.1 Event selection

In this CERN experiment, the European Hybrid Spec­
trometer (EHS) is equipped with the Rapid Cycling 
Bubble Chamber (RCBC) as an active vertex detector 
and exposed to a 250 GeV/c tagged positive, meson en- 
riched beam. In data taking, a minimum bias interaction 
trigger is used. The details of the spectrometer and the 
trigger can be found in previous publications [9,10].

Charged particle tracks are reconstructed from hits in 
the wire- and drift-chambers of the two lever-arm mag­
netic spectrometer and from measurements in the bubble 
chamber. The average momentum resolution i A p j p > 
varies from a maximum of 2.5% at 30 GeV/c to around
1.5% above 100 GeV/c.

Events are accepted for the analysis when measured 
and reconstructed charge multiplicity are the same, charge 
balance is satisfied, no electron is detected among the 
secondary tracks and the number of reconstructed tracks 
rejected by our quality criteria is at most 0, 1 , 1 , 2 and 
3 for events with charge multiplicity 2, 4, 6, 8 and >  8, 
respectively. Losses of events during measurement and 
reconstruction are corrected for using the topological 
cross sections [9]. Elastic events are excluded. Further­
more, an event is called single-diffractive, and excluded 
from the sample, if the total charge multiplicity is smaller 
than 8 and at least one of the positive tracks has

> 0.88. After these cuts, we remain with a sample 
of inelastic non-single-diffractive n + / K +p  interactions 
consisting of 114 472 events. The results presented below 
pertain to the combined n +p  and K +p  samples.

For momenta p LAB <  0.7 GeV/c, the range in the 
bubble chamber and/or the change of track curvature is 
used for proton identification. In addition, a visual ion­
ization scan has been used for p LAB <1.2 GeV/c on the 
full K +p  and 62% of the n +p sample. Positive par­
ticles with p LAB >  150 GeV/c are given the identity of the 
beam particle. Other particles with momenta p LAB

1.2 GeV/c are not identified in the present analysis 
and are treated as pions. Identified protons are removed 
from the track sample.

x

2.2 The correlation function in invariant mass

The two-particle correlation function for hadrons a and 
b (assumed to be pions in the following) is defined as the 
inclusive coincidence rate per collision, minus the rate 
expected for uncorrelated hadrons a and b :

C l b (?1 » 02 ) =  P f  (#1 = 02) ~ P \  (tfl ) P\  (?2) • (4)

In this expression (/ = 1,2), are the four-mo­
menta of the two hadrons. The invariant two-particle 
inclusive density is

p 2b(q i,?2)
E , E : der

07 d3/>,d3p2 ' (5)

The invariant single-particle inclusive density is

Pi ’b(q) ]L
aj  d 3p ’ (6)

with a , the inelastic cross section. The densities (5-6) are 
normalised as follows

re , , d3p, d3o,
ƒƒ P2(.qx,q2)~^------é ^  =  <na(nb- ô ab) } ,E « E (7)

f Pax \ q )
d 2p 

E <fla. b > » (8)
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with Sah =  1 if particles a and b are of the same type, and 
ö ab =  0 otherwise. The integrations and the averages are 
taken over full or part of phase space.

The function C2 in (4) depends on six dependent var-
iables, a common choice being the c.m. energy, {A, the 
c.m. rapidities y l and y 2, the magnitudes Pr^Pr^ the 
transverse momenta, and their relative azimuthal 
angle,

Most often, measurements of C2 average over the 
transverse degrees of freedom, leaving only the longitu­
dinal momentum (pL) or rapidity dependence. The re­
sulting correlation function is

^2b( y 19 y 2) ^  ƒ d-2Pr\ ƒ &2Pt2 ^2b{q\ ,q2) • (9)
✓

It is important to note that any structure which occurs 
at fixed invariant mass M { M 2 — (ql Jr q 2)2), due e.g. to 
resonances or resonance reflections, is in general smeared 
out in the integrated correlation function (9). In fact, 
C2( y }, y 2) depends mainly on the angular decay of the 
system and much less so on the mass spectrum. For iso­
tropic decay it has the familiar approximately Gaussian 
shape.

Here, we are interested in correlation effects in invar­
iant mass near threshold and shall, therefore, keep M  (or 
Q2, see below) in the set of independent variables de­
scribing C2. We further keep p t ^Pt2 an(* ® in the set and 
average over the longitudinal momentum of the system 
with mass M.  The relation between M  and A y  =  y 1 — y 2 
is

M 2 =  2 ß 2 — 2 p T]p Tlcos <P +  2 m T} mr2cosh A y , (10)

with ix2 + pr.  For large M  and large Ay,  one has

M 2~exp( |z l^ |) . (1 1 )

However, for small M  or small Ay,  relevant in intermit­
tency studies, the relation between these variables is 
greatly influenced by the values of the transverse mo­
menta. From (10) one also sees that selection of particles 
with small transverse momentum will introduce a shift 
towards small values in the invariant mass distribution 
integrated over 0 .

When (4) is integrated over the p Tlip T2 an(i and 
over the longitudinal momentum of the pair, C2 becomes 
a function only of M, at fixed ] f s  :

Ca2h(AO-  p f  (AO-  pf ® p f (Af). (12)

In (12), p 2b is the familiar normalised two-particle in- 
variant-mass spectrum. The second term describes the 
uncorrelated “background” and is at fixed mass of the 
pair given by;

x<y{[(?,+«2)2]1/2-M } , (13)
a

with the normalisation :

\  p ° ®  Pi d M = ( n ay (nby . (14)

The integral over M  of C2(Af) in (12) is equal to the 
second-order integrated factorial cumulant or Mueller 
moment [1 1 ],

C f  = ƒ C2b( M ) d M

= <X («*“  Sab )>-<«„> <nb >. (15)

In direct correspondence with normalised factorial mo­
ments and cumulants in intermittency analyses, we con­
sider below the normalised functions

=  (16)

with

F f  (M)  = p ? ( M ) / p i  ® P i ( M) .  (17)

For three-particle systems, we define the “connected” 
correlation function (or factorial cumulant) in the usual 
way

c f c (0!, q2, 03 ) = P t bc -  Pi (01 ) Pi  (02. 0s)

-  Pi (02) Pi (01.03) 

-P lC(03)Pf(01.02)

+ 2 Pf(0i)/»i(02)Pf(03)- (18)

Integration over all variables, except M 2 = (<qx +  q2 +  q3)2 
yields

C3(M)  =  p 3 (M) — { p “ ® p 2c(M) +  perm.}

+ 2 p î ®  (19)

^3 (M) *  C3 (M)/ p f ® p  f ® p I (AO • (20)

To calculate the background term (13) one may apply a 
Monte-Carlo method as in [7]. Here we use a “track- 
pool” or “event-mixing” technique, similar to that used 
in studes of Bose-Einstein (BE) correlations and in the 
“correlation-integral” method [12], The procedure is as 
follows. A pool of particle four-vectors is constructed 
from a large number of events. Then, to build an “un­
correlated” event, track-multiplicities Ni for particles of 
type i are chosen according to a Poissonian with a fixed 
average, and Nt particles of the desired type are randomly 
selected with equal probability from the “pool”, ensuring 
that each particle originates from a different event. The 
fake events then undergo the same treatment as the real 
events. The mass-spectra p 2{M)  and p l ® p l (M)  are 
normalised to their respective experimental values (7) and 
(14) in the studied kinemtatical region.

The same technique is easily generalised to three- or 
higher-order correlation functions. For example, a term 
Pi ® P2C(M)  in (19) is calculated taking from each event 
one track of type {b) and type (c), and a third track of 
type (a) from another event.

Before describing the data, it is useful to elaborate 
somewhat on the physical meaning of (12) [7,8], For 
independently produced particles C2(M)  is necessarily 
zero if kinematical constraints can be neglected. If par-

■
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tides are produced exclusively via the two-body decay of 
a resonance or cluster (hardly realistic for n ± n ±-pairs), 
then C2 (M) measures directly the dynamical correlation 
within the cluster. Two particles originating from differ­
ent resonances contribute only to the background (pro­
vided one may neglect interference effects). Not elimi­
nated from C2 are, therefore, those pairs which are the 
decay products of an m-particle resonance (m ^3). The 
function C3 has an analogous meaning.

3 Experimental results

3.1 Invariant-mass dependence of C2
To illustrate the method and the general trend of the data, 
we show in Fig, 1 p 2(M) i p 1 ® p x(M)  and C2{M)  for
( -----) and (H— ) charge-combinations in full phase
space. The distributions p2(M)  and p Y® p^iM)  evi­
dently extend to large M-values, but we shall be mainly 
interested in the region below 1 GeV.

One notices that p 2(M)  and p x® p x{M)  become 
equal, within errors, above a relatively small value of M . 
This gives confidence in the usefulness of the function 
C2 (M ) as a measure of dynamical correlation effects.

The function C2 ~ (M)  is largest at threshold, slightly 
negative near Af~0.8GeV and zero for M >  1.5 GeV; 
p 2 ~ ( M), and C2 ~ (M ) in particular, reveal a clear p° 
signal. These functions are nearly zero for MS: 1.5 GeV.

Figure 2 compares in more detail C2 for various 
charge combinations. Here, and for all following results,

we limit the single particle c.m. rapidity to \ y\  < 2, unless 
specified otherwise. One observes that C2 + (M) and 
C2 ~ (M ) practically coincide. In contrast, C2 ~ (AO 
drops to zero at threshold; otherwise it is much larger, 
and has a very different shape compared to C2± ± . Quali­
tatively, this is easily understood. Besides direct contri­
butions from resonances in the (H— )-channel, addi­
tional correlations are generated by other states (such as 
rj, t]', co, decaying into higher multiplicity chan­
nels. An anologous contribution, but much smaller in 
magnitude and concentrated at lower mass is expected 
for like-sign pairs. For these, in addition, interference 
effects due to Bose-Einstein symmetrisation of resonance- 
and prompt-particle production amplitudes will enhance 
the invariant-mass region close to threshold [8,13],

For the second-order Mueller moment we
obtain C2 ~ =  0.79 ±  0,05 (0.71 ± 0.04), C2+ + = 0.89 
±0.08 (0.74 ±0.02), C2+ ~ =  3.65 ±0.07 (2.68 ±0.05) for 
all M  (for M  <  0.8 GeV). Consequently, the region below 
0.8 GeV in C2 ~ (M)  or C2 + (M)  accounts for ~90% 
of all correlations; for C2 ~(M)  this is significantly 
smaller (-73% ).

The behaviour of C2° (M ) in Fig. 2 combines the fea­
tures of the charge-separated states and is therefore less 
instructive*. Nevertheless, in many intermittency analyses 
charges are not distinguished. We shall, therefore, con­
tinue to present (cc)-data in the rest of the paper.

It is instructive to compare the results presented in 
Fig. 2 with our previous study of C2 in rapidity space. In

* Note that C2ccs  C + + + Cf ~ + 2 C2+ ~
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Fig. la , b. The densities p2(M)  (upper), p x ® p\ ( M)  (middle) and
the correlation function C2 (M)  (lower) for ( -----)- and ( + — )-
pairs produced in n +p and K +p interactions (combined) in full 
phase space
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Fig. 2. The correlation function C2(M)  for the indicated charge 
combinations for particles with c.m. rapidity I y A < 2  ( i=  1, 2)
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[14] we found that the correlation functions C2( y x, y 2) 
for different charge-states, while differing in absolute 
values near y x — 0, all have a similar Gaussian shape with
a dispersion ranging from ~ 0.8 for ( -----)-pairs to ~ 1
for ( H—  )-pairs. Figure 2 illustrates that the similarity in 
rapidity space is superficial and hides the true nature of 
the dynamical correlations. The correlation functions for 
like- and unlike-sign pairs indeed differ strongly when 
studied in terms of invariant mass, for the reasons men­
tioned earlier in this section.

3.2 Normalised second-order factorial cumulants

Intermittency studies deal with normalised factorial mo­
ments and factorial cumulants in small domains of phase 
space. We, therefore, turn to a presentation of the data 
on the normalised cumulant function K2(M).

Figure 3 shows " (M), K2C{ M ), K2 ~ ( M ) and 
K2 + (M) for particles with rapidity | y  \ <  2 (open 
symbols) and | y  I <0.5 (solid symbols). These figures 
demonstrate that also K2{M)  is very different for like- 
and unlike-charge pairs.

For like-charge pairs, K2 drops in a power-like manner 
and is close to zero for masses around 1 GeV. Unlike- 
charge pairs show a clear p° contribution in particular 
for \y\  <0.5. Otherwise, the correlation function has a 
much weaker M-dependence than like-charge pairs. For 
all charge combinations, the correlation is stronger for

0.5 than for I y I < 2 .y  j <  U.3 man ior | y  
The lines in Fig. 3 are fits by a power-law

k 2( m ) = a ( \ / m 2Y  . (21)
The best-fit parameters are collected in the first four lines 
of Table 1. Lines 5 and 12 (see further) are results of a 
fit using invariant-mass bins of 4 MeV.

Figure 4, where the ratio K2 ~ (M)/ K 2 ~ ( M ) is plot­
ted (for \y\  <  2) offers a further illustration of the dif­
ferent M-dependence of the like- and unlike-charge cor­
relation function. The curve represents the function (21)
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Fig. 3a-d. The normalised second-order factorial cumulant versus 
invariant mass for particles with c.m. rapidity |^ |  < 2  and 

y  A <  0.5, respectively. Lines are fits by A ( i / M 2)fi (see Table 1)

with ƒ? =  1.02 ±0.06, fitted in the range 0.32 < M  
<  0.8 GeV. The value of ß  is consistent with unity, a 

value often quoted for the difference in Regge-intercept 
of an “exotic” and “standard” (p , f  ) trajectory [7]. We 
shall not further elaborate on a possible Mueller-Regge 
interpreation (see [7]) which is considered to be doubtful 
at small M,  but merely note that i) the Dual Mueller- 
Regge approach, with factorisation, leads in a natural 
way to power-law dependence in invariant mass of the 
correlation functions, ii) the data in [7], and those pre­
sented here, are not in contradiction with this picture.

Table 1. Fits with the form A { \ / M 2)ß to 
the second- and third-order factorial 
cumulant K2(M)  and K3(M)  in M + p  
interactions at 250 GeV/c incident beam 
momentum, in indicated invariant-mass 
intervals and for various cuts (p T in 
GeV/c).

k 2, k , M ( G t V ) Cut

CC 0.30-0.6 —

+  - 0.30-0.6 —

0.34-1.0 —

—  — 0.34-1.0 —

-------  ------- 0.28-1.0 —

-------- — 0.28-0.6 <  45°
------------------- 0.28-1.0 45° <  0  <  135°

—̂ 0.34-1.0 0  <  45°
+ - 0.34-1.0 45° <  0  <  135°
—  — 0.28-1.0 p T <  0.15
—  _ — 0.28-1.0 0.15 <  p T <  0.3
—  — 0.28-1.0 p T >  0.15
—  —  — 0.42-1.0
+ + + 0.42-1.0 —

+ H— 0.42-1.0 —

-  -  + 0.42-0.8 —

■ j ■ « 0.32-0.8 —

A ß * 7 n d f

0.136 ±0.004 0.41 ±0.02 20/13
0.315±0.010 0.17 ±0.02 30/11
0.011 ±0.001 1.30 ±0.07 25/31
0.024 ±0.001 1.15±0.05 32/31
0.019 ±0.002 1.29 ±0.04 226/178
0.014 ±0.001 2.45 ±  0.24 60/34
0.022 ±0.002 1.32 ±0.05 42/34
0.080 ±0.006 0.72 ±0.05 23/15
0.26 ±0.01 0.35 ±0.02 31/15
0.013 ±0.001 1.54 ±0.24 41/34
0.022 ±0.004 1.36 ±0.08 43/34
0.015 ±0.002 1.35 ±0.07 202/178
0.005 ±0.002 3.37 ±0.32 41/26
0.015 ±0.007 3,84±0.99 28/26
0.085 ±0.004 1.16±0.06 10/26
0.12 ±0.02 1.0 ±0.1 11/15

0.07 ±0.01 1.02 ±0.06 25/22
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C V

Mass (GeV)

Fig. 4. The ratio of ~ (M)  and ~ (Af) fitted by A ( l / M 2)ß
(for [y,] <  2)

0.3 Mass (GeV)
1

Fig. 6a, b. Normalised second-order factorial cumulants in intervals 
of relative azimuthal angle 0. Lines are fits by A ( \ / M 2)ß (see 
Table 1)
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Fig. 5a-d. The correlation function C f (M)  and C2+ (M)  in 
intervals of relative azimuthal angle 0 (in degrees)

The features shown by Fig. 5 are partly kinematical 
since small relative angles between the particle momenta 
favour small invariant mass. This kinematical effect 
equally affects p x ® p x (M). Dynamics is, therefore, bet­
ter seen in K2 (M, #), displayed in Fig. 6 in a double-log 
scale. This function has the strongest M-dependence for 
0 <  45°. With this cut, also the />°-signal is considerably 
reduced in (H— )-pairs. The lines are fits by (21) with 
parameters given in lines 6 and 7 of Table 1. We note, in 
particular, that K 2~ ~ (M) is power-behaved from thresh­
old up to 1 GeV.

Figure 7 a shows in more detail the dependence of K2 
on azimuthal angle for masses close to threshold, 
M < 0.4 GeV. K-2 ” (M) is nearly constant apart from 
some depletion in the interval 0 < 0  <  30°; ~ (M) 
rises gently to reach a nearly constant value for 0 >  80°. 
The ^-dependence is more pronounced in the interval 
0.5 < M <  1 GeV (Fig. 7b), in particular for ( H—  )-pairs.

From the data presented in this section, we conclude 
that the ^-integrated normalised correlation function 
depends weakly on the azimuthal separation of the pair 
in the small-mass region, especially for like-charge com­
binations: the correlation function depends mainly on 
invariant mass. Both ” (M) and ~ (M) are power- 
behaved, the latter for M <  0.6 GeV.

3.3 Azimuthal angle dependence

In Fig. 5 we plot C2- “ (M, 0 )  and C2+ “ (M, 0) in various 
intervals of the angle between the transverse momenta 
of the pair.

Both for (-1— ) and ( -----) we observe a strong
positive correlation at small M and small 0 , substan­
tially narrower for ( -----)-pairs than for (-1— )-pairs.
The p° signal stands out more clearly for 45° <  0 < 135° 
than in the other distribution.

3.4 Transverse momentum dependence

The observation by NA22 [15] that the intermittency 
effect is most pronounced for low~pT particles (e.g. 
p T <  0.15 GeV/c) and almost absent for larger p T-values, 
has attracted much attention since it pointed to inter­
mittency in hadron-hadron collisions as a “soft” effect. 
Low-pT intermittency is also visible in the UA1 data [16] 
in spite of the bias against small p T in this experiment. 
The reason for stronger intermittency remained rather
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unclear and, moreover, the effect could not be reproduced 
by presently used models.

To try and clarify this issue, we here study C2 (Af) and 
K2(M ) in different intervals of transverse momentum. 
Figure 8 shows C2 ~ (M ) and C2 ~ (Af ) for particles with 
transverse momentum below and above 0.15 and 
0.30 GeV/c, respectively.

For low-/?r  particles (Fig. 8a,c), C2 drops more rap­
idly to zero with increasing Af than the all-pT data (Fig. 2); 
C2 ~ ( M)  is zero, within errors, above 0.5 GeV. For 
C2 ~ (Af) this happens for Af~0.7-0.8 GeV, Note also 
that the otherwise prominent /?°-signal is nearly com­
pletely removed by the p T-cul

Imposing a lower limit on p T (Figs. 8 b, d) has the 
effect of enhancing the correlation at larger Af and 
increases the influence of the p°-meson. For p T >  0,3 
GeV/c, C2 ~ is close to zero in the whole mass range 
studied (Af ̂  1 GeV).

As already hinted in Sect. 2.2, cuts on transverse mo­
mentum strongly influence the mass-spectra and C2 for 
(trivial) kinematical reasons. Since this affects p 2(M) 
and Pi ® Pi (Af) alike, it is more instructive to con­
sider the functions K2. Examples of these are shown in 
Figs. 9a-d for ( H—  )- and ( ---- )-pairs. For ease of com­
parison we also include the data for all p T.

For K2 ~ (Af) (Fig. 9a), the selection p T < 0.3 
GeV/c eliminates most of the p °-contribution ; K2 now 
has a much stronger dependence on M , compared to the 
all-pT data. A likely explanation is that reflections from 
e.g. three-body resonance decays in the ( H—  )-channel 
are enhanced by the small-/?r  cut. With p T >  0.3 GeV/c 
(Fig. 9c), the p° stands out most prominently; the cor­
relation function shows little Af-dependence for
M  <  0.6 GeV.

From Fig. 9b, we note the interesting feature 
that K2 ~ (Af) is hardly affected by the cut. This is 
also true for p T <  0.15 GeV (not shown). For example, 
from a fit by the form (21) we find ß ~ ~  =  1.54 ±0.24 
and =1.35 ± 0.07 for p T <  0.15 GeV/c and
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studied in terms of the invariant-mass variable, at least 
in the small-mass region where intermittency is searched 
for.

The correlation function of unlike-charge pairs is in­
fluenced by direct-channel resonances and resonance re­
flections and is a more complicated function of the kin­
ematical variables.

3.5 Three-particle cumulants

In Fig, 10 we present C3, the third-order correlation func­
tion, as a function of the three-particle invariant mass. 
Non-exotic triples show a strong correlation below 
M <  1.2 GeV. For identical-particle triplets, errors are 
large, but a positive correlation is clearly seen for masses 
below 1 GeV.

The normalised cumulants K3 are displayed in Fig, 11. 
The lines are power-law fits of the form (21) to the data
with parameters given in Table 1. The ( -------b)-triplet
data (Fig. 11a) exhibit an unexplained shoulder near 
0.8 GeV, not seen in the charge-conjugate triplet 
(Fig. lib). Nevertheless, cumulants of non-exotic triplets 
decrease as a power in 1/M 2 with a slope ß ~  1.0-1.2, 
considerably faster than (H— )-pairs. Identical-particle 
triplets fall even steeper with M, with slopes of the order 
of 3.

£

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

Mass (GeV)

Fig. 11a,b. The third-order normalised factorial cumulant K2(M)  
for various charge combinations. Lines are fits by A ( l / M 2)ß (see 
Table 1)

p T >  0.15 GeV/c, respectively, to be compared with 
ß ~ ~  = 1.29±0.04 for all p T (cf. Table 1), For p T 
>0.3 GeV/c, K2 ~( M)  is reduced in value for kine­

matical reasons.
We conclude that the two-particle correlation function 

of ( -----)-pairs* -  a priori a function of five variables at
fixed j fs  -  shows the strongest explicit dependence when

for e^e

4 Comparison to FRITIOF

The experimental study of factorial moments as a func­
tion of cell-size has revealed serious shortcomings in the 
Monte-Carlo generators commonly used to simulate mul­
tiparticle production processes. Discrepancies are largest 
between models* and data for hadron-hadron (and h A 
or A A)  processes. For e+e~ annihilations the generators 
based on JETSET [19-21] (or HERWIG [22,23]) are 
much more successful. The reason why models which use 
essentially the same hadronisation algorithm (JETSET)

annihilation as for hh processes, fare so dif­
ferently, still remains obscure.

In a previous study of rapidity correlations [24], se­
rious disagreements of FRITIOF (and other models) with 
the data were reported. We have already mentioned that 
rapidity correlations are very insensitive to dynamical 
effects at small invariant mass and it is, therefore, not 
too surprising that the cause of the model failures re­
mained unclear. In this section we show that analysis of 
correlations in terms of invariant mass not only confirms 
that FRITIOF -  or rather JETSET - fails, but the method 
reveals specific deficiencies that need to be remedied. As 
will become clear, these are apparently not so much re­
lated to “new physics” but rather to a number of defects 
which have passed unnoticed.

We use FRITIOF, version 2, with parameter settings 
as described e.g. in [25]. We opt for this version -  al­
though more recent versions are now available -  since it 
has been used in studies of many other topics in this

This also holds for ( + + )-pairs not discussed here
* Here we consider the specific example of FRITIOF [17] but the 
same is true for e.g. the two-string dual parton model [18]
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Fig. 12a-d. The normalised second-order factorial cumulant 
(M)  and ~ (M)  compared to FRITIOF 2. Predictions 

in a-b for FRITIOF and JETSET 6.3 with default parameters 
(FRITIOF-S) and renormalised (FRITIOF-N); c-d for FRITIOF 
rescaled, with Bose-Einstein enhancement and suppressed reso­
nance production rates in JETSET

experiment. Since we are ultimately interested in a better 
understanding of the behaviour of factorial moment data, 
we limit the discussion to normalised factorial cumulants.

H—

K
Figure 12 a-b compares the data on (Af) and
' " (Af) to FRITIOF-S, the standard FRITIOF version 

with default NA22 parameters. The prediction for 
K 2 ~ (Af) (Fig. 12a) bears little resemblance to the data: 
i) the predicted £°-signal is too strong, ii) the correlation 
function falls much faster with M  in the region below 
Af <  0.6 GeV.

It is known that FRITIOF underestimates the width
of the full phase-space (charged particle) multiplicity dis­
tribution or, equivalently, the second-order factorial cu­
mulant, integrated over all Af. To remove this global 
defect, we renormalized the FRITIOF predictions to the 
experimental values of K2 ~ and K2 ~ for all Af. The 
corresponding results are indicated as FRITIOF-N in 
Fig. 12. As to the structure in the region below 
Af=0.6 GeV, we find from FRITIOF that is due to re­
flections from 77, rj' and co decays.

From previous NA22 studies, it is known that 
JETSET, with default parameters, overestimates the rj 
production rate [25,26] by as much as a factor of three. 
There are also indications from this and other experi­
ments that the inclusive cross section of p° [27-30] and 
rj' [31 ] is too large in JETSET by a similarly large factor. 
The influence on correlation functions and factorial mo­
ments of such deficiencies in the Monte Carlo’s was not 
fully appreciated in earlier intermittency studies, with the 
exception of [32].

Figure 12b compares FRITIOF to K2 ~ (Af) data. 
The predicted correlation (small and slightly negative in 
FRITIOF-S) is roughly constant in Af, except for a peak 
at threshold which is related to rj' decays. Unfortunately, 
the inclusive rj' cross section is not directly measurable 
in this experiment. It is, therefore, impossible to assess 
the importance of its contribution to the strong rise of 
K.2 (Af ) seen in the data for Af approaching the thresh­
old. Still, if we assume that the 77'-rate is overestimated 
by roughly the same amount as the tj-rate, it becomes 
clear that another dynamical effect, present in the data 
but not in FRITIOF or JETSET, is responsible for the 
sharp decrease
A f -0.6 GeV.

of K2 (Af) from threshold to

A low-mass enhancement of the type seen in Fig. 12 b 
is, of course, expected from Bose-Einstein interference. 
By this we mean small-mass enhancements which are the 
consequence of symmetrisation of production ampli­
tudes. These include interferences between “prompt” pro­
duction amplitudes, as well as those between “prompt”- 
and resonant final-state interactions. The net effect of all 
these is obviously difficult to estimate without a detailed 
model calculation at the amplitude level. Simplified treat­
ments can be found in [13,8] (see also [33]). In general 
such calculations predict strong enhancements of the cor­
relation function at very small masses. Under the (ex­
tremely naive) assumption that pions are emitted from a 
production volume with an extension of the order of the 
pion Compton wavelength ( 1.4 fm) without suffering any 
interaction -  hardly likely in a strong interaction process 
-  one would expect to observe a Bose-Einstein effect from 
threshold up to about 0.4-0.5 GeV.

To assess the importance of (naive) Bose-Einstein cor­
relations, we have incorporated in FRITIOF such an en­
hancement, using the algorithm developed by Sjö strand 
for JETSET 7.3 [34,35]. We use an exponential para- 
metrisation in I Q

(22)BE (Af) = 1 +Ae_Ä'01,

with A =0.5 and i£ = 0.8 fm.
Furthermore, to appreciate the influence of pseudo­

scalar and vector mesons, we have introduced ad hoc 
modifications* in JETSET which reduce the p°  {rj and 
rj') production rate to 1/2 (1/3) of the “default” rate.

The results, indicated as FRITIOF-BE-N, are shown 
in Figs. 12c, d. For K2 ~ (Af), agreement is acceptable in 
and above the /?°-region and below Af < 0.5 GeV, but 
not in the intermediate mass region. For K2 “ (Af), 
FRITIOF agrees with the data (after global renormali- 
sation, see before) for Af > 0.6 GeV. Nevertheless, the 
Af-dependence remains too strong in the region around 
0.5 GeV.

We should stress that the value of A, which determines 
the strength of the BE-effect, is rendered quite uncertain 
by the unknown contribution from rj ' ,  as discussed ear­
lier. With this caveat, we are tempted to conclude that a

* One should note that such a “brute-force” procedure is hardly 
acceptable in the framework of the LUND fragmentation picture 
and is likely to adversely affect agreement with other observables 
which are otherwise well described
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BE-effect of a “traditional” form (22) could explain the 
enhancement of K2 ~ (M)  for M  <j 0.4 but the remaining 
deviations require further study.

For three-particle correlations, the FRITIOF predic­
tions for C3(M)  (not shown) are close to zero for all 
values of M , contrary to the data.

In summary, we learn from the FRITIOF calculations 
that the model’s difficulties in reproducing the measured 
correlation functions are to a large extent caused by i) 
incorrect production rates of (at least) p°, r?9 and, pos­
sibly 0) and tf' mesons, ii) the absence of a Bose-Einstein 
small-mass enhancement mechanism.

Whether there is evidence for “new physics” in the 
data is difficult to judge at present. It remains to be seen 
if the most obvious deficiencies in particle and resonance 
production rates can be cured in a consistent manner in 
models such as JETSET. The apparent success of the 
Parton-Shower + JETSET Monte-Carlo in e +e~ anni­
hilations most likely means that correlations are less 
sensitive to resonance and Bose-Einstein effects at LEP 
energies or, that the model parameters are tuned to the 
data in a way which compensates for the deficiencies.

5 Discussion and conclusions

In this paper we have studied two- and three-particle 
correlations in various charge combinations in terms of 
the invariant mass of pairs and triplets. This work was 
motivated by the recently revived interest in correlation 
phenomena, and, in particular, the considerable experi­
mental and theoretical effort invested in the search for 
intermittency and fractal dynamics.

The work on intermittency initially concentrated on 
the behaviour of factorial moments of the charged mul­
tiplicity distribution in progressively decreasing intervals 
of rapidity. This geometric “box-counting“ approach, 
familiar in fractal theory, was soon extended to two- 
and three-dimensional phase space. Due to the highly 
non-uniform particle population, such analyses necessi­
tated the use of variable transformations [36,37] which 
considerably complicated interpretation of the results in 
terms of known dynamical effects and experimental bias.

With the “correlation integral” technique [12], the em­
phasis returned to correlation measurements in terms of 
suitably defined inter-particle distances. This avoided the 
arbitrariness in the choice of geometrical volume and its 
subdivisions, inherent to the previous analysis methods. 
In present applications [38,39], Lorentz-invariant dis­
tance measures such as Q2 have proven to be most re­
vealing. It is worthwhile to stress that cumulative, rather 
than differential quantities are studied with this tech­
nique, again inspired by fractal theory.

In this paper, we analysed differential distributions. 
The (apparent) loss in statistical accuracy, compared to 
cumulative quantities, is amply compensated by greater 
sensitivity to fine-structure.

The data presented here help in clarifying several as­
pects of earlier factorial moment analyses.

9 The factorial cumulants K2 (M)  and K3 (Af ) behave as 
powers in (1 / M 2) from threshold to ~  1 GeV in invariant 
mass. This confirms earlier speculations [40,6] that nor­
malised correlation functions, rather than inclusive den­
sities might show scale-invariance.
•  Factorial cumulants of “exotic” particle combinations 
show the strongest dependence on invariant mass. For 
“non-exotic” combinations, such as ( H—  )-pairs, the in ­
dependence is much weaker. Moreover, it is sensitive to 
the kinematical region examined and clearly related to 
resonances occurring in this channel.
•  “All-charged” data mix very different dynamics and 
should be interpreted with caution.
® For small masses, the function ± , depends weakly 
on the transverse momentum of the particles and on their 
relative azimuthal angle, and is mainly a function of 
invariant mass. This fact explains [41] why selection of 
low-pT particles gives rise to enhanced intermittency in 
rapidity-space [15] but weaker intermittency in terms of 
correlation integrals [38], two, at first sight, contradictory 
conclusions,
•  The much larger powers ß  for like-sign than for unlike- 
sign pairs and triplets mean that the intermittency effect 
is predominantly due to the former. Bose-Einstein type 
correlations are a natural candiate to explain this dif­
ference. Accepting this hypothesis, we conclude from our 
data that the BE-effect leads to normalised correlation 
functions which are power-behaved in (1/A/2). This is at 
variance with the traditionally adopted parametrisation 
of the two-particle density in terms of Gaussians or ex­
ponentials in Q2 with parameters related to interaction- 
volume dimensions and wavefunction coherence. How­
ever, it is easy to verify that a function of the type (22), 
expressed in terms of invariant mass is, with present ac­
curacy, almost indistinguishable from a function of the 
form 1 + A ( l / M 2y  as suggested by the power law (21). 
As a result, and depending on the point of view taken, 
present BE-data can be used either as evidence for scale- 
invariance of K2 in the invariant mass variable, or as a 
confirmation of the traditional BE-interpretation.
•  The origin of the failures exhibited by models such as 
FRITIOF, is most clearly revealed in our analysis. These 
failures are not necessarily due to “novel” dynamics, ab­
sent (by definition) in the models. They are in first in­
stance a consequence of a variety of defects -  such as 
incorrect resonance production rates and absence of iden­
tical particle symmetrisation -  which belong to “stan­
dard” hadronisation phenomenology. Still, these defects 
are not easy to cure in a consistent manner by simple 
parameter-tuning and “new” physics may be needed to 
restore internal consistency in e.g. string-fragmentation 
models of the LUND type. Indeed, present work [42] on 
this subject starts to provide hints that a purely proba­
bilistic treatment of the break-up of colour fields might 
have to be supplemented with new mechanisms, somehow 
related to the chiral structure of the non-perturbative 
QCD vacuum.
•  Originating mainly from the low invariant-mass region 
(typically < 1.5 GeV), it is not impossible that the ob­
served correlations, being dominated by strong final- 
state interactions, are quite independent of the process
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initiating the primary colour separation in the collision. 
This would explain “universality” in the sense discussed
earlier.
$  Many authors argue that “intermittency” is somehow 
connected to (nearly scale-invariant) perturbative QCD- 
cascading. Others strongly contest this view on the ar­
gument that QCD cascades have a limited extent even at 
LEP energies and are dominated by a very small number 
of “hard” emissions. In the former case, one may expect 
significant differences in the correlation functions at low 
mass for e +e~,  on the one hand, and for hh, hA and AA 
collisions, on the other hand. Whatever the final out­
come, if differences are found, they should be used to 
clarify the respective roles of perturbative and hadroni- 
sation phases in the different types of collision processes.
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Abstract. We study two- and three-particle correlations 
as a function of invariant mass. Using data on n +p  and 
K +p  collisions at 250 GeV/c, we compare correlation 
functions and normalised factorial cumulants for various 
charge combinations. Strong positive correlations are ob­
served only at small invariant masses. The normalised
cumulants for “exotic” [(-----)5 ( + + ) ]  and “non-
exotic” pairs (H— ) and triplets decrease in power­
like fashion with increasing invariant mass. The mass 
dependence is not incompatible with the power-law be­
haviour as expected in a Dual Mueller-Regge framework. 
Comparison with FRITIOF reveals strong disagree­
ments, which are due to too large production rates of 
resonances, such as p° and rj, and the absence of a Bose- 
Einstein low-mass enhancement in JETSET.

1 Introduction

For many years, correlations among hadrons produced 
in high-energy multi-particle processes have been studied 
in a variety of variables. Of obvious importance are 
analyses of multiparticle spectra in terms of the invariant 
mass of two- and more particle systems, which allowed 
identification of hadronic resonances.

a Now at Universitaire Instelling Antwerpen 
b EC Guest Scientist 
c Onderzoeksleider NFWO, Belgium 
d Partially supported by grants from CPBP 01.06 anf 01.09 
e Also at Universitaire Instelling Antwerpen

Studies of correlations in rapidity have helped to es­
tablish the fruitful concept of short-range order in mo­
mentum space, a dynamical property already present in 
the earliest multiperipheral pictures of particle produc­
tion, later extended to ladder diagrams with Regge ex­
changes. In these, propagators are functions of nearest- 
neighbour invariant-masses which, at high energy and 
large mass, are conveniently expressed in terms of rapid­
ity distances.

Correlations attributed to Bose-Einstein symmetrisa- 
tion of identical boson amplitudes have been much dis­
cussed in the literature (for recent reviews see [1,2]). They 
are often studied in terms of the difference of particle- 
pair four-momenta, a traditional choice being Qfj =

Recently, correlation studies have attracted renewed 
attention in connection with the search for self-similar 
particle-density fluctuation phenomena, commonly 
known as “Intermittency” [3,4], Intermittency means that 
the normalised factorial moments F of the multiplicity 
distribution in a phase-space volume S are power-be­
haved

F'(Ô)CCÔ- + ', ((f) g >  0) (1)

over a range of scales, down to the experimental reso­
lution. This further implies that the ^-particle densities 
and correlation functions are singular in the limit <5->0. 
The present status of this field is reviewed in [5].

A significant step towards better understanding of the 
physics behind intermittency was made by Fialkowski [6]. 
Using data in three-dimensional phase space on pp,  
n / K p , p A  and A A collisions, he noted that F2 shows a



surprisingly high degree o f “universality” . W riting F2 ( ô)  
as

F2(S) =  A + B S - * \ (2)

02 was found to be around 0.4-0.5 in all processes con­
sidered. The 5-values also turn out to be quite similar. 
The author, therefore, speculated that intermittency may 
be a “universal collective” effect.

As remarked in [6], ô in (2) is related, albeit non-
uniquely, to Q2 or M== j / ö 2 + 4//2, the invariant mass 
of the particle pairs (p, is the pion mass). The functional 
form of (2) would then mean that the normalised two- 
particle cumulant K2 is power-behaved in M  or in Q2. 
The latter is singular at Q2 = 0, while the former remains 
finite at threshold. This argument suggests that it may be 
rewarding to study correlation functions and factorial 
moments directly in terms of invariant mass. This is the 
subject of the present paper.

The idea to study correlations as a function of in­
variant-mass was, to our knowledge, first used in [7]. 
This analysis was based on low statistics pp  data at 205 
GeV/c. It demonstrated that the factorial cumulant K2 = 
F2— 1 (see further below) follows an approximate 
power law with very different powers for like-charge 
(“exotic” ) and unlike-charge (“non-exotic”) hadron pairs. 
In [7] this is written as:

K2( M) az ( M2Y ^ 0)- K (3)

The notation reminds of the interpretation of (3) in terms 
of the Mueller-Regge formalism. The power ûcx (0) is the 
appropriate Regge-intercept ; X ~  R for non-exotic pairs 
and X = E  for exotic ones. The ratio K2 ~ / K 2 ~~ was 
further seen to fall as M ” 2, consistent with aÄ(0)
— a £ (0 )= l. Not relying on Mueller-Regge theory, the 
authors argued that most of the correlations at small M  
are due to resonance decays into three or more pions and 
to interference of amplitudes [8].

In this paper we study the invariant-mass dependence 
of two- and three-particle correlations in a combined
sample of n +p  and K +p interactions at | /7  = 22GeV. 
The experimental procedure and the formalism used are 
described in Sect. 2. Results and their implications for 
intermittency are discussed in Sect. 3. The data are com­
pared to the Lund FRITIOF model for hadron-hadron 
interactions in Sect. 4. Conclusions and a summary are 
given in Sect. 5.

2 Experimental procedure

2.1 Event selection

In this CERN experiment, the European Hybrid Spec­
trometer (EHS) is equipped with the Rapid Cycling 
Bubble Chamber (RCBC) as an active vertex detector 
and exposed to a 250 GeV/c tagged positive, meson en­
riched beam. In data taking, a minimum bias interaction 
trigger is used. The details of the spectrometer and the 
trigger can be found in previous publications [9,10].

Charged particle tracks are reconstructed from hits in 
the wire- and drift-chambers of the two lever-arm mag­
netic spectrometer and from measurements in the bubble 
chamber. The average momentum resolution <A p j p ) 
varies from a maximum of 2.5% at 30 GeV/c to around 
1.5% above 100 GeV/c.

Events are accepted for the analysis when measured 
and reconstructed charge multiplicity are the same, charge 
balance is satisfied, no electron is detected among the 
secondary tracks and the number of reconstructed tracks 
rejected by our quality criteria is at most 0, 1, 1, 2 and
3 for events with charge multiplicity 2, 4, 6, 8 and >  8, 
respectively. Losses of events during measurement and 
reconstruction are corrected for using the topological 
cross sections [9], Elastic events are excluded. Further­
more, an event is called single-diffractive, and excluded 
from the sample, if the total charge multiplicity is smaller 
than 8 and at least one of the positive tracks has 

xF\ >  0.88. After these cuts, we remain with a sample 
of inelastic non-single-diffractive n + / K +p  interactions 
consisting of 114472 events. The results presented below 
pertain to the combined n +p and K +p  samples.

For momenta p LAB <  0.7 GeV/c, the range in the 
bubble chamber and/or the change of track curvature is 
used for proton identification. In addition, a visual ion­
ization scan has been used for p LAQ < 1.2 GeV/c on the 
full K ^ p  and 62% of the n +p  sample. Positive par­
ticles with p hAB >  150 GeV/ c are given the identity of the 
beam particle. Other particles with momenta p LAB
>  1.2 GeV/c are not identified in the present analysis 

and are treated as pions. Identified protons are removed 
from the track sample.

2.2 The correlation function in invariant mass

The two-particle correlation function for hadrons a and 
b (assumed to be pions in the following) is defined as the 
inclusive coincidence rate per collision, minus the rate 
expected for uncorrelated hadrons a and b :

^ 2 *(? is  Qi) — P i b (# i j #2 ) Pa\ (tfi ) p \ (# 2 ) ♦ (4)

In this expression qi{piiE i), (/=1,2), are the four-mo­
menta of the two hadrons. The invariant two-particle 
inclusive density is

E , E der
a ,  d 3p,  d3/>, ' (5)

The invariant single-particle inclusive density is

Pi ’b(q)
E_ d V
a T d 3p  ’ (6)

with Oj the inelastic cross section. The densities (5-6) are 
normalised as follows

ƒf Pi (?i > ft ) ^ = <na (nb - S aby>,E\ E (7)

d 3J9
<na,b> > (8)
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with ö ab =  1 if particles a and b are of the same type, and 
Sab=:0 otherwise. The integrations and the averages are 
taken over full or part of phase space.

The function C2 in (4) depends on six dependent var­
iables, a common choice being the c.m. energy, j/7 , the 
c.m. rapidities y x and y 2i the magnitudes p Tx,p T̂  the 
transverse momenta, and their relative azimuthal 
angle, <P,

Most often, measurements of C2 average over the 
transverse degrees of freedom, leaving only the longitu­
dinal momentum {pL) or rapidity dependence. The re­
sulting correlation function is

c f  (7i.J2) =  J à2p n ƒ d2p n  C f  (9l, q2) . (9)

It is important to note that any structure which occurs 
at fixed invariant mass M { M 2 =  {qx +  q2)2), due e.g. to 
resonances or resonance reflections, is in general smeared 
out in the integrated correlation function (9), In fact, 
C2{ y x, y 2) depends mainly on the angular decay of the 
system and much less so on the mass spectrum. For iso­
tropic decay it has the familiar approximately Gaussian 
shape.

Here, we are interested in correlation effects in invar­
iant mass near threshold and shall, therefore, keep M  (or 
Q2, see below) in the set of independent variables de­
scribing C2. We further keep p Ti>Pt2 and 0  in the set and 
average over the longitudinal momentum of the system 
with mass M.  The relation between M  and A y  =  y x —y2 
is

M 2 =  2 ju2 — 2 p T]p T2co$ & 2 mTlm T2cosh A y , (10)

with m \ —fi2jr p ? . For large M  and large Ay,  one has

M 2~ & x p ( \ A y \ ) . (11)

However, for small M  or small Ay,  relevant in intermit- 
tency studies, the relation between these variables is 
greatly influenced by the values of the transverse mo­
menta, From (10) one also sees that selection of particles 
with small transverse momentum will introduce a shift 
towards small values in the invariant mass distribution 
integrated over

When (4) is integrated over the p Tl, p T2 and and 
over the longitudinal momentum of the pair, C2 becomes 
a function only of M,  at fixed j f s  :

Ca2b (Af) = p*b (M)  -  />? ® p \  (Af). (12)

In (12), p 2b is the familiar normalised two-particle in­
variant-mass spectrum. The second term describes the 
uncorrelated “background” and is at fixed mass of the 
pair given by:

p \ ®  p \ (M) =  ƒ ^  j  ^  p \ (?,)p \ (&)

x*{[foi + fe)2],/2-A 0 ,  (13)
with the normalisation:

ƒ ® p \ d M = {nay <jiby . (14)

The integral over M  of C2(M)  in (12) is equal to the 
second-order integrated factorial cumulant or Mueller 
moment [11],

Ca2b = ƒ C2b( M ) d M

=  <«« ( « 6 > < « * > •  (15)

In direct correspondence with normalised factorial mo­
ments and cumulants in intermittency analyses, we con­
sider below the normalised functions

K f  (M) =  F2b( M ) —l , (16)

with

F?b(Af) = p l b(M) /Pi  ® pi  (Af). (17)

For three-particle systems, we define the “connected” 
correlation function (or factorial cumulant) in the usual 
way

C “bc (qx, q2, q ? ) = p i bc- p î ( q \ )  P2 C (q2, q3)

- P i ( q 2)P2‘, (qi,q3)

-p ï ( . q 3 )p 2b(qi>q2)

+  2 p ^ q l ) p bl (q2) p t ( q 3).  (18)

Integration over all variables, except M 2 = (q̂  + q2 +  <h)2 
yields

c 3 (M) =  p 3 (M) -  { p ? ® p 2 c (M ) +  perm.}

+  2 p" ® Pi ®  p f (M) ,  (19)

K3(M) =  C3( M ) / p ? ® p * ® p t ( M ) .  (20)

To calculate the background term (13) one may apply a 
Monte-Carlo method as in [7]. Here we use a “track- 
pool” or “event-mixing” technique, similar to that used 
in studes of Bose-Einstein (BE) correlations and in the 
“correlation-integral” method [12]. The procedure is as 
follows. A pool of particle four-vectors is constructed 
from a large number of events. Then, to build an “un­
correlated” event, track-multiplicities N t for particles of 
type i are chosen according to a Poissonian with a fixed 
average, and Nt particles of the desired type are randomly 
selected with equal probability from the “pool”, ensuring 
that each particle originates from a different event. The 
fake events then undergo the same treatment as the real 
events. The mass-spectra p 2(M)  and p x® p l (M)  are 
normalised to their respective experimental values (7) and 
(14) in the studied kinemtatical region.

The same technique is easily generalised to three- or 
higher-order correlation functions. For example, a term 
P i ®  p bc (Af) in (19) is calculated taking from each event 
one track of type (b) and type (c), and a third track of 
type (a) from another event.

Before describing the data, it is useful to elaborate 
somewhat on the physical meaning of (12) [7,8]. For 
independently produced particles C2(Af) is necessarily 
zero if kinematical constraints can be neglected. If par-
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tides are produced exclusively via the two-body decay of 
a resonance or cluster (hardly realistic for n ± n ± -pairs), 
then C2(M)  measures directly the dynamical correlation 
within the cluster. Two particles originating from differ­
ent resonances contribute only to the background (pro­
vided one may neglect interference effects). Not elimi­
nated from C2 are, therefore, those pairs which are the 
decay products of an m-particle resonance (m ̂  3). The 
function €3 has an analogous meaning.

3 Experimental results

3.1 Invariant-mass dependence of C2
S

To illustrate the method and the general trend of the data, 
we show in Fig. 1 p 2( M ), p x ® Pi (M)  and C2(M) for
( -----) and (H— ) charge-combinations in full phase
space. The distributions p 2(M)  and p l ® p l (M)  evi­
dently extend to large M-values, but we shall be mainly 
interested in the region below 1 GeV.

One notices that p 2(M)  and p r ® p 1(M)  become 
equal, within errors, above a relatively small value of M.  
This gives confidence in the usefulness of the function 
C2 (M) as a measure of dynamical correlation effects.

The function C2 ” (M) is largest at threshold, slightly 
negative near M ~  0.8 GeV and zero for M  >  1.5 GeV ;
P2
signal. These functions are nearly zero for Mj> 1.5 GeV.

Figure 2 compares in more detail C2 for various 
charge combinations. Here, and for all following results,

+ (M ), and C2 (M)  in particular, reveal a clear p°

we limit the single particle c.m. rapidity to \ y\  < 2 , unless 
specified otherwise. One observes that C2 + (M)  and 
C2 " (M) practically coincide. In contrast, C2 ~ (M)  
drops to zero at threshold; otherwise it is much larger, 
and has a very different shape compared to C2 ± • Quali­
tatively, this is easily understood. Besides direct contri­
butions from resonances in the (H— )-channel, addi­
tional correlations are generated by other states (such as 
77, r}', cd, A2,...) decaying into higher multiplicity chan­
nels. An anologous contribution, but much smaller in 
magnitude and concentrated at lower mass is expected 
for like-sign pairs. For these, in addition, interference 
effects due to Bose-Einstein symmetrisation of resonance- 
and prompt-particle production amplitudes will enhance 
the invariant-mass region close to threshold [8,13].

For the second-order Mueller moment we
obtain G 0.79 ±0.05 (0.71 ±0.04), Ç + H- 0.89
±0.08 (0.74 ±0.02), C2+ " =  3.65 ±0.07 (2.68 ±0.05) for 
all M  (for M  <  0.8 GeV). Consequently, the region below 
0.8 GeV in C2 ~ (M ) or C2 + (M) accounts for ~90%
of all correlations ; for C2 ~ ( M ) this is significantly 
smaller (~73%).

The behaviour of C2C (M)  in Fig. 2 combines the fea­
tures of the charge-separated states and is therefore less 
instructive*. Nevertheless, in many intermittency analyses 
charges are not distinguished. We shall, therefore, con­
tinue to present (cc)-data in the rest of the paper.

It is instructive to compare the results presented in 
Fig. 2 with our previous study of C2 in rapidity space. In
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[14] we found that the correlation functions C2( yu y 2) 
for different charge-states, while differing in absolute 
values near y { = 0, all have a similar Gaussian shape with
a dispersion ranging from ~0.8 for ( -----)-pairs to ~1
for ( H—  )-pairs. Figure 2 illustrates that the similarity in 
rapidity space is superficial and hides the true nature of 
the dynamical correlations. The correlation functions for 
like- and unlike-sign pairs indeed differ strongly when 
studied in terms of invariant mass, for the reasons men­
tioned earlier in this section.

3.2 Normalised second-order factorial cumulants

Intermittency studies deal with normalised factorial mo­
ments and factorial cumulants in small domains of phase 
space. We, therefore, turn to a presentation of the data 
on the normalised cumulant function K2(M).

Figure 3 shows K2 ~ (M), K2 (M), K2 ~ ( M ) and 
K2 + (M) for particles with rapidity \ y  \ < 2  (open 
symbols) and \y \ <0.5 (solid symbols). These figures 
demonstrate that also K2 (M)  is very different for like- 
and unlike-charge pairs.

For like-charge pairs, K2 drops in a power-like manner 
and is close to zero for masses around 1 GeV. Unlike- 
charge pairs show a clear p° contribution in particular 
for \ y  \ <  0.5. Otherwise, the correlation function has a 
much weaker M-dependence than like-charge pairs. For 
all charge combinations, the correlation is stronger for 

y\  <0.5 than for \ y  \ < 2 .
The lines in Fig. 3 are fits by a power-law

K2( M ) ~ A ( l / M 2y . (21)

The best-fit parameters are collected in the first four lines 
of Table 1. Lines 5 and 12 (see further) are results of a 
fit using invariant-mass bins of 4 MeV.

Figure 4, where the ratio K2 ~ { M) / K2 ~ (M)  is plot­
ted (for \y\  <  2) offers a further illustration of the dif­
ferent M-dependence of the like- and unlike-charge cor­
relation function. The curve represents the function (21)
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Fig. 3a-d. The normalised second-order factorial cumulant versus 
invariant mass for particles with c.m. rapidity | y t | < 2  and 

y A <  0.5, respectively. Lines are fits by A (1 / M 2Y  (see Table 1)

with ß  =  1.02 ± 0.06, fitted in the range 0.32 <  M  
<0.8 GeV. The value of ß  is consistent with unity, a 

value often quoted for the difference in Regge-intercept 
of an “exotic” and “standard” (p, ƒ ) trajectory [7]. We 
shall not further elaborate on a possible Mueller-Regge 
interpreation (see [7]) which is considered to be doubtful 
at small M, but merely note that i) the Dual Mueller- 
Regge approach, with factorisation, leads in a natural 
way to power-law dependence in invariant mass of the 
correlation functions, ii) the data in [7], and those pre­
sented here, are not in contradiction with this picture.

Table X. Fits with the form A ( l / M 2Y  to 
the second- and third-order factorial 
cumulant K2{M)  and K 3(M)  in M +p  
interactions at 250 GeV/c incident beam 
momentum, in indicated invariant-mass 
intervals and for various cuts (p T in
GeV/c).

M(GeV) Cut A ß x7 n d f

CC 0.30-0.6 — 0.136±0.004 0.41 ±0.02 20/13
+  - 0.30-0.6 — 0.315±0.010 0.17 ±0.02 30/11
+  + 0.34-1.0 — 0.011 ± 0.001 1.30±0,07 25/31

»  M P » 0.34-1.0 0.024 ±0.001 1.15 ±0.05 32/31
-------------------- 0.28-1.0 — 0.019 ±0.002 1.29 ±0.04 226/178
-------  ------- 0.28-0.6 0  <  45° 0.014 ±0.001 2.45 ±0.24 60/34
-------------------- 0.28-1.0 45° < 0 <  135° 0.022 ± 0.002 1.32±0.05 42/34
+  - 0.34-1.0 0  <  45° 0.080 ±0.006 0.72 ±0.05 23/15
H— 0.34-1.0 45° <  0  <  135° 0.26 ± 0.01 0.35 ±0.02 31/15
—  — 0.28-1.0 p T <  0.15 0.013 ±0.001 1.54 ±0.24 41/34
—  _ 0.28-1.0 0.15 <  p T <  0.3 0.022 ±0.004 1.36 ±0.08 43/34
— 0.28-1.0 p T >  0.15 0.015 ±0.002 1.35 ±0.07 202/178
—  —  — 0.42-1.0 — 0.005 ±0.002 3.37 ±0.32 41/26
+  +  + 0.42-1.0 — 0.015 ±0.007 3.84±0.99 28/26
_j_ _i— 0.42-1.0 — 0.085 ±0.004 1.16±0.06 10/26

0.42-0.8 — 0.12 ± 0.02 1.0 ± 0.1 11/15

+ -

0.32-0.8 — 0.07 ±0.01 1.02 ±0.06 25/22
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Fig. 5a-d. The correlation function C2 ~ (M)  and C2 (M) in 
intervals of relative azimuthal angle 0 (in degrees)

The features shown by Fig. 5 are partly kinematical 
since small relative angles between the particle momenta 
favour small invariant mass. This kinematical effect 
equally affects p x® (M). Dynamics is, therefore, bet­
ter seen in K2 (M, #), displayed in Fig. 6 in a double-log 
scale. This function has the strongest M-dependence for 
0 <  45°. With this cut, also the /?°-signal is considerably 
reduced in (H— )-pairs. The lines are fits by (21) with 
parameters given in lines 6 and 7 of Table 1. We note, in 
particular, that K2 “ (M) is power-behaved from thresh­
old up to 1 GeV.

Figure 7 a shows in more detail the dependence of K2 
on azimuthal angle for masses close to threshold, 
M  < 0.4 GeV. K2 ~ (M) is nearly constant apart from 
some depletion in the interval 0 < 0 <  30°; K2 ~ (M) 
rises gently to reach a nearly constant value for 0 >  80°. 
The ^-dependence is more pronounced in the interval 
0.5 < M  <  1 GeV (Fig. 7b), in particular for ( H—  )-pairs.

From the data presented in this section, we conclude 
that the /?r -integrated normalised correlation function 
depends weakly on the azimuthal separation of the pair 
in the small-mass region, especially for like-charge com­
binations: the correlation function depends mainly on 
invariant mass. Both K2 ~ (M) and K2 ~ (M) are power- 
behaved, the latter for M <  0.6 GeV.

3.3 Azimuthal angle dependence

In Fig. 5 we plot C2 “ (M, 0) and C2 " (M, 0) in various 
intervals of 0 , the angle between the transverse momenta 
of the pair.

Both for (H— ) and ( ---- ) we observe a strong
positive correlation at small M and small 0, substan­
tially narrower for ( ---- )-pairs than for (H— )-pairs.
The p° signal stands out more clearly for 45° <  0 <  135° 
than in the other distribution.

3.4 Transverse momentum dependence

The observation by NA22 [15] that the intermittency 
effect is most pronounced for \ow-pT particles (e.g. 
p T <  0.15 GeV/c) and almost absent for larger /?r -values, 
has attracted much attention since it pointed to inter­
mittency in hadron-hadron collisions as a “soft” effect. 
Low-pT intermittency is also visible in the UA1 data [16] 
in spite of the bias against small p T in this experiment. 
The reason for stronger intermittency remained rather
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Fig. 8a-d. The correlation functions C2 (M)  and C2 (Af) with 
restricted transverse momentum of the individual particles

unclear and, moreover, the effect could not be reproduced 
by presently used models.

To try and clarify this issue, we here study C2 (M ) and 
K2(M ) in different intervals of transverse momentum. 
Figure 8 shows C2 ~ (Af) and C2 ~ (Af) for particles with 
transverse momentum below and above 0.15 and 
0.30 GeV/ c, respectively.

For I0W-/V particles (Fig. 8a,c), C2 drops more rap­
idly to zero with increasing Af than the all-pT data (Fig. 2) ; 
C2"~ (M ) is zero, within errors, above 0.5 GeV. For 
C2 ~ (Af) this happens for M~0.7-0.8 GeV. Note also 
that the otherwise prominent />°-signal is nearly com­
pletely removed by the p T-cut.

Imposing a lower limit on p T (Figs. 8b, d) has the 
effect of enhancing the correlation at larger Af and 
increases the influence of the p°-meson. For p r > § 3  
GeV/c, C2 ~ is close to zero in the whole mass range 
studied (Af^ 1 GeV).

As already hinted in Sect. 2.2, cuts on transverse mo­
mentum strongly influence the mass-spectra and C2 for 
(trivial) kinematical reasons. Since this affects p 2(M)  
and p l ® Pi (M)  alike, it is more instructive to con­
sider the functions K2. Examples of these are shown in 
Figs, 9a~d for ( H—  )~ and ( ---- )-pairs. For ease of com­
parison we also include the data for all p T.

For K2 ~ (Af) (Fig. 9a), the selection p T <  0.3 
GeV/c eliminates most of the p  ̂ contribution ; K2 now 
has a much stronger dependence on M, compared to the 
all-pr  data. A likely explanation is that reflections from 
e.g. three-body resonance decays in the (H— )-channel 
are enhanced by the small-/?r  cut. With p T >  0.3 GeV/c 
(Fig. 9c), the p° stands out most prominently; the cor­
relation function shows little M-dependence for 
M <  0.6 GeV.

From Fig. 9b, we note the interesting feature 
that K2 ~ (M) is hardly affected by the cut. This is 
also true for p T <  0.15 GeV (not shown). For example, 
from a fit by the form (21) we find =  1.54 ±0.24 
and ß ~ ~  =  1.35 ±0.07 for p T <  0.15 GeV/c and
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studied in terms of the invariant-mass variable, at least 
in the small-mass region where intermittency is searched 
for.

The correlation function of unlike-charge pairs is in­
fluenced by direct-channel resonances and resonance re­
flections and is a more complicated function of the kin­
ematical variables.

3.5 Three-particle cumulants

In Fig. 10 we present C3, the third-order correlation func­
tion, as a function of the three-particle invariant mass. 
Non-exotic triples show a strong correlation below 
M < 1.2 GeV. For identical-particle triplets, errors are 
large, but a positive correlation is clearly seen for masses 
below 1 GeV.

The normalised cumulants K3 are displayed in Fig. 11. 
The lines are power-law fits of the form (21) to the data
with parameters given in Table 1. The ( -------b )-triplet
data (Fig. 11a) exhibit an unexplained shoulder near 
0.8 GeV, not seen in the charge-conjugate triplet 
(Fig. lib). Nevertheless, cumulants of non-exotic triplets 
decrease as a power in 1/M 2 with a slope ß ~ l . Q - 1.2, 
considerably faster than (H— )-pairs. Identical-particle 
triplets fall even steeper with M, with slopes of the order 
of 3.

n

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

Mass (GeV)

Fig. 11a, b. The third-order normalised factorial cumulant K3(M)  
for various charge combinations. Lines are fits by A (1 / M 2)ß (see 
Table 1)

p T >  0.15 GeV/c, respectively, to be compared with 
ß ~  ” = 1.29±0.04 for all p T (cf. Table 1). For p T 

0.3 GeV/c, K2 ~( M)  is reduced in value for kine­
matical reasons.

We conclude that the two-particle correlation function 
of ( -----)-pairs* - a priori a function of five variables at
fixed j fs  -  shows the strongest explicit dependence when
* This also holds for ( + + )-pairs not discussed here

4 Comparison to FRITIOF

The experimental study of factorial moments as a func­
tion of cell-size has revealed serious shortcomings in the 
Monte-Carlo generators commonly used to simulate mul­
tiparticle production processes. Discrepancies are largest 
between models* and data for hadron-hadron (and hA 
or A A)  processes. For e +e~ annihilations the generators 
based on JETSET [19-21] (or HERWIG [22,23]) are 
much more successful. The reason why models which use 
essentially the same hadronisation algorithm (JETSET) 
for e+e~ annihilation as for hh processes, fare so dif­
ferently, still remains obscure.

In a previous study of rapidity correlations [24], se­
rious disagreements of FRITIOF (and other models) with 
the data were reported. We have already mentioned that 
rapidity correlations are very insensitive to dynamical 
effects at small invariant mass and it is, therefore, not 
too surprising that the cause of the model failures re­
mained unclear. In this section we show that analysis of 
correlations in terms of invariant mass not only confirms 
that FRITIOF -  or rather JETSET -  fails, but the method 
reveals specific deficiencies that need to be remedied. As 
will become clear, these are apparently not so much re­
lated to “new physics” but rather to a number of defects 
which have passed unnoticed.

We use FRITIOF, version 2, with parameter settings 
as described e.g, in [25]. We opt for this version -  al­
though more recent versions are now available -  since it 
has been used in studies of many other topics in this

* Here we consider the specific example of FRITIOF [17] but the 
same is true for e.g. the two-string dual parton model [18]
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in a-b for FRITIOF and JETSET 6.3 with default parameters 
(FRITIOF-S) and renormalised (FRITIOF-N); c-d for FRITIOF 
rescaled, with Bose-Einstein enhancement and suppressed reso­
nance production rates in JETSET

experiment. Since we are ultimately interested in a better 
understanding of the behaviour of factorial moment data, 
we limit the discussion to normalised factorial cumulants.

Figure 12a-b compares the data on K2 ~ { M)  and 
K2 ~ (Af ) to FRITIOF-S, the standard FRITIOF version 
with default NA22 parameters. The prediction for 
K 2 ~ (Af) (Fig. 12a) bears little resemblance to the data: 
i) the predicted />°-signal is too strong, ii) the correlation 
function falls much faster with Af in the region below
AT <0.6 GeV.

It is known that FRITIOF underestimates the width 
of the full phase-space (charged particle) multiplicity dis­
tribution or, equivalently, the second-order factorial cu­
mulant, integrated over all Af. To remove this global 
defect, we renormalized the FRITIOF predictions to the 
experimental values of K2 ~ and K2 ~ for all Af. The 
corresponding results are indicated as FRITIOF-N in 
Fig. 12. As to the structure in the region below 
Af=0,6 GeV, we find from FRITIOF that is due to re­
flections from /?, rjf and co decays.

From previous NA22 studies, it is known that 
JETSET, with default parameters, overestimates the r\ 
production rate [25,26] by as much as a factor of three. 
There are also indications from this and other experi­
ments that the inclusive cross section of p°  [27-30] and 
rj' [31] is too large in JETSET by a similarly large factor. 
The influence on correlation functions and factorial mo­
ments of such deficiencies in the Monte Carlo’s was not 
fully appreciated in earlier intermittency studies, with the 
exception of [32].

by roughly the same amount as the rj-rate, it becomes 
clear that another dynamical effect, present in the data 
but not in FRITIOF or JETSET, is responsible for the
sharp decrease
Af~ 0.6 GeV.

of K2 (Af) from threshold to

A low-mass enhancement of the type seen in Fig. 12b 
is, of course, expected from Bose-Einstein interference. 
By this we mean small-mass enhancements which are the 
consequence of symmetrisation of production ampli­
tudes. These include interferences between “prompt” pro­
duction amplitudes, as well as those between “ prompt 
and resonant final-state interactions. The net effect of all 
these is obviously difficult to estimate without a detailed 
model calculation at the amplitude level. Simplified treat­
ments can be found in [13,8] (see also [33]). In general 
such calculations predict strong enhancements of the cor­
relation function at very small masses. Under the (ex­
tremely naive) assumption that pions are emitted from a 
production volume with an extension of the order of the 
pion Compton wavelength (1.4 fm) without suffering any 
interaction -  hardly likely in a strong interaction process 
-  one would expect to observe a Bose-Einstein effect from 
threshold up to about 0.4-0.5 GeV.

To assess the importance of (naive) Bose-Einstein cor­
relations, we have incorporated in FRITIOF such an en­
hancement, using the algorithm developed by Sjöstrand 
for JETSET 7.3 [34,35]. We use an exponential para- 
metrisation in I Q

(22)BE(Af)= 1 -+■ Ae-jR|ö!,

with A =0.5 and i? = 0.8fm.
Furthermore, to appreciate the influence of pseudo­

scalar and vector mesons, we have introduced ad hoc 
modifications* in JETSET which reduce the p°  (rj and 
rj') production rate to 1/2 (1/3) of the “default” rate.

The results, indicated as FRITIOF-BE-N, are shown 
in Figs. 12c, d. For K2 ~ (Af), agreement is acceptable in 
and above the p °-region and below Af<0.5GeV, but 
not in the intermediate mass region. For K 2 ” (Af), 
FRITIOF agrees with the data (after global renormali­
sation, see before) for AT >0.6 GeV. Nevertheless, the 
Af-dependence remains too strong in the region around 
0.5 GeV,

We should stress that the value of A, which determines 
the strength of the BE-effect, is rendered quite uncertain 
by the unknown contribution from q ',  as discussed ear­
lier. With this caveat, we are tempted to conclude that a

* One should note that such a “brute-force” procedure is hardly 
acceptable in the framework of the LUND fragmentation picture 
and is likely to adversely affect agreement with other observables 
which are otherwise well described
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BE-effect of a “traditional” form (22) could explain the 
enhancement of K2 ~ (M) for M 0.4 but the remaining 
deviations require further study.

For three-particle correlations, the FRITIOF predic­
tions for C3(M) (not shown) are close to zero for all 
values of M, contrary to the data.

In summary, we learn from the FRITIOF calculations 
that the model's difficulties in reproducing the measured 
correlation functions are to a large extent caused by i) 
incorrect production rates of (at least) p°, rj, and, pos­
sibly co and rj' mesons, ii) the absence of a Bose-Einstein 
small-mass enhancement mechanism.

Whether there is evidence for “new physics” in the 
data is difficult to judge at present. It remains to be seen 
if the most obvious deficiencies in particle and resonance 
production rates can be cured in a consistent manner in 
models such as JETSET. The apparent success of the 
Parton-Shower + JETSET Monte-Carlo in e+e~~ anni­
hilations most likely means that correlations are less 
sensitive to resonance and Bose-Einstein effects at LEP 
energies or, that the model parameters are tuned to the 
data in a way which compensates for the deficiencies.

5 Discussion and conclusions

In this paper we have studied two- and three-particle 
correlations in various charge combinations in terms of 
the invariant mass of pairs and triplets. This work was 
motivated by the recently revived interest in correlation 
phenomena, and, in particular, the considerable experi­
mental and theoretical effort invested in the search for 
intermittency and fractal dynamics.

The work on intermittency initially concentrated on 
the behaviour of factorial moments of the charged mul­
tiplicity distribution in progressively decreasing intervals 
of rapidity. This geometric “box-counting“ approach, 
familiar in fractal theory, was soon extended to two- 
and three-dimensional phase space. Due to the highly 
non-uniform particle population, such analyses necessi­
tated the use of variable transformations [36,37] which 
considerably complicated interpretation of the results in 
terms of known dynamical effects and experimental bias.

With the “correlation integral” technique [12], the em­
phasis returned to correlation measurements in terms of 
suitably defined inter-particle distances. This avoided the 
arbitrariness in the choice of geometrical volume and its 
subdivisions, inherent to the previous analysis methods. 
In present applications [38,39], Lorentz-invariant dis­
tance measures such as Q2 have proven to be most re­
vealing. It is worthwhile to stress that cumulative, rather 
than differential quantities are studied with this tech­
nique, again inspired by fractal theory.

In this paper, we analysed differential distributions. 
The (apparent) loss in statistical accuracy, compared to 
cumulative quantities, is amply compensated by greater 
sensitivity to fine-structure.

The data presented here help in clarifying several as­
pects of earlier factorial moment analyses.

•  The factorial cumulants K2 (M) and K3 (M)  behave as 
powers in (1/M 2) from threshold to ~  1 GeV in invariant 
mass. This confirms earlier speculations [40,6] that nor­
malised correlation functions, rather than inclusive den­
sities might show scale-invariance.
•  Factorial cumulants of “exotic” particle combinations 
show the strongest dependence on invariant mass. For 
“non-exotic” combinations, such as ( H—  )-pairs, the M- 
dependence is much weaker. Moreover, it is sensitive to 
the kinematical region examined and clearly related to 
resonances occurring in this channel.
•  “All-charged” data mix very different dynamics and 
should be interpreted with caution.
•  For small masses, the function ± , depends weakly 
on the transverse momentum of the particles and on their 
relative azimuthal angle, and is mainly a function of 
invariant mass. This fact explains [41] why selection of 
low-pT particles gives rise to enhanced intermittency in 
rapidity-space [15] but weaker intermittency in terms of 
correlation integrals [38], two, at first sight, contradictory 
conclusions.
© The much larger powers ß  for like-sign than for unlike- 
sign pairs and triplets mean that the intermittency effect 
is predominantly due to the former. Bosé-Einstein type 
correlations are a natural candiate to explain this dif­
ference* Accepting this hypothesis, we conclude from our 
data that the BE-effect leads to normalised correlation 
functions which are power-behaved in (1 /M 2), This is at 
variance with the traditionally adopted parametrisation 
of the two-particle density in terms of Gaussians or ex­
ponentials in Q2 with parameters related to interaction- 
volume dimensions and wavefunction coherence. How­
ever, it is easy to verify that a function of the type (22), 
expressed in terms of invariant mass is, with present ac­
curacy, almost indistinguishable from a function of the 
form 1 + A  (1 / M 2Y  as suggested by the power law (21). 
As a result, and depending on the point of view taken, 
present BE-data can be used either as evidence for scale- 
invariance of K2 in the invariant mass variable, or as a 
confirmation of the traditional BE-interpretation.
•  The origin of the failures exhibited by models such as 
FRITIOF, is most clearly revealed in our analysis. These 
failures are not necessarily due to “novel” dynamics, ab­
sent (by definition) in the models. They are in first in­
stance a consequence of a variety of defects -  such as 
incorrect resonance production rates and absence of iden­
tical particle symmetrisation -  which belong to “stan­
dard” hadronisation phenomenology. Still, these defects 
are not easy to cure in a consistent manner by simple 
parameter-tuning and “new” physics may be needed to 
restore internal consistency in e.g. string-fragmentation 
models of the LUND type. Indeed, present work [42] on 
this subject starts to provide hints that a purely proba­
bilistic treatment of the break-up of colour fields might 
have to be supplemented with new mechanisms, somehow 
related to the chiral structure of the non-perturbative 
QCD vacuum.
•  Originating mainly from the low invariant-mass region 
(typically <1.5 GeV), it is not impossible that the ob­
served correlations, being dominated by strong final- 
state interactions, are quite independent of the process
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initiating the primary colour separation in the collision. 
This would explain “universality” in the sense discussed 
earlier,
•  Many authors argue that “intermittency” is somehow 
connected to (nearly scale-invariant) perturbative QCD- 
cascading. Others strongly contest this view on the ar­
gument that QCD cascades have a limited extent even at 
LEP energies and are dominated by a very small number 
of “hard” emissions. In the former case, one may expect 
significant differences in the correlation functions at low 
mass for e +e ~, on the one hand, and for hh, hA and AA  
collisions, on the other hand. Whatever the final out­
come, if differences are found, they should be used to 
clarify the respective roles of perturbative and hadroni- 
sation phases in the different types of collision processes.
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