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The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of 
single photon even in e +e~ collisions at energies near the Z° resonance. We have observed 61 single photon candidates with more 
than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb_ \  From a 
likelihood fit to the single photon cross sections, we determine ^ = 3 ,2 4 1 0 .4 6  (statistical) ±0.22 (systematic).

1. Introduction

One of the most fundamental results obtained by 
the LEP experiments is the determination of the 
number oflight neutrino families N v. Assuming that 
the only stable, weakly interacting particles are light 
neutrinos with standard model couplings, this num
ber is inferred, in a nearly model-independent way, 
from the measurements of the invisible width ex

1 Supported by the German Bundesministerium fur Forschung
und Technologie.

tracted from the Z° line shape [ 1 ]. This indirect de
termination, for which L3 obtains Nv= 3.05 ±0.10, 
assumes that all visible decays of the Z° are from the 
charged leptonic and hadronic final states. The dom
inant contribution to the error comes from the uncer
tainty in the luminosity, but the systematics in the 
analysis of the hadronic and charged leptonic decay 
modes, taken together, also contribute significantly 
to the error.

In this paper we follow a complementary ap
proach, proposed some time ago by several authors
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[2 ], in which the number of neutrino families is 
counted directly by the measurement of the cross sec
tion for the process e+e~ -*vvy. The signature of such 
events is a single photon arising from initial state ra
diation. The cross section can be written as [3]

In this paper we present a measurement in L3, from 
data taken at LEP in 1990 at center of mass energies 
between 88.3 and 94.3 GeV. The corresponding in
tegrated luminosity is 3.0 pb“ 1.

d2a
dEy d cos 6y H (E V cos 6y, s)cr0(^') ,Y ( 1) 2. The L3 detector

where H  is a radiator function for photons of energy 
Ey and polar angle 0Y, s is the square of the center of 
mass energy, and Vo(s') is the “reduced” cross sec
tion for the process e+e~->vv, in the new center of

The L3 detector and its performance in the detec
tion of muons, electrons and photons is described in 
detail elsewhere [8 ]. Here we only outline the fea
tures relevant to the present analysis. The detector

mass system, given by s ’= s(  1 - l E y / y f s ) .  In lowest consists of a central tracking and vertex chamber 
order and by approximating the W contribution by a 
four-point interaction, a0 is given by [2,3 ]

„  K { g l + g l )
a o {s)-  I 2 n {  + ( \ - s l M i ) 2+ i y M l

+ (2 )

The dominant term is proportional to the number of 
light neutrino families N v and represents the square 
of the amplitude for Z° production. The first term 
arises from the square of the W exchange diagram, 
which contributes only to ve production, and the last 
one is due to W-Z interference. The sum of the first 
and third terms contributes to the overall cross sec
tion by less than 3% in the energy range analysed in 
this paper [ 3 ]. The contribution to a0 from the term 
proportional to N v remains dominant in the case that 
the exact calculation is carried out including higher- 
order corrections.

In the past few years, experiments at PEP [4], PE
TRA [5] and TRISTAN [6 ] have measured the sin
gle photon cross section well below the Z° resonance. 
They yield a combined limit of less than 4.8 light 
neutrino families at 95% confidence level [6 ]. The 
measurement is optimally carried out at energies at 
least 4 GeV above the Z° mass where the ratio be
tween the signal and QED background processes is 
maximum and the full width of the Z° resonance is 
exploited [2,7 ]. However, the LEP scanning strategy 
at the Z° resonance [ 1 ] has given less favourable 
conditions for our first measurements, requiring a 
trigger efficient for low energy photons (E>  1 GeV), 
a better knowledge of the electromagnetic energy scale 
and tighter control of backgrounds.

(TEC), a BGO barrel electromagnetic calorimeter, a 
hadron calorimeter made of uranium absorber and 
brass proportional wire chambers and a high preci
sion muon chamber system. The BGO polar angle 
acceptance goes from 42.3° to 137.7° and is fully 
covered by the TEC, the muon chambers covers po
lar angles from 36° to 144°, and the hadron calorim
eter from 6 ° to 174°. Between the BGO and the had
ron calorimeter is a cylindrical array of 30 scintillation 
counters. Just in front of the hadron calorimeter end- 
caps, between 7° and 37°, is a lead-scintillator veto 
counter having a total depth of 6.5 radiation lengths. 
These subdetectors are installed in a 12 m inner di
ameter solenoidal magnet which provides a uniform 
magnetic field of 0.5 T parallel to the beam direction.

Around the Z° pole, the photons from vvy have low 
energies with a rapidly falling spectrum. Therefore, 
the BGO barrel energy resolution, better than 2% for 
£ r> 1.5 GeV, the BGO linearity, and the negligible 
uncertainty in the absolute energy scale are well-suited 
for the detection of such photons.

The minimum angle at which particles can be de
tected, critical to the suppression of QED back
ground, is defined by the luminosity monitors. They 
consist of two electromagnetic calorimeters and two 
sets of proportional wire chambers, situated symmet
rically on either side of the interaction point. Each 
calorimeter is a finely segemented and azimuthally 
symmetric array of 304 BGO crystals covering the 
polar angular range 24.93< 6 < 69.94 mrad. The en
ergy resolution of the calorimeters is about 2% at 45 
GeV, and the position resolution is 0.4 mrad in 0 and 
0.5° in 0.

Apart from the region below the minimum detec
tion angle, there is a region (hole) about 2 ° wide in

2 1 2
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9 between the luminosity monitors and the hadron 
calorimeters endcaps which is not covered by any de
tector. There is thus additional background from ra
diative Bhabha events when one of the particles es
capes undetected through this hole.

The response of the L3 detector is modelled using 
the GEANT3 [9] detector simulation program which 
includes the effects of energy loss, multiple scattering 
and showering in the detector materials and in the 
beam pipe. Hadronic showers in the calorimeters are 
simulated with the GHEISHA [10] program. For 
each of the physical processes studied, Monte Carlo 
events are passed through the detector simulation 
program and are reconstructed by the same program 
that is used to reconstruct the real ones.

3. Trigger

Each BGO barrel crystal has a separate output for 
trigger purposes. These outputs are summed in trig- 
ger segments of 30 crystals with a segmentation of 32 
in (f> and 8 in 8. The 256 sums are sent to the trigger 
FERA (Fast Encoding Readout ADC) system [11] 
and subsequently to the first level energy trigger pro
cessor [ 12].

A decision to set the single photon trigger bit is 
made as follows. Firstly, “6 sums” (S^) and “ 0 sums” 
( X0) are calculated by summing over the trigger seg
ment energies at constant 6 and at constant 0 , respec
tively. In order to suppress the contribution from co
herent noise, the calculation includes only trigger 
segments above a 1 GeV threshold (called bias in the 
following). A total of 8 Q sums and 32 <p sums is thus 
obtained. Secondly, all the trigger segments above the 
bias are summed to obtain a total energy S T o t -  Fi
nally, the first level trigger processor fires the single 
photon trigger if the following conditions are met:

Z r x> 1.5 GeV, ZS"ax >1.5 GeV ,

£max > Q g 2 toT ? X™3* > 0.8 Z to t »

where £™ax and X™ax are the largest 9 sum and the 
largest 0 sum, respectively. The typical trigger rate 
under these conditions was 0.3 Hz, mainly due to 
electronic noise.

A subsequent reduction by a factor of four is 
achieved by the level-three trigger, which makes use

of the complete set of digitized data. It requires a sin
gle BGO cluster which has an energy greater than 500 
MeV distributed among more than 2 and less than 80 
crystals. The level-three trigger efficiency exceeds 
99.9% for vvy events above 1.5 GeV.

The efficiency of the single photon trigger has been 
studied by considering events which consists of a sin
gle electromagnetic deposit in the BGO barrel and a 
large energy deposit in the forward part of the detec
tor (hadron calorimeter endcaps or luminosity de
tector). These events are typically radiative Bhabha 
events in which one of the particles remains in the 
beam pipe. Due to the presence of the forward energy 
deposit, the event will be accepted by either the sin- 
gle-tag luminosity trigger, which requires at least 30 
GeV in one of the luminosity monitors, or the low 
angle energy trigger, which fires if more than 20 GeV 
is deposited in the veto counter and hadron calorim
eter endcaps. The single-tag luminosity trigger and the 
low angle energy trigger are thus independent of the 
single photon trigger. The efficiency is then mea
sured by checking whether or not the single photon 
trigger also fired. The dark black dots in fig. 1 plot 
the efficiency found as a function of the photon en
ergy. The statistics of this sample is limited because 
the luminosity single-tag triggers were prescaled by a 
factor of 20 during 1990 data taking.

Ey (GEV)

Fig. 1 . Measured (circle) and simulated (diamond) trigger effi 
ciency curve as a function of photon energy.

213



Volume 275, number 1,2 PHYSICS LETTERS B 23 January 1992

We therefore made a calculation through a simu
lation of the algorithm used by the level one trigger, 
taking into account inactive and noisy trigger seg
ments and the lateral shape of the electromagnetic 
shower.

The main sources of trigger efficiency are:
(1) Trigger FERA energy resolution which de

creases from 10% at 1 GeV to 6% at 5 GeV.
(2) Noise from the electronics in coincidence with 

a genuine single photon event which vetoes the trig
ger by the energy fraction requirement. In approxi
mately 0.2% of events obtained by triggering on the 
beam crossing (such events are referred to as beam 
gate events below), at least one trigger segment had 
an energy above the I GeV bias.

(3) Channels not active in the trigger algorithm: 
during 1990 data-taking period, 10% of the BGO 
trigger segments were inactive.

(4) Photon showering into adjacent trigger seg
ments where one or more channels have an energy 
below the 1 GeV bias, so that the effective energy of 
the photon may be reduced to a value below the trig
ger threshold; or the energy deposition pattern result
ing in two or more channels above the trigger seg
ment bias, none of which satisfies the energy fraction 
requirement (“self-veto” ).

We generated single photon events in the BGO at 
a given energy and angle. The simulation distributed 
energy among the crystals according to a parametri- 
zation determined from test beam data and took into 
account FERA resolution and the presence of inac
tive channels. Real beam gate events were superim
posed on the generated events in order to reproduce 
the effects of FERA pedestal fluctuations and elec
tronic noise. The application of the trigger algorithm 
to this sample has allowed the determination of the 
trigger efficiency, as a function of the photon energy 
and angles 6 and 0 . Fig. 1 shows this computed effi
ciency curve, averaged over the angular variables, as 
a function of the photon energy. It rises sharply at the 
energy threshold and reaches an almost constant 
value, mainly determined by the presence of inactive 
channels. The slight decrease above 3 GeV is due to 
the increased probability of the “self-veto” effect de
scribed in point (4) above. The errors correspond to 
extreme assumptions in the model used to compute 
the efficiency. They include the statistical errors on 
the FERA resolution and the systematic error in

knowledge of the shower development in the BGO.
As can be seen from fig. 1, the two determinations 

of the trigger efficiency agree well within uncertain
ties. In what follows, we use the stimulated trigger ef
ficiency. From a comparison between the simulated 
curve and the experimental points of this figure, we 
estimate an absolute systematic error for the trigger 
efficiency of ±0.04.

4. Single photon sample

For Z°-»vvy events, our selection aims at isolating 
events where only a single electromagnetic energy de
posit in the BGO is seen, with no other particle in the 
rest of the detector. Candidates are selected by re
quiring the following:

( 1) There is only one energy deposit with three or 
more crystals.

(2) The ratio of the sum of the energy in the 3x3 
crystal matrix (Z 9) to the sum of energy in the 5x5 
crystal matrix (Z 15), corrected for energy losses, must 
be larger than 0.95.

(3) The polar angle of the deposit lies between 450 
and 135°.

(4) The energy of the deposit is greater than 1.5 
GeV.

(5) The number of reconstructed TEC tracks is 
zero.

(6 ) Less than 1 GeV of energy is deposited in the 
veto counter.

(7) There is no match between an energy deposit 
in the veto counter and a deposit in the hadron 
endcaps.

(8 ) There is less than 3 GeV in the hadron calo
rimeter and less than 1 GeV in the low angle part of 
the endcaps ( < 8 °).

(9) The energy deposited in either luminosity 
monitor is less than 5 GeV.

(10) The event does not satisfy the muon trigger 
requirements, and no match is found between muon 
z  chamber hits and the BGO deposit.

(11) The skewness of the BGO shower, defined as 
the ratio between the minor and major axes of the 
ellipse characterizing the transverse profile of the 
shower, is larger than 0.2 at 1 GeV, rising linearly to 
greater than 0.5 at 45 GeV.

Cut (1) eliminates double radiative events, cut (2 )
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ensures that the energy deposit is electromagnetic, 
cuts (3) and (4) define our acceptance region for the 
events. Globally the cuts (1 )-(11 ) introduce and 
inefficiency due to noise of 4%. This inefficiency has 
been evaluated using beam gate events, single elec
tron events (see below), and radiative dimuon events. 
There is an additional inefficiency of 5% for photons 
within the acceptance due to photon conversions, 
shape cuts, etc. which has been determined from 
Monte Carlo.

Cuts (5 )-(9 )  reduce the e+e"y contamination, 
cuts (6 ) and (7) the jâ iy events and cut (5) charged 
pion and single electron backgrounds. Cuts (2), (5) 
and ( 11) remove beam-gas or beam-wall events. 
Cuts ( 10) and ( 11) are used to eliminate out of time 
cosmics on the basis of residual information from the 
muon chambers and the shower profile in the BGO. 
Out of time cosmics are a consequence of two con
straints coming from the BGO calorimeter: one is the 
long integration time (8 (is) starting at 2.8 (is before 
beam crossing, and the other is that the BGO pro
vides no direct information on when the event oc
curred. This means that an out of time cosmic ray 
passing through the BGO and emitting a hard photon 
can simulate a single photon event because the signal 
it leaves in the rest of the apparatus falls outside the 
range of full sensitivity. This problem has been solved 
by using two different methods which are comple
mentary and which achieve nearly 100% efficiency in 
cosmic background removal when combined. One 
method, implemented in cut ( 10), uses the muon 2 
chamber and the muon trigger information, the other, 
implemented in cut (11), the shape of the BGO en
ergy deposit. The inefficiency from cuts (10) and
( 11) in the selection of single photon events has been 
studied using single electron events and found to be 
0.7% due to false muon chamber hits coming from 
noise. The efficiency of these cuts in rejecting cosm
ics is described below in the section on backgrounds.

After applying these cuts we obtain a sample of 61 
events, from which we extract the number of neu
trino families.

The total efficiency for the single photon sample 
includes: the track chamber efficiency of 0.93 due to 
an inactive TEC sector and independent from the 
center of mass energy, the cut efficiency against noise 
of 0.96, the selection efficiency of 0.95» the trigger ef
ficiency which is 0.72 below M z + 1 GeV and 0.77

above. The total efficiency ranges from 0.60 to 0.67 
as a function of the center of mass energy with an er
ror of 0.07.

5. Single electron analysis

Events with a single electron in the BGO barrel, 
which arise from the reactions e+e~y and e+e~-> 
e+e_e+e", allow us to cross check our single photon 
selection with a sample one order of magnitude larger 
and with the same electromagnetic signature. More
over, we used this larger sample to test the eey gen
erator, TEEG [13], which also predicts the main 
background to the vvy signal with a photon in the 
BGO barrel and the electrons at low forward and 
backward angles.

To obtain the sample for the single electron analy
sis, we require cuts similar to the one of the previous 
section plus a single reconstructed track which is fit
ted from at least 30 TEC hits and a match in 0 be
tween the track and the electromagnetic cluster. For 
comparison with Monte Carlo simulation, additional 
cuts were applied to isolate the radiative Bhabha 
events. Firstly, we required a large amount of energy 
in one of the luminosity detectors ( £ Lumi >  30 GeV) 
and nothing in the other luminosity detector, the 
hadron calorimeter endcaps, and veto counter. Sec
ondly, we applied cuts which take advantage of the 
three-body kinematics of the radiative Bhabha pro
cess, namely, once the direction of the unseen parti
cle is assumed, the measurement of the direction and 
energy of the single electron is sufficient to predict 
the location of the particle detected in the luminosity 
detector. Taking the direction of the undetected par
ticle to be 0 ° (the unseen particle is typically unscat
tered), it was required that the angular differences 
between predicted and measured positions of the 
particle detected in the luminosity detector fall in the 
following ranges:

| A 0 | < 5 °  , | A cos /9 |^ 0 .0005  .
4

After these cuts we obtain a sample of 886 events 
which can be used to check Monte Carlo expectations 
on e+e~y. Results are presented in figs. 2 and 2b. The 
Monte Carlo data has been normalized according to 
the integrated luminosity and trigger efficiencies with 
the result that a total of 891 events are expected. The
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Fig. 2. Comparison between data and Monte Carlo for (a) the 
single electron transverse momentum distribution in the BGO 
barrel, (b) the single electron angular distribution in BGO, (c)  
the angular distribution for the forward particle detected in con
junction with the single electron (with the energy deposition in 
the forward detectors within kinematical cuts).

agreement gives confidence in the generator to repro
duce the e+e_y events (with both electrons unseen). 
Moreover, having weighted the Monte Carlo events 
with the trigger efficiency curve, this agreement is a 
positive check on the determination of the trigger 
efficiency.

Another important point is to verify the correct
ness of the simulation in the forward region between

3.5° and 10° which includes the gap between the lu
minosity detector and the endcap hadron calorime
ter and the region covered only by the latter (be
tween ~ 6° and 7°). To do this, we apply the three- 
body hypothesis cuts on A cos 6 and A0 as before but 
use an energy threshold as low as 1 GeV in the had
ron calorimeter endcap. We display in fig. 2c the dis
tribution of the detected electron 6 angle for these
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events compared with the Monte Carlo expectations. 
The number of events from data is 1126 while the 
number expected from Monte Carlo, after weighting 
the events by the trigger efficiencies and normalizing 
to the integrated luminosity, is 1088 ±25.

6. Backgrounds to e+e~->vvy

6. L Radiative Bhabha scattering

The dominant background to the e+e~-»vvy pro
cess comes from the low Q 2 radiative Bhabha scat
tering when both electrons escape detection and only 
the photon is seen in our fiducial region. The low an
gle reach of our luminosity monitors, coupled to the 
requirement that the photon be inside the BGO bar
rel with an energy larger than 1.5 GeV, effectively re
moves e+e~y events where both electrons remain in 
the beam pipe. However, as already pointed out, the 
scattered electron might not be detected if it escapes 
into the hole. Because of the kinematical constraints 
a photon coming from this source will have an energy 
between 3 and 4.5 GeV, thus giving rise to a false peak 
at that energy in our data.

To simulate this process we have again used the 
TEEG Monte Carlo. The simulation allowed both 
electrons to scatter up to 8 ° in 6, thus giving a total 
coverage of the luminosity monitor region, the hole, 
and the low angle part of the endcaps. The behaviour 
of this Monte Carlo has already been checked using 
the single electron sample which is the most signifi
cant test due to the high statistics of the sample. Two 
less significant checks were made by comparing the 
detected number of double-tag luminosity events with 
a photon in the barrel against the number predicted 
by Monte Carlo, and the number of single-tag events. 
The number of double-tag events observed is 9 as 
compared with 10 expected from Monte Carlo. The 
number of single-tag events (electron in luminosity 
monitor or endcap) with a single photon in the BGO 
barrel are 41 when we expect 29 from Monte Carlo 
prediction. The agreement is well within the statisti
cal significance of the sample.

Finally, passing the simulated radiative Bhabha 
events through our single photon selection and 
weighting the surviving events by the single photon 
trigger efficiency, we estimate that the sample of 61

candidates contains 7.6 ± 0.8 events of this kind where 
both electrons are undetected.

6.2. Cosmic rays

To evaluate the level of cosmic contamination in 
the single photon data sample after our cuts, partic
ularly veto cuts ( 10) and ( 11) described above in 
section 4, we carried out an independent selection of 
cosmic ray events and then measured the effect of veto 
cuts (10) and (1 1) on this sample. The independent 
selection is based on the BGO analog sums which are 
used for level-one triggering. Here we take advantage 
of the fact that the analog signal is sampled in a gate 
of 2 fas chosen so that if the event is in time the trigger 
will measure exactly the same energy as the digital 
readout which is reconstructed offline. Thus the ratio 
between these two values gives an indication of how 
much out of time the event was.

Starting then from a sample of 425 single photon 
candidates obtained before cosmic cuts are applied, 
we select 180 out of time candidates by requiring that 
the ratio of the analog sum to the digital sum be less 
than 0.7. Based on (a) the analysis of our single elec
trons events, which yields the result that 1. 1% of in 
time electromagnetic showers will have a ratio less 
than 0.7 and (b) the assumption that the final can
didates are dominantly vvy and e+e~y, we expect 0.7 
events in this sample from vvy and e+e_y. After ap
plying the cosmic cuts (veto cuts ( 10) and ( 11)) to 
this sample of 180 events, one event survives. As 0.7 
of it is expected to be an in time signal event and tak
ing into account that the rejection is expected to be 
even greater for events which are nearly in time, we 
estimate a contamination of 0.3 to;* event from 
cosmics.

6.3. Other background processes

Possible backgrounds from other processes have 
been evaluated by Monte Carlo simulation.

The background from e+e_ annihilation into three 
photons, e+e“ ->yyy [14], contributes 1.0 ± 0.1 event 
above £^>1.5 GeV.

The final state, where the muons are unde
tected, contributes less than 0.5 event at the 95% con
fidence level [15].
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Another source of background conies from two- 

photon processes, e+e~->e+e_X, where X is a rc0, r|, 

T)', a2, f2 or a recently-reported high-mass resonance 

[16] decaying into t\k°k°, when the scattered e* both 

escape undetected down the beam pipe and only one 

photon is observed from the final state X. Genera

tion of events was carried out using a Monte Carlo 

implementation [17] of the cross section formulae 

found in ref. [18]. Since the two-photon cross sec

tion varies little across the Z° pole, each sample was 

generated at ^= 9 1 .2  GeV. To extend the photon 

couplings to the resonance from the on-shell photon 

case to the virtual case, the p-pole form factor was 

used. Resonance decays were generated according to 

phase space. With the requirement that the photon 

energy be greater than 1.5 GeV, less than 0.5 event at 

the 95% confidence is left.

7. Results

To estimate the background from 

e+e~£+£-y, we generated samples of events e+e-~> 

e+e~e+e“y and e+e"->e+e“^ +̂ ‘ Y at <Js=91.2 

GeV. The event generation is based on the exact 

lowest-order cross sections i 18 ] for e*e~

e+e e+e and e+e e+e"ji+ji~ and an algorithm

described in ref. [19] to include radiation from the 

state. Upper limits of 0.7 events and 0.6 events

from e+e-->-e+e-e+e-Y and e+e"-+e+e“|i+|j.”Y>
respectively, are obtained at the 95% confidence level 

for£Y> 1.5 GeV.

In what follows, therefore, we take into account 

only the background contribution from e+e-Y> 111 

and cosmics.

cosmic are

e+e~

Table 1 shows the luminosity, the number of single 

photon candidates along with the background esti-

mates (Abound + Afgiec,,..d+/Vcosmic) at
each of the seven center of mass energies. The

N exlLted are for Âv=3, the N ^ ccic(1 and N 

included proportionally to the integrated 

luminosities.

The measured single photon energy distributions 

are shown in fig. 3 along with Monte Carlo predic

tions for the process e+e~-*vvY, with three families 

of light neutrinos, and for the background from the 

~>Q+e~y source. For vvy we have used the 

NNGSTR program using the full second order cor

rections [20], These plots show good agreement be

tween data and Monte Carlo as well as fig. 4 where 

we show the 0 distribution for our candidates.

The corrected cross sections for the process e+e- 

->vvy are shown in the last column of table 1 for the 

case that one photon is above 1.5 GeV in the angular 

region |cos 8\ <0.7 with no restrictions on addi

tional photons. These are calculated from the ob

served number of events, the integrated luminosity 

and the background contributions shown in table 1, 

applying the efficiency given in section 4. The errors 

represent 68% CL intervals and take into account the 

background fluctuations [21].

We extract the number of families of light neutri

nos Nv from our sample, by performing a maximum 

likelihood fit to the number of candidates, for the 

seven center of mass energy points as shown in table 

L We use Poisson probabilities, calculated as a func-

Table 1

Luminosity, observed and expected number of events corrected cross sections for e+e"-»-vvy at each center of mass energy.

Ecm (GeV) L (nb_1) ^observed N exceed •^background o-(pb)

88.28 215 — 0.5 0.7 0+14

89.28 226 3 O b
o 0.7 17i?i

90.28 132 2 0.7 0.3 2 1 Î Î 1
91.28 1481 15 16.2 4.5 H Î 4

92.28 245 4 5.2 0.7 22
93.28 334 15 11.3 0.9 70î?9

94.28 347 22 14.7 1.0 90±ïg

total 2980 61 49.4 o
o

b
o
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tion of the expected number of signal and back

ground events. For the e+e~ -~>vvy process, taking into 

account the trigger efficiency and the selection re

quirements, we computed, for each CM energy, the 

effective cross section corresponding to Nv between 2 

and 4 and used a straight line fit to get a parametri- 

zation of the cross section dependence on Nv. The ef

fective cross section was calculated using and analyt

ical program [22]. We have modified this program 

using an improved Born approximation of eq. (2) 

with an 5-dependent Z° width to account for the elec

tro-weak radiative corrections. The cross section (2) 

is written as
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00 (s)
\2n

M l (s - M l)2 + s2r i / M l
- +W terms,

(3)

where Tv is the standard model Z° partial width for 

each neutrino family and M z, Fz, and r c are respec

tively the Z° mass, total width, and electron partial 

width.

The agreement, for Nv=3, of this program with 

NNGSTR is better than 1%. To describe the Z° res

onance we used as input parameters our most recent 

measurements [23], Mz = 91.181 ± 0.010± 0.02 

[ LEP ] GeV and Tz = 2.501 ± 0.017 GeV. Moreover, 

r e is defined from our measured value sin20w = 

0.227i0.006* in this approach we then allow the pa
rameter Nv to vary while keeping the total width fixed.

The result we find is Nv = 3.24±0.46 (stat.).

It is worth noting here that if we take

A = n M+3ASM+r; (4)

where F,inv. -Nvr l M is the invisible width and Ff,M, 

i f *, r ^ M are calculated from the standard model and 

we allow Fz to vary with Nv in the fit, we get Nv=

3.24±0.62 (stat.).

Contributions to the systematic error in our anal

ysis come from the luminosity which gives an uncer

tainty on the number of families of A/Vv= ± 0.03, the

100
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cu

D
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0
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Theoretical cross sections 
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N v=4

89 91 93 95

V S (GeV)

Fig. 5. Corrected cross section (pb) as a function of CM energy. 

The solid curves show the expectations from jVv=2, 3, 4 and the 

dashed one what is obtained with our best fit {Nv= 3.24 ±0.46).

selection efficiency, ANV= ± 0.06, the determination 

of the trigger efficiency, A7Vv= ±0.16, and the cosmic 

contamination, AM,= 4-0*I 3 
— 0,02 Moreover, the errors 

from Mz , Fz and sin 0W, from the top mass variation 

and from the theoretical uncertainty, give a total con

tribution of A7Vv= ±0.07. Adding all these system

atic errors in quadrature, we estimate the total sys

tematic error to be ANV=±0.22 family. Our final 

result then is

Nv= 3.24±0.46(stat.) ±0.22(syst.) .

This corresponds to an invisible width of the Z° of 

540 ±80 ±40 MeV once we assume that the only in

visible decay modes are to light neutrinos and we use 

the standard model value of r%M = 166.8 ± 1.5 MeV 

for the partial decay width into a single light neutrino 

family. (The uncertainty in the standard model par

tial width is obtained by varying the top mass be

tween 90 and 250 GeV and the Higgs mass between 

45 and 1000 GeV.) This is in agreement with the re

sult published by the OPAL Collaboration in a simi

lar analysis [24 ]. The corrected cross section is shown 

as a function of CM energy in fig. 5 along with the

!

expectations from N, 

fit.

2, 3, 4 and for the likelihood
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8. Conclusion

A direct determination of the number of light neu

trino families is performed by measuring the single 

photon cross section at center of mass energies near 

the Z° resonance with the L3 detector assuming the 

standard model Z° coupling to neutrinos. A total of 

61 events with photon energies larger than 1,5 GeV 

are observed for a corresponding integrated luminos

ity of 3.0 pb“"1. A maximum likelihood fit gives Nv 

= 3.24 ± 0.46 ± 0.22. This is in agreement with the L3 

result of Nv= 3.05 ±0.10 from the line shape method 
[22 ].
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