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Abstract

A search for single and multi-photon events with missing energy is performed using data collected at centre-of-mass

energies between 161 GeV and 172GeV for a total of 20.9 pb-1 of integrated luminosity. The results obtained are used to

derive the value for the vvy(y) cross section as well as upper limits on new physics processes, © 1997 Published by 
Elsevier Science B.V.
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1. Introduction

The increase in centre-of-mass energy achieved at 

LEP in 1996 provides the opportunity to search for 

physics beyond the Standard Model. Single or dou

ble photon events with missing energy could be 

evidence of a variety of new physics processes: pair

production of neutralinos ( X\X\* X\Xi* X2X2' etc*) 
or associated production of a neutralino and a light 

gravitino (#j°G), when neutralinos follow either the

decay X2 X\J or X\ ~* Gy [2]; single or dou
ble production of excited neutrinos [3,4] where the 

latter follows the decay v* vy\ and finally pro

duction of an invisible resonance that is produced in 

association with one or more photons.

In the following we present a study of events with 

one or more energetic photons and missing energy. 

Two distinct kinematic regions are considered: high 

energy photons from which the cross section for the 

vvy(y) process is measured and low energy photons 

for which other Standard Model processes contribute 

significantly. Both regions are used in searching for 

new physics processes. Limits are derived for gen

eral models of particle production followed by radia

tive decay and for specific Supersymmetry models 

with a light gravitino.

Searches for single and multi-photon final states, 

as well as measurements of the vvy(y) cross sec

tion, have already been performed by L3 [5] and by 

other LEP experiments [6] at c entre-of-mass energies 

around the Z resonance and above.

2. Data sample

In this analysis we use the data collected by the 

L3 detector [7] during the high energy run of LEP in 

1996 for an integrated luminosity of 1.0.7 pb~ 1 at 

V7 = 161.3 GeV (hereafter called 161 GeV run), 1.0 

pb-1 at \/7=170.3GeV and 9.2 pb_l at /s — 

172.3 GeV (hereafter called 172 GeV run).

Monte Carlo events for the main background 

sources were simulated, namely e+e"~> vvyiy), 

with KORALZ [8] and NNGSTR [9], e+e“ -> yy(y ) 

with GGG [10], Bhabha scattering for large scatTer- 

ing angles with BHAGENE [11] and for small scatter

ing angles with TEEGG [12], and finally two-photon

interactions, specifically the process e + e~~-> 

e+e~e+e~, with DIAG3 6 [13]. The number of simu

lated background events corresponds to more than 50 

times the integrated luminosity of the collected data 

for all processes except Bhabha scattering and two- 

photon collisions for which the number is about 10, 

The detector response has been fully simulated [14] 

for these processes.

3. Event selection

Electrons and photons are measured in the BGO 

electromagnetic calorimeter (hereafter called BGO), 

They are required to have an energy greater than 

0.9 GeV, and their energy deposition pattern in the 

calorimeters must be consistent with an electromag

netic shower. Electrons are defined as electromag

netic clusters matched with a charged track recon

structed in the central tracking chamber. Identified 

conversion electrons coming from photons that have 

interacted with the beam pipe or with the silicon 

microvertex detector are also treated as photon can

didates, We define the barrel region to subtend the 

polar angle range 43° < 0 < 137° with respect to the 

beam axis and the end-cap region to subtend the 

range 14° < 0 < 37° or 143°<0<166°. Bhabha 

events and e+e” ->yy events that are fully con

tained in the calorimeter are used to check the 

particle identification as well as the energy resolu

tion, which is found to be 1.8% for beam-energy 

electrons and photons in both the barrel and the 

end-caps.

3.1. High energy photons

The selection of high energy photon candidates 

aims at identifying single and multi-photon events 

while rejecting radiative Bhabha events and 

bremsstrahlung photons from out-of-time cosmic 

rays. The following event requirements are imposed:

• there must be at least one photon with energy 

greater than 10 GeV in the barrel or end-cap 

region;

• the total detected energy not assigned to the 

identified photons must be smaller than 10 GeV;

■ there must be no charged tracks or there must be
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exactly two charged tracks consistent with a pho

ton conversion.
To suppress background from events with parti

cles that are not photons, we require the energy in 

the hadron calorimeter to be smaller than 10 GeV. To 

ensure good containment of particles, precise energy 

measurement and reliable particle identification we 

require the energy in the EGAP (electromagnetic 

calorimeter between BGO barrel and end-caps) to be 

smaller than 10 GeV in the 161 GeV run and smaller 

than 7 GeV in the 172 GeV run, the energy in the 

active lead rings to be smaller than 2 GeV and the 

energy in the luminosity monitor to be smaller than 

3 GeV. To reject cosmic ray background, we require 

events with no identified muon tracks and require 

that the most energetic BGO cluster not be aligned 

with signals in the muon detector. There must also 

be at least one scintillator time measurement within 

30° in azimuthal angle that falls within 5 ns of the 

beam crossing time. In addition, there must be no 

more than one BGO cluster not associated with an 

identified photon.

To reject backgrounds from radiative Bhabha 

events and the process e+e~-> 7 7 (7 ), we also re

quire:

• the total transverse momentum ( P ±) of photons 

must be greater than 6 GeV;

• the opening angle between the two jets con

structed from all calorimetric clusters in each 

hemisphere must be smaller than 177.6°, both in 

three dimensions and as projected in the plane 

transverse to the beam axis.

2

v
05
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£
c  1
0
>
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c  1

ill

0

a L3
n
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MC vvyy
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0 1 0 0

Invariant Mass (GeV)

2  ■

Recoil Mass (GeV)
Fig. 1. a) two photon invariant mass distribution for the vvyyiy) 

sample, b) two photon recoil mass for the same sample.

Table 1

Characteristics of the observed two photon events, at yfs =  161 GeV (#1 and #2) and at Js =  172 GeV (#3), with recoil mass larger than 

100 GeV.

Observed two photon events #1 #2 #3

First photon Energy 36.2 GeV 37.9 GeV 45.0 GeV

Polar angle 45.8° 29.8° 54.4°

Azimuthal angle £ O
0

189.6° 151.8°

Second photon Energy 19.8 GeV 12.9 GeV 6.1 GeV

Polar angle 146.7° 56.7° 55.0°

Azimuthal angle 253.8° 310.0° 260.1°

Transverse momentum of the event 19.1 GeV 16.2 GeV 35.4 GeV

Two photon mass 51.9 GeV 26.7 GeV 21.9 GeV

Two photon recoil mass 103.2 GeV 101.7 GeV 112.1 GeV
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When a second photon with energy greater than 5 

GeV is present, then the following alternative selec

tion is applied to the two most energetic BGO 

clusters in order to reject the above backgrounds:

• their opening angle must be less than 177.6° in 

the plane transverse to the beam;

• their total transverse momentum must be greater 

than 3 GeV;

• the re co il m ass c a lc u la te d  from  

ijs -b My.y — l/ s  Eyy must have a real solution,

After applying this selection, for the 161 GeV run, 

we observe in the data 35 events in the barrel, with 

one or more photons, and 22 in the end-caps to be 

compared with a Monte Carlo prediction of 26.7 and

a)

0)
<3
<M 5
V)

L3

DATA
MCvvv _

c
>
LU

0

Recoil Mass (GeV)

2 0

0)
C3
CN

2 io
c
§
ui

0

Recoil Mass (GeV)
Fig. 2. a) recoil mass distribution for single and multi-photon 

events in the barrel region, for the selected vvy(y) sample, b) the 

same distribution when the end-caps are also included.

27.2 events, respectively. For the 172 GeV run we 

observe in the data 25 events in the barrel and 24 in 

the end-caps to be compared with a Monte Carlo 

prediction of 21.7 and 24.5 events. The selected 

sample is nearly pure vvy{y), with only 0.3 events 

expected from radiative Bhabha events and the pro-

cess e e -> yy(y  ), for both the 161 and 172 GeV 

runs. The observed rates of two photon events and of 

photon conversions agree well with the Monte Carlo 

simulation. The cosmic ray background in the final 

event sample is estimated to be 0.05 ± 0.05 events in 

the barrel region and 1.16 + 0.8 events in the end- 

caps region, based on studies of out-of-time events.

The selection and trigger efficiency for vvy(y) 

events contained in the fiducial volume defined above 

and satisfying the kinematic requirements ( Ey> 

lOGeV, P ±> 6 GeV) is estimated to be (81.4 ±

0.6)% for the barrel and (79.9 ± 0.6)% for the end- 

caps. Fig. 1 shows the two photon invariant mass 

and recoil mass distributions for the vvyy(y) Monte 

Carlo and for the data, selected with a minimum 

energy cut on the second photon of 1 GeV. We 

observe 6 events in the data compared to the Monte 

Carlo prediction of 7.8 events (2.4 events with a 

recoil mass larger than 100 GeV). The main charac

teristics of the three events with recoil mass larger 

than 100 GeV are summarized in Table 1. Fig. 2 

shows the recoil mass distribution for single and 

multi-photon events.

3.2. Low energy photons

This selection extends the search for photonic 

final states to the low energy range. The search 

covers only the barrel region where a single photon 

trigger is implemented with a threshold at around 

900 MeV [15]. To prevent overlap with the previous 

selection, a maximum energy of lOGeV has been 

set. In this selection the total luminosity used is 10.0 

pb-1 for the 161 GeV run and 9.7 pb~l for the 

172 GeV run. We apply the following selection re

quirements:

• the energy in the hadron calorimeter must be less

than 3 GeV ;

• there must be no significant energy deposition in 

the forward detectors;

• neither a track in the central tracking chamber nor 

a muon track is present;



306 M. Acciarri et a i /  Physics Letters B 415 (1997) 299—310

there must be exactly one energy deposition be

tween 1.3GeV and lOGeV in the fiducial region 

of 45° < 9 < 135° satisfying electromagnetic 

shape criteria;
there must be no other BGO clusters in the barrel 

or end-caps, with energy greater than 200 MeV;

Bhabha events and a negligible contribution from the

yy{y) process. The efficiencies of this se-+ — e e
lection for vvy(y) events in the fiducial volume 

defined above and satisfying the kinematic require

ments (1.3 GeV < E y< 10 GeV and P ± > 1.3

GeV) are 74.4% and 73.9% for the 161 GeV run and 

the transverse momentum of the photon must be 172 GeV run, respectively. The trigger efficiency is

greater than 1.3 GeV.

Specific problems at low energy are the increase 

of the background due to cosmic ray events and to 

low angle radiative Bhabha scattering, with the for

ward scattered electron below the minimum tagging 

angle of the detector. To remove cosmic ray events 

we impose stringent requirements on the transverse 

shape of the photon shower. With the increase in 

beam energy, for radiative Bhabha events where only 

the photon is detected, the third order process be

comes insufficient to describe data at low transverse 

momentum. We simulate the process e+e- -» 

e+e-<y(y) with the T E E G G  [12] Monte Carlo, where 

we have included the fourth order contribution.

After applying the selection requirements we ex

pect, according to the Monte Carlo, 28.2 and 24.5 

events and we observe in the data 27 and 28 events 

for the 161 GeV run and the 172 GeV run, respec

tively. In particular, we expect 11.4 events from the 

e+e~~> vvy(y) process, 41.3 events from radiative

2 0

>tu
o
in
CM0o
(0

c
0)
>

LJJ

0

T T

L3

DATA

MC e+e'y

MC vvy

0

Energy (GeV)
Fig. 3. Energy spectrum of the selected low energy photons in the 

fiducial region 45° < 6 <  135°.

included in these values. The cosmic ray background 

in this sample is estimated to be 2.1 ± 0.4 events.

In Fig, 3 we show the energy spectrum of the 

photon for the combined samples at 161 GeV and 

172 GeV. It should be noticed that below 4 GeV the 

background from radiative Bhabha events becomes 

substantial.

4. Systematic checks

Radiative Bhabha scattering events where one 

electron enters the barrel region while other particles 

escape at low polar angles (so-called single electron 

events) constitute a control sample similar to the 

single photon sample. For this reason a single elec

tron sample from the data is used to perform system

atic checks.

The overall trigger efficiency, for the high energy 

photon selection, is the combination of the single 

photon trigger (barrel only) and of the BGO cluster 

trigger [15]. Since the minimum photon energy re

quired in this selection is well above the threshold of 

these two triggers, the main sources of the ineffi

ciency ( = 1%) are found to be inactive trigger and 

read out channels. For low energy photons the single 

photon trigger is the most important because the 

BGO cluster trigger has a threshold of roughly 6 GeV. 

The trigger efficiency has been evaluated using a 

trigger simulation and also directly from the data, 

using the single electron sample, taking advantage of 

redundant triggers,

The single electron sample has also been used to 

perform checks on the simulation of electromagnetic 

showers in the calorimeter and on energy resolution 

in the 0-5 GeV range, and to estimate the efficiency 

loss due to cosmic ray veto requirements. Using 

randomly triggered beam-gate events we estimate the 

additional inefficiency ( «  2%) due to noise sources 

not simulated in the Monte Carlo, such as that
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induced by beam halo in the forward detectors. 

Further checks have been done to compare the Monte 

Carlo prediction of KORALZ [8] with that of NNGSTR 

[9] for the e+e_ —» vvy process. We observe good 

agreement in predicted energy distributions and cross 

sections, which are consistent within 3-4%.

5. Results

5.1. vvy(y) cross section measurement

To measure the cross section of the vvy(y) pro

cess we restrict the analysis to photon energies above 

lOGeV. Below this value the signal to background 

ratio is much lower. For the 161 GeV run we observe 

57 events, and we expect 54.7 events including 0.8 

cosmic ray events. For the 172 GeV run we observe 

49 events with 46.6 events expected, including 0.4 

cosmic ray events. Since the background contamina

tion, for the selected energy range, is very small 

(between 1% and 2%) the uncertainty on the back

ground efficiency is unimportant. The error on the 

measured luminosity is less than 1%. A total system

atic uncertainty on the efficiency due to photon 

identification cuts has been estimated to be 1.6%.

The efficiency for the e+e“ -> vvyiy) process 

for events contained in the fiducial volume defined 

above and satisfying the kinematic requirements (Ey 

> 10 GeV, P , > 6 GeV) is 80.5 ± 0.6 (stat) ± 

1.4(syst)% at ys = 161 GeV and 80.7 ± 0.6 ± 1.4% 

at == 172 GeV. The measured cross section at

161 GeV is:

0-„pr(r) =  6.75 ± 0.91 (stat) + 0.18 (syst) pb

and at V7 =  172 GeV is

6.12 ± 0.89 (stat) ±0.14 (syst) pb.

These measurements are converted into the total 

cross section for vv(y) production to obtain (78.4 ±

10.9)pb

v/7-

at 161 GeV and (73.5 ± 10.9)pb at

= 172 GeV. The Standard Model predictions are 

72.1 pb and 66.7 pb, respectively. The large statisti

cal errors on these cross sections and the significant 

contribution expected from ^-channel production 

through W  exchange preclude deriving a useful mea

surement of the number of neutrino families.

5.2. Limits on new physics

A variety of new processes can give rise to events 

with single or multiple photons with missing energy. 

Both the high energy selection and the low energy 

selection are used to set limits. For the single photon 

signature, we consider the simple hypothesis of 

isotropic photon production in the laboratory frame. 

For the two photon signature, we also consider spe

cific interpretations in Supersymmetry models with a 

light gravitino.

We first consider the general process e+e~ —» XY 

y XX, with My> Mx. To derive cross section 

limits for specific Mx and M Y pairings, we apply 

the requirement (additional to those described in

75

>  p . ~

ë  50

25

0

Vs = 161 GeV

My(GeV)

My(GeV)
Fig. 4. Upper limits at 95% C.L. on the production cross section 

for the process e+ e“ X Y  -> y XX , a) at /s' — 161 GeV and b) 

at Js =  172 GeV.
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e+e

Sections 3.1 and 3.2) that the most energetic photon 

in the event have an energy kinematically consistent 

with M Y and Mx. Since we assume isotropic photon 

production, we restrict the photon candidates to the 

barrel region. Fig, 4 shows the resulting 95% C.L. 

upper limits on the cross sections for the process

XY  *-» y XX. Fig. 5-a shows the limit on the 

luminosity weighted average cross section when the 

two samples at 161 GeV and at 172GeV are com

bined, Fig. 5-b shows these limits when Mx — 0 is 

assumed.

We also consider the general process e+e~ - 

—» yy XX  with Mx — 0, using the specific process

GGyy for estimating detection ef-

YY
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Fig. 5. a) upper limit at 95% C.L. on the luminosity weighted 

average production cross section for the process e+ e ~ X Y  -> 

y X X  when the two samples at 161 GeV and at 172 GeV are 

combined, b) upper limits at 95% C.L. on the production cross

section when Mx «  0 is assumed.
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Fig, 6. a) number of expected background events, number of 

candidate events and signal efficiency versus the mass of the 

b) cross section upper limits at 95% C.L. for e+e~ -  

QQyy at 161 GeV and 172 GeV centre-of-mass energies versus 

A^o. The limit obtained with the combined data sample is also 

shown.

ficiencies. To search for this process, we require two 

identified photons in the detector. To suppress the 

background from vvyy(y), two additional require

ments are imposed:

• the difference between the recoil mass of the two 

photons and the Z boson mass must be greater

than 6.5 GeV;

• the energy of both photons must be greater than 

the kinematically allowed minimum value for

M$o.
X\

The S PYTHIA Monte Carlo generator [16] has been 

used to estimate the signal efficiency. Monte Carlo
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events for the process e ' e > X \ X\ G G 7  y h a v e 

several different values of the ÿ!) 

mass and for a gravitino light enough to ensure a

7.1

of the X\ dose to the production point ( c
i . 10 - 3  [ M, «A ]

sigm

A *T\
I - u
■ V' ]"

[M çJ 1 e V ]2 cm). The

number of ate events in ata versus

mass of the lightest neutralino are shown in Fig. 6-a.

ed in Fin.F h e cross section j  are

6-b versus the neutralino mass.

5.3. Interpretations in specific SUSY models

After combining the two centre-of-mass energies, 

we calculate the upper limit on the number of events

a neutre > siea -ig. 7). TÏ:
retical prediction for a no scale supergravity model 

(LN Z  [17]) and three extreme cases for the neu- 

tralino composition, which determines its coupling to

in samethe photon and to the Z, are 

figure. From this, we derive the folio wine lower

0

F ig. 7. 9 5 %  C.L.  u p p e r  l imit  on the num b e r o I ‘ eve  n t s e x p e c i e ci fo r 

t w o pli o t o 11 event  s for 161 Cr e V r u n a n d 17 2 G e V run ac.! d cd. L N Z  
gives  the pred ic t ion  for a no  scale  su per gravi ty  model .  T h e  cross  

sec t ion  is t aken  f rom [17]. T h e  c ross  sec t ions  for the pure phot ino,  

hi no an d  h ig gs ino  were  c o m p u t e d  us ing  S PYTHIA.  F o r  the phot i no 
and b ino  ease  a se lec t ron m as s  o f  9 0 G e V  was  taken.  The  cross 

sec t ion  for a pure z ino is too smal l  to g ive  a l imit  and  hence  is not

nru = 80 GeV

>
a
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Fig. 8. E x c l u d e d  region in the M2 — /x plane for di f ferent  values 

o f  t a n ß  and  m{). T h e  k inemat ic  limit for .Yi'/Vi* p roduc t ion  is also 
plot ted.  For m{] — 8 0 G e V  both the dark shaded  and the  light 
shaded  regions  are exc luded ,  whi le  for — 5 0 0 Ge V o n l y  the 

l ieht shaded  region is exc luded.

limits on the mass of the lightest neutralino within 

these special scenarios at 95% confidence level:

LNZ /V/ . - 0  >  66.1 GeV;
f \ i

o o > 68 .6GeV;
A !

b i n o M-» > 64 .8GeV;
■V]

higgsino M ,,  > 75.3 GeV.
A i

One cat\ also interpret these

limits on the parameters of the minimal supersym

metric sU 4 »• assuming a

light gravitino scenario, We then translate the cross
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section limits on production into exclusion

regions in the M2~- fi plane (Fig. 8) with M2 being 

the SU(2) gaugino mass parameter and /x the SUSY 

Higgs-mixing mass in the MSSM parameter space. 

The exclusion is given for two different values of 

tan/3, the ratio of the Higgs vacuum expectation 

values, and for two values of m0, the common scalar 

mass. The excluded region decreases for increasing 

values of m{).
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