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Abstract

Taking into account the anisotropy of phase space in multiparticle production, a self-affine analysis of factorial moments 

was earned out on the NA22 data for 7r+p and K+p collisions at 250 GeV/c. Within the transverse plane, the Hurst 

exponents measuring the anisotropy are consistent with unit value (i.e. no anisotropy). They are, however, only half that 

value when the longitudinal direction is compared to the transverse ones. Fractality, indeed, turns out to be self-affine rather 

Lhan self-similar in multiparticle production. In three-dimensional phase space, power-law scaling is observed to be better 

realized in self-affine than in self-similar analysis.
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1. Introduction

The suggestion that normalized factorial moments 

Fq(8y) of particle-multiplicity distributions in ever 

smaller phase-space intervals 8y, may show power- 

law behavior [ 1 ]

F(l(5y) oc (8y)

affine analysis compared to those from the self-similar 

analysis are given. Conclusions are summarized in

Section 7.

( Sy -+ 0 ) ( 1)

has spurred a vigorous experimental search for linear 

dependence of In F(} on — In fry [2], Analogous to a 

similar behavior at the onset of turbulence, such a de­

pendence is referred to as “intermittency”. Power-law 

scaling is typical for fractals [3], i.e., for self-similar 

objects of non-integer dimension. The powers >̂(j are 

related to the anomalous dimensions d(} = — \ ) 

measuring the fractality of a system [4]. In general, 

however, only approximate scaling has been observed 

in the experimental data.

When comparing log-Iog plots for one phase-space 

dimension, one notices that the lnF(/ saturate at small 

Sy. This can be explained as a projection effect 

of a three-dimensional phenomenon [5], In three- 

dimensional analysis, however, the power law also 

does not hold exactly in all data. In NA22, for exam­

ple, the 3D data are seen to even bend upward [6 ].

A deviation from exact scaling can be expected from 

an anisotropy of occupied phase-space. To account for 

such an anisotropy, Wu and Liu have suggested [7] 

that the scaling property should be different in longitu­

dinal and transverse directions and the local multiplic­

ity fluctuations are self-affine rather than self-similar. 
If that is the case, the anomalous scaling of factorial 

moments can be observed to be retained exactly, only 

under a self-affine analysis, where the shrinking ra­

tio is allowed to be different in different directions. In 

a self-similar analysis, in contrast, all directions are 

forced to have an identical shrinking ratio. It should be 

remembered, however, that the scaling law is expected 

to be distorted in full phase space due to correlations 

imposed by momentum conservation.

The experimental data sample is described in Sec­

tion 2. The method of self-affine analysis is briefly 

summarized in Section 3. The results of the self- 

similar analysis are shown in Section 4. After reduc­

ing the influence of momentum conservation in the 

full region, so-called Hurst exponents are obtained by 

fitting one-dimensional factorial moments as shown 

in Section 5. In Section 6 , the results from the self-

2, The data sample

In the CERN experiment NA22, the European 

Hybrid Spectrometer (EHS) was equipped with the 

Rapid C y c l in g  Bubble Chamber (RCBC) as an active 

target and exposed to a 250 G cV /c  tagged, positive, 

meson enriched beam. In data taking, a minimum 

bias interaction trigger was used. The details of spec­

trometer and trigger can be found in [8,9].

Charged particle tracks are reconstructed from hits 

in the wire- and drift-chambers of the two-lever- 

arm magnetic spectrometer and from measurements 

in the bubble chamber. The momentum resolution 

varies from 1-2% for tracks reconstructed in RCBC, 

to 1-2 .5 % for tracks reconstructed in the first lever 

arm and is 1.5% for tracks reconstructed in the full 

spectrometer.

Events are accepted for the analysis when the 

measured and reconstructed charge multiplicity are 

the same, charge balance is satisfied, no electron is 

detected among the secondary tracks and the num­

ber of badly reconstructed (and therefore rejected) 

tracks is 0. The loss of events during measurement 

and reconstruction is corrected for by applying a 

multiplicity-dependent event weight normalized to 

the topological cross sections given in [9]. Elastic 

events are excluded. Furthermore, an event is called 

single-diffractive and excluded from the sample if 

the total charge multiplicity is smaller than 8  and 

at least one of the positive tracks has a Feynman 

variable |*p| > 0-88. After these cuts, the inelastic, 

non-single-diffractive sample consists of 5 9  2 0 0  rr+p 
and K+p events,

For laboratory-momenta plab < 0.7 GeV/c, the 

range in the bubble chamber and/or the change of 

track curvature is used for proton identification. In 

addition, a visual ionization scan is used for Plab < 

1 . 2  GeV/c on the full K+p and on 62% of the 7r+p

sample. Positive particles with plab >  150 GeV/c are

given the identity of the beam particle. Other particles 

with momenta g > 1.2 GeV/c are not identified 

in the present analysis and are treated as pions.

In spite of the electron rejection mentioned above,
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residual Dalitz decay and y  conversion near the vertex 

still contribute to the two-particle correlations. Their 

influence on our results has been investigated in detail 

in [ 1 0 ].

3. The method

In the language of self-affine analysis in three- 

dimensional phase space (here denoted as pa,Pb>Pc)> 
only under the self-affine transformation 5pa —>

$Pa/Ki, Sph 8pb/\b* $Pc 8 p d K  with non­

identical shrinking ratios A«, A/, and Ac, are the

factorial moments expected to have the well-defined

scaling property

Fqi8pa,8pb,Bpc) = $ ' &

X F„ ( XaSpa, KbSpb, Ac8pc) .

(r)
'/

(2)

The shrinking ratios A,,, A/,, Xc are characterized by the 

so-called roughness or Hurst exponents [11]

H- =H
In A; 

In A,*
( i , j  = a , b or a, c or b, c ) , (3)

with

A,- <  Ay, 0 <  H(j ^  1, (4)

describing the anisotropy of the system under study. 

For Hij = 0, A/ = 1, the scaling property does not 

exist in direction /, only in direction j . For Hy = 1, 

the self-affine transformation reduces to a self-similar 

one, meaning that the system is isotropic in these two 

directions. For 0 < Ha < 1, non-trivial self-affine 

fractality exists in the ( i j )  plane, i.e., the fluctuation 

is anisotropic in that plane.

The Hurst exponents can be deduced from the 

data by fitting three one-dimensional second-order 

factorial-moment saturation curves [5]

yt (i = a, b, c) (5)

where Mj  = Lp-JSpi is the number of sub-divisions 

in direction A/?,- and 8pi are the initial and final 

interval size in direction /, respectively, and a,-, /?,* and 

7 / are three fit parameters. The Hurst exponents are 

determined from the parameter y(- as

H - = 1 +Y]
1 + 7i ’

{ i j  = ci,b or a ,c  or b ,c ) . ( 6 )
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Fig, 1. Self-similar analysis of Fi} in the set of variables ( v, p[,(p) 
in one, two, and three dimensions, as indicated.

With these Hurst exponents, a self-affine analysis can 

be executed according to (2). If self-affine fluctuations 

of multiplicity do exist in multiparticle production, 

exact scaling should be observed in three-dimensional 

phase space.

A scaling function similar to (2) for two variables 

has also been suggested by Wosiek [ 12] as a require­

ment for hyperscaling from a formal analogy with sta­

tistical physics.

4. Self-similar analysis

The results of a self-similar analysis in 1-, 2- and 3- 

dimensional phase space are presented in Fig. 1. The 

initial intervals for the three phase-space variables, ra­

pidity y, azimuthal angle cp and transverse momentum 

Pi, are defined as

— 2  <  _y < 2 , 0  < (p < 2tt

0.001 < pi <  10 GeV/c.
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To avoid trivial effects due to lack of translational in­

variance, all variables are transformed to the corre­

sponding cumulative variables by the Ochs method 

[ 13]. The experimental resolution in y, cp and p t has 

been studied in detail in [ 10]. The limited available 

statistics, rather than the experimental resolution, sets 

the limit on the smallest bin size to be used in the 

analysis.

In one-dimensional projection, the partitioning M  =

1 ,2 ,.,. ,4 0  is used for all three variables. In two- 

dimensional projection, the partitioning in each direc­

tion is M = 1 , 2 , . . .  , 2 0 , so that for the area it is 

M i -  12 ,22, . . .  ,202. In the three-dimensional case, 

M = 1 ,2 ,. . . ,  15 is used for each direction, so that 

= l 3 ,2*\ . . . ,  153 for a three-dimensional box.

In the l-D analysis (first column of Fig. 1), Fo sat­
urates at three different values when using y, pt and 

<p% respectively. In the case of y, F2 increases rapidly 

with increasing in M  at small M  and reaches a satura­

tion value which is the highest of the three. The trend 

is followed for the case of p ti but at lower values of F^t 
When using <py on the other hand, F2 increases with 

increasing In M  only above an initial decrease*

From the 2-D analysis (second column of Fig. 1) 

in the (ytpi) plane, we observe an onset for a satura­

tion at medium In M, followed by an upward bending 

at large InM. An upward bending is observed in the 

iy>(p) plane. In the (pit<p) plane, a decrease at low 

InM  is followed by an upward bending.

In the 3-D analysis, In Fq is bending upward for all 

orders of q.

5. Hurst exponents for higher-dimensional phase 

space

Momentum conservation by itself causes a correla­

tion and can, therefore, distort the scaling behavior ex­

pected from the dynamics of particle production [14]. 

The influence of momentum conservation on the fac­

torial moments is expected to be different in the vari­

ous variables. The variable p t contains only the abso­

lute value of momentum in the transverse plane with­

out any information on the direction. The influence of 

momentum conservation, therefore, is small for this 

case. For rapidity y, the influence of leading particles 

is reduced by the y-cut given above. Therefore, the 

influence of momentum conservation in y is not sig-

~  1.4

r cl Wh
I

1.3

0 10 20 30 40
My

1-33  

*  1.2

L10 10 20 30 40
MPi

^  1.2 

r

£
_ <  L 1

1 0 10 20 30 40M„

Fig. 2. Saturation curves for F2 in the three one-dimensional 

variables indicated. The curves are fits by (5) after omission of 

the first point (first 3 points in the case of Fi{(p)).

nificant. For the variable <p, however, all directions in 

the transverse plane are included for M  = 1, so that F2 

is dominated by transverse momentum compensation, 

which explains the decrease of with increasing 

In M  at low In M  as shown in Fig. 1.

After reducing the influence of momentum conser­

vation by excluding low values of M, it is easy to ob­

tain the Hurst exponents from the data by means of 

(5) and (6 ). The fit results obtained according to (5) 

are shown in Fig. 2 for all phase-space variables con­

sidered. The parameter values are given in Table 1. 

Accordingly, the Hurst exponents deduced from ( 6 )

Table 1

The parameter values obtained from a fit by (5)

Vari­

ables

a P y Omitting

point(s)

V« 1.336 ±0.005 0.218 ±0.042 1.140 ±0.245 1
P\ 1.534± 0.021 0.340 ±0.021 0.021 ±0.006 I

<P 1.497 ±0.019 0.420 ±0.019 0.014 ±0.005 1-3

“l 1 1 i l 1 LLI Î I 1 I I 1 1 L.1 1—Ll—1 I 1 I M.l 1 I 1111 1 M t 1 1 I
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are:

1 021
H»„à = —  = 0.48 ± 0.06;ypi 2.14

1.0139
y<p ~ ' 9  M ~ ^.47 i  0.06;

M  4 X  I

- _ 1-014
1.0212

0.99 ±0.01.

From these Hurst exponents, we, indeed, observe

anisotropy ( H Vj 0.5) between longitudinal and

transverse directions of multiparticle production, 

while there is an isotropy in the transverse plane 

(Hij  & 1 for i and j  both in the transverse plane). 

This result means that fractality in multiparticle pro­

duction is self-affine rather than self-similar.

In order to show the i ndependence of this conclusion 

of the particular set of variables being used, the same 

analysis has also been done with the set (y, Pty*Ptz) 

instead of ( y t pi,<p). The corresponding results for the 

Hurst exponents are:

1 0121
ƒƒ_  = ••••—  = 0.47 ± 0.06;yihy

HyVu

H

2.14

1.0041

2.14

1.0041

= 0.47 ±0.06;

1.0121
0.99 ±0.01.

They show that the rule H yj ~ 0.5, H}j ~  1 for i and 

j  denoting variables in the transverse plane also holds 

for the variable set (y, pty, p tz).

6. Self-affine analysis

With the Hurst exponents obtained above, we can 

perform a self-affine analysis in three- and two- 

dimensional phase space. For convenience, we ap­

proximate the Hurst exponent for ( y , p t ) and (y,<p) 
by

1
Hvj=~ O'2
but use

From (3), it follows that \ Pl -  A^ = A2. For p t 
and <p, we use a partitioning My = 1,2,3,. . . ,  10

£

ln My
Fig. 3, Comparison of the three-dimensional self-affine and 

self-similar analyses.

and M lh = M9 - 1,4,9,.. . , 100 in two-dimensional 

analysis, but M v = 1 , 2 ,3 , . . . ,7  and M ih = M<p = 

1,4,9,... ,49 in three-dimensional analysis. The re­

sults of the three-dimensional self-affine analysis on 

F2 are given by solid circles in Fig. 3. Those of the cor­

responding self-similar analysis are repeated by open 

circles, for comparison. In order to show the quality 

of the scaling law, linear fits

In Fq -  A + (fry Iny (7)

are compared to the data in Fig. 3. The fit results are 

given in Table 2. To reduce the influence of momentum 

conservation, the first point is not used in the fits.

Contributions to x 2 a$ shown in the top part of Table 

2  are only from the diagonal terms of the covariance 

matrix. In fact, the diagonal terms provide the main

Table 2

The parameter values obtained from a fit by (7)

Method A (pi * 2/NDF

Without bin-size correlation

weighted self-affine 

weighted self-similar 

Without bin-size correlation

unweighted self-affine 

unweighted self-similar 

With bin-size correlation

unweighted self-affine 

unweighted self-similar

—0.04 ± 0.03 0.32 ±0.03 7/4 

0.11 ±0.01 0.12 ±0.01 9/4

-0.08 ±0.02 0.33 ±0.03 12/4

0.09 ± 0.01 0.10 ± 0.0! 20/4

-0.08 ± 0.02 0.34 ± 0.02 14/4

0.10 ±0.01 0.10±0.01 32/4
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Fig. 4. Comparison of the two-dimensional projections of self-affine and self-similar analyses.

contribution, and the relative size of x 2 for self-similar 

and self-affine analyses should not change dramati­

cally by adding the contribution from non-diagonal 

terms that account for the correlation between points at 

different bin size. As is shown by comparing the results 

from fits to the unweighted sample, with and without 

considering the non-diagonal terms (two lower parts 

of Table 2), the fit results are retained better for the 

sell-affine than for the self-similar analysis. A sim­

ilar conclusion can be drawn from an inspection of 

Fig. 3, itself. While the self-similar analysis leads to 

an upward bending, this effect is absent in the self- 

affine analysis. Of course, higher statistics data would 

be needed to definitively prove this point.

Even though the errors in the self-affine analysis 

are large, the results shown in Fig. 3 support the ex­

pectation [7] that a 3-dimensional self-affine analysis 

would lead to the full increase of In Fq with increas­

ing In M  right from the beginning. On the other hand, 

in a self-similar analysis, the full increase would only 

be reached for large M, so that an upward bending 

would be observed. This upward bending is indeed 

present for the self-similar analysis. If future experi­

ments can confirm the linear increase of the sell-affine 

results with improved statistics, this would mean that 

the scaling law ( 1 ) is better observed in self-affine 

analysis than in self-similar analysis.

The two-dimensional self-affine projections are pre­

sented in Fig. 4. It can be seen that In F\ increases 

smoothly with increasing In M y and the trends are sim­

ilar for (y, a )  an<3 {y*<p) (neglecting the first point in 

(y, <£>)), meaning that in a self-affine analysis, the in­

fluence of artificial projection effects is reduced with 

respect to that observed in self-similar analysis.

7* Conclusions

In this paper we present a self-affine analysis of fac­

torial moments in three-, as well as in two-dimensional 

phase space, on the NA22 data for 7r+p and K+p col­

lisions at 250 GeV/c. The results are compared with 

those from a corresponding self-similar analysis.

From fitting the factorial moments of the one- 

dimensional projections by the Ochs saturation for­

mula (5), the Hurst exponents Hjj are derived for 

all combinations of phase-space variables used. The 

value of Hij for a combination of rapidity y with a 

transverse direction is approximately equal to 0.5. 

We conclude, therefore, that fractality in multiparticle 

production is self-affine, rather than self-similar. In 

the transverse plane, Ha stays approximately equal 

to 1 . 0  and, therefore, shows merely self-similar fluc­

tuation within that particular plane. Such a behavior 

can be understood from the privileged role of the 

longitudinal axis in multihadron production and the 

symmetry within the plane transverse to this direction. 

This important point has been neglected in fluctuation 

analysis of multiparticle final states, so far.

Furthermore, the three-dimensional sell-affine anal­

ysis shows a better scaling behavior than does the cor­

responding self-similar analysis. The two-dimensional 

self-affine projections with Hij = 0 .5 , i.e., (y, p t) and 

(y, <p) turn out to show a behavior more similar to 

each other than in the corresponding self-similar pro­

jections.

It would be interesting to see how the value of #,■/ 

changes with the type of collision and with incident 

energy.
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