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Abstract

We report on measurements of e+e~ annihilation into hadrons and lepton pairs. The data have been taken with the L3 
detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb“" 1 
of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic 
forward-backward asymmetries agree well with the Standard Model predictions. ©  1997 Elsevier Science B.V

1. Introduction

In 1996 LEP was operated for the first time at 
center-of-mass energies above the W-pair production 
threshold. In July and August 10.9 pb” 1 were col
lected at y/s = 161.3 GeV. In October and November 
the center-of-mass energy was increased and 1.0 pb“ 1 
and 9.3 pb-1 were recorded at y/s -  170.3 GeV and 
y/s = 172.3 GeV, respectively. The small data sample 
taken at 170.3 GeV is combined with the data taken at 
172.3 GeV for the measurements of muon and tau-pair 
production and the Bhabha asymmetry measurements.

In this article we report on measurements of the 
fermion pair production reactions:

e + e "  —► h a d r o n s ( y )  , e + e ~  —► jjT  ( y )  , 

e + e ”  —> r + r ~ ( y )  , e + e "  —> e + e ~ ( y ) . ( 1 )

In these reactions, the (y) indicates the possible pres
ence of additional photons. Cross sections are mea
sured for all processes and forward-backward asym
metries for the lepton channels.

1 Supported by the German Bundesministerium für Bildung, Wis
senschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract num
bers T 14459 and T240I1.

3 Supported also by the Comisión Interministerial de Ciencia y 
Technología.

4 Also supported by CONICET and Universidad Nacional de La 
Plata, CC 67, 1900 La Plata, Argentina.

5 Also supported by Panjab University, Chandigarh-160014, India.
6 Supported by the National Natural Science Foundation of China.

For a substantial fraction of the events initial-state 
radiation, ISR, photons are emitted. They lower the 
initial center-of-mass energy to an effective center-of- 
mass energy of the annihilation process, y/p . When 
y/P  is close to the Z mass, mz, the events are classed 
as radiative returns to the Z, A cut on y fp  allows 
a separation between events at high effective center- 
of-mass energies, high energy events, and radiative 
returns to the Z.

For the total and the high energy event samples cross 
sections and asymmetries are measured and compared 
to the predictions of the Standard Model [ 1 ], Combin
ing the new results with our measurements at center- 
of-mass energies around the Z-pole [2] and between 
130 GeV and 140 GeV [3], the yZ interference and 
the Z-boson mass are determined with improved pre
cision in the framework of the S-matrix ansatz [4].

Similar studies have been presented for the data 
taken at 161 GeV by the OPAL collaboration [5].

2. Measurement of fermion-pair production

The data were collected by the L3 detector de
scribed in [6]. The measurements of cross sections 
and for ward-back ward asymmetries are performed for 
the total and the high energy event samples. In the 
total event sample y fp  is required to be larger than 
0.1 to reduce uncertainties on radiative corrections 
in extrapolating to low y fp  values. The high energy 
sample is defined by requiring y /p  >  0.85-v/y.
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Using the sum of all ISR photon energies, Ey, and 
momentum vectors, P 7, the y fp  value is given by:

s ' =  5 -  2 £ r V / i  +  4  -  p2y • ( 2 )

For most of the events the ISR photons are radiated 
along the beam pipe and are not detected. In this case 
the photon energy is determined assuming that a sin
gle photon is emitted along the beam axis. The y/s* 
value is estimated using Eq. (2). The effect of multi
ple and final-state photon radiation on the y fp  calcu
lation has been studied using Monte Carlo programs 
and is corrected for.

For the determination of selection efficiencies 
and backgrounds, Monte Carlo simulations are per
formed for each center-of-mass energy using the 
following event generators: BHLUMI [7] (small 
angle Bhabha scattering); PYTHIA [8] (e+e~ -+ 
hadrons(y), ZZ (y ), Zee(y), W e^(y)); KO- 
RALZ [9] (e+e" — ^ ^ { y ) , r Jrr ~ ( y ) ) \  BHA- 
GENE [10] (e+e" e+e ~ (y ) ) ;  PHOJET [11] 
(hadronic two-photon collisions); DIAG36 [12] 
(e+e~ —> e+e‘“/c6+/x^', e+e " r +r “ , e+e” e+e~);
KORALW [13] (e+e~ -+ W +W “ (y )) ,  EX- 
CALIBUR [14] (e+e"  -*■ qq 'ev(y), e+e" -► 
e+e“ e+e“ ); GGG [15] (e+e~ -* y y (y ) ) .

The measurements are compared to the predic
tions of the Standard Model calculated using ZFIT- 
TER [16] and TOPAZO [17] with the following 
parameters: mz = 91.195 GeV [2], a s(m |) = 
.0.123 [18], mt = 175 GeV [19], a ( m |)  = 
1/128.896 [20] and mH = 300 GeV. The theoreti
cal uncertainties of the Standard Model predictions 
are well below the one percent level [21] except for 
the predictions for the large angle Bhabha scattering 
which has an uncertainty of 2% [22].

The analyses of the different channels are similar to 
those performed at center-of-mass energies between 
130 GeV and 140 GeV [3]. Changes due to detector 
modifications and different background conditions at 
the increased center-of-mass energies are discussed in 
the descriptions of the individual analyses.

2.1, Integrated luminosity

The luminosity is measured using small-angle 
Bhabha scattering within a polar angular range of

35.0 mrad < 0 <  61.8 mrad7 . The main systematic 
uncertainties originate from the event selection cri
teria, 0.4%, and from the limited knowledge of the 
detector geometry, 0*3%. Including the contribution 
from Monte Carlo statistics a total experimental un
certainty of 0.6% is assigned to the measurement of 
the integrated luminosity. The theoretical uncertainty 
of the BHLUMI generator is less than 0.25% for the 
center-of-mass energies given above [7].

2.2. e+e~ —> hadrons(y)

Event selection
Events are selected by restricting the visible energy, 

£ vis, to 0.4 <  Ew\s/y /s  <  2.0. The longitudinal en
ergy imbalance must satisfy |isiong|/£vis <  0-7. There 
must be more than 11 calorimetric clusters with an 
energy larger than 300 MeV. In order to reject noise 
and background from cosmic muons, an energy of at 
least 15 GeV must be deposited in the electromagnetic 
calorimeter and at least 4 tracks from the interaction 
point must be reconstructed in the central tracker.

At center-of-mass energies of 170 GeV and 
172 GeV background from W-pair production is re
duced by applying the following cuts. Semi leptonic 
W-pair decays are rejected by requiring the transverse 
energy imbalance to be smaller than 0.3 £ vis- Events 
in the high energy sample with at least four jets each 
with energy larger than 15 GeV are rejected to de
crease the background from hadronic W-pair decays. 
The jets are obtained using the JADE algorithm [23] 
with a fixed jet resolution parameter ycut = 0.01.

In Fig. 1 the most important selection variable is 
shown for the different final states. In Fig. la the distri
bution of the visible energy normalised to the center- 
of-mass energy for hadronic final state events selected 
at 172 GeV is shown. The double-peak structure of 
the signal arises from the high energy events and from 
the radiative returns to the Z. A good agreement be
tween data and Monte Carlo expectation is found,

To calculate the effective center-of-mass energy, all 
events are reclustered into two jets using the JADE

7 The analysis follows [2] with a tight fiducial volume on one 
side restricting the radial coordinate to 99.6 mm < R < 176.2 mm 
and the azimuthal angle to |90° — 4>\ >  11.6°, |270° — <j>\ >
11.6°. The loose fiducial volume on the opposite side is given by: 
92.0 mm <  R < 183.8 mm and |9 O ° - 0 |  > 4°, |2 7 O ° -0 |  > 4°.
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Table 1
Selection efficiencies and background fractions for the total, V 7  > 0.1 V?, and the high energy, y V  > 0.85a/? ,  event samples of the 
reactions e+e_ hadrons(y), e+e~ -> e+e”  -+ r +r " ( y )  and e+e“  -+ e+e“ (y). For Bhabha scattering the selection
efficiencies are given for 44° <  0 < 136°. The efficiencies and background fractions at 170 GeV are the same as the ones quoted for
172 GeV.

e+e

e+e

hadrons(y)

t+t (y)

e+e (y)

Total (%] High energy [%]

161 GeV 172 GeV 161 GeV 172 GeV

Selection Efficiency 93.6 90.6 93.3 85.5
Two Photon Background 2.5 2.2 0.4 0.6

W+W~ Background 1.9 6.7 4.2 5.0
Other Background 0.9 1.0 0.7 0.6
ISR Contamination — — 13.0 10.9

Selection Efficiency 60.0 58.9 71.2 74.1
7\vo Photon Background 5.5 6.0 3.0 2.9

Cosmic Background 0.7 1.8 0.5 1.8
Other Background 1.8 4.0 2.6 3.8
ISR Contamination — — 7.7 6.5

Selection Efficiency 31.9 30.8 44.8 44.1
Two Photon Background 12.8 13.0 5.4 7.4

Other Background 9.9 8.2 10.2 9.3
ISR Contamination — — 4.1 3.9

Selection Efficiency 96.6 94.0 92.8 90.2
Background 0.5 1.0 < 0 .1 <  0.1

ISR Contamination — 0.4 0.4

algorithm. A kinematic fit is performed on the two 
jets and the missing energy vector imposing four- 
momentum conservation. The direction of the miss
ing energy vector is assumed to be parallel to the 
beam axis. The missing energy is attributed to a sin
gle ISR photon. For about 10% of the events, a pho
ton is detected in the electromagnetic calorimeter. It 
must have an electromagnetic shower shape, an energy 
larger than 20 GeV and an angular separation of more 
than 10° to the nearest energy cluster. The energy and 
momentum of this photon are added to those of the 
undetected ISR photon and the yfp  value is calcu
lated according to Eq. (2). In Fig. 2 the reconstructed 
V ?  distribution is shown for the different final states. 
Fig. 2a shows the y fp  distribution for hadronic final 
state events selected at 172 GeV.

Cross section 
Selection efficiencies and background contributions 

are listed in Table 1. After application of the selec
tion criteria the sample contains a background from 
hadronic two-photon collision processes, W-, Z- and

tau-pair production and e+e” —> Zee(y) events. The 
two-photon background is estimated by adjusting the 
Monte Carlo to the data in a background enriched
sample.

Systematic errors of 1.1% for the total and 2.0% 
for the high energy event sample are assigned to the 
cross section measurements. They are dominated by 
the uncertainty on the two-photon background for the 
total data sample and by the uncertainty on the y fp  
determination for the high energy sample. The uncer
tainty on the yfs* calculation is estimated by varying 
the \fs* cut.

The numbers of selected events and the total cross 
sections for the different event samples are listed in 
Table 2. In Fig. 3 the cross section measurements are 
shown together with our previous measurements [ 2,3 ] 
and are compared to the Standard Model predictions.
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Table 2
Number of selected events, Nsc\, measured cross sections, r/, statistical errors and systematic errors and the Standard Model predictions, 
ctsm> of the reactions e+e~ -*  hadrons(y), e+e~ — / ¿ V ' t y ) ,  e+e "  r + r " ( y )  and e+e~ e+ e~ (y ) , for the total V ? > Q A y / s ,  
and the high energy, y /F  > 0.85y/s, event samples. The systematic errors do not include the uncertainty of the luminosity measurement. 
The cross sections are quoted for the full solid angle except for the Bhabha scattering, given for 44° <  6 < 136°.

|G eV | £  1pb~*]

Total High energy

ttsd «"had f pb ] 1 pb J *«1 «■had ipb I ĉ SM 1 pb 1

e+e —* hadrons(y) 161.3 10.0 1542 155.0 ±  4.2 147.2 423 37.3 ±  2,2 34.9
170.3 1.0 122 123 ±  12 i 26.6 39 39.5 ±  7.5 29.8
172.3 8.5 1064 123.2 ±  4.2 122.7 248 28.2 ±  2.2 28.9

Systematic error 1.1% 2.0%

y/s  |G eV | £  |p b - 1 l IPbi <rsM 1 pb J ^sd ipbl wsm 1p b 1

e+e~ —► fx+ jx~ (y ) 161.3 10.9 94 13.4 i  1,5 11.1 41 4.59 ±  0.84 4.4
172.1 10.2 67 9.9 ±  1.4 9.5 32 3.60 ±  0.75 3.8

Systematic error 4% 4%

y/s  l CeVI £  1p b ~ 1] N.sd <rT\ T-  IpbJ 0*sm i Pb 1 A'sel f V r -  Ipb] tf-SM ipb I

e+e-  —> t+ t— (y) 161.3 9.8 45 l i . 2 ±  2.1 11.1 25 4.6 ±  1.1 4.5
172.1 9.7 45 11.8 ±  2.2 9.5 23 4.3 ±  l.l 3.9

Systematic error 7% 7%

[GeVJ £  Ipb 11 Â cl crc(.c-  Ipb] o\SM [ Pb ] ^sel cre)e_ Ipbl crsM i pb ]

e+e“  —» e+e"” (y) 161.3 10.2 337 34.0 ±  1.9 35.2 289 30.5 ±  1.8 28.4
170.3 1.0 24 26.1 ±  5.4 31.3 21 24.1 ±  5.3 25.4
172.3 8.8 256 30.8 i  1,9 30.3 207 26.2 ±  1.8 24.8

Systematic error 3% 3%

2.3. e+e

Event selection
+ a -The event selection for the process e+e 

fjL+juL~(y) follows that of [3] with minor modify 
cations. The lower cut on the highest momentum 
measured in the muon chambers, p max> is set to a 
fixed value of 35 GeV to ensure high acceptance for 
events with hard ISR photons.

Background from cosmic muons is reduced by using 
scintillation counter time information. The number of 
accepted cosmic muon events is found to be 0.6 ± 0 .2  
at 161 GeV and 1.2 ±  0.3 at 172 GeV. In Fig. lb the 
distribution of the maximum muon momentum nor
malised to Ebeam for events selected at 172 GeV is
shown.

The y /F  value for each event is determined using

Eq. (2) assuming the emission of a single ISR pho
ton. In case the photon is found in the detector it is 
required to have an energy, £ r , larger than 10 GeV in 
the electromagnetic calorimeter and an angular sepa
ration to the nearest muon of more than 10 degrees. 
Otherwise the photon is assumed to be emitted along 
the beam axis and its energy is calculated from the 
polar angles, 6 \ and 62, of the outgoing muons:

Ey = >/F
sin(0i + 02)1

sin 6 \ +  sin9% +  | sin(0i +  62) I '
(3 )

The distribution of the reconstructed y/F for events 
selected at 172 GeV is shown in Fig. 2b. A good 
agreement between data and Monte Carlo expectation 
is found.
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_Q

Vs [GeV]
Fig, 3. Cross sections of the process e^'e”  —► hadrons(y), total 
(solid dots) and the high energy sample (open dots). The Standard 
Model predictions are shown as a solid line for the total sample 
and as a dashed line for the high energy sample. The measurements 
at center-of-mass energies below 161 GeV have been corrected 
to correspond to Vs* > 0.1 f°r L̂ e total and y /V  >  0.85\/v 
for the high energy event samples. Measurements at the Z peak 
which are close in center-of-mass energies have been combined.

Vs [GeV]
Fig. 4. Cross sections and forward-backward asymmetries of the 
processes e+e”  —► fx*}x~~ (y) and e+e~ —+ r+r “ (y) for the 
total (solid symbols) and the high energy sample (open symbols). 
Tile Standard Model predictions are shown as a solid line for the 
total sample and as a dashed line for the high energy sample. The 
measurements at center-of-mass energies below 161 GeV have 
been corrected to correspond to V 7  > 0.1 ^  for the total and 
\ / V  > 0.85V^ for the high energy event samples. Measurements 
at the Z peak which are close in center-of-mass energies have 
been combined.

e+e (jb+fj, ,e +e

Cross section
Selection efficiencies and background contribu

tions are listed in Table 1. The main background 
contributions are from the reactions e+e” —>

r +r~ (y )  and from W-pair 
production. The background contributions include the 
contamination of the high energy event sample with 
events with hard ISR photons. The systematic error 
of the cross section measurement is estimated to be 
4% for both the total and the high energy sample. 
The main contributions are the uncertainties on the 
background and acceptance corrections.

In Table 2 the number of selected events and the 
resulting cross sections for the two event samples at 
the different center-of-mass energies are summarised. 
In Fig. 4 the comparison to the Standard Model pre
diction is shown.

Forward-backward, asymmetry
The forward-backward asymmetry is determined 

using events with two identified muons with opposite 
charge and an acollinearity angle smaller than 90°. The 
angular distribution of the events is parametrised by

d or
d c o s#

oc |  ( 1 +  cos2 6)  H- /4fb cos 6 , (4)

where 6 is the polar angle of the outgoing fermion 
with respect to the incoming electron.

The asymmetry, Afb, is determined from an un
binned maximum-likelihood fit of Eq. (4) to the data 
within | cos B\ ^  0.9. The muon charge is measured in 
the muon spectrometer. The effect of a wrong charge 
assignment is estimated for each event and taken into 
account in the fit procedure. The charge confusion per 
track, 2 ±  1 %, has a negligible effect on the asymme-
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Table 3
Number of forward, Nf, and backward events, forward-backward asymmetries, statistical errors and systematic errors and the
Standard Model predictions, <tsm, of the reactions e+e~ —► ¿ ¿ V C r ) ,  e+e”  r +r “ (y) and e+e”  -+ e+e ' ( y )  for the total, V 7  > 
OAVs, and the hieh energy, Vs* > 0.85 Vs, event samples. For the electron nair oroduction both ientons have to he inside 44° < Q < 136°.

Total 1 High energy

V s  [ GeV 1 N( A'h Aft "\SM Nf Afb <^SM

e+e~ —► f i r ¡jl~  (y) 161.3

172.1

Systematic Error

35

23

21

16

0 29°-12(). 14

0 16(U6 (). 17

0.05

0.29

0.29

22

15

8

9

0 59°-I? I 7

0 3JÜ.18 
0.21

0.05

0.63

0.61

V s  [GeVI N( A'h Afb ^SM Nf iVb Afb

e+e~ —*• r + r -  (y) 161.3 

172.1 

Systematic Error

15

16

12

16

0 16(Uy u . i u 02{)

0 07(UKu,u'l) .19 
0.10

0.29

0.29

12

9

4

7

0.97«;«

0 * ^ a 2 7

0,10

0.63

0.6,

xA  IGeV| Nf Nf A'b Afb i^SM

e+e "  —+ e +e ~ (y ) J61.3
172.1

Systematic Error

240
203

43
51

0.767 ±  0.049 
0.691 ± 0 .058

0.012

0.753
0.769

206
176

29
31

0.819 ± 0 .046  
0.796 ± 0  056

0.012

0.815
0.816

try since only events with zero total charge are used.
For the total event sample the differential cross sec

tion is distorted by hard ISR photons. For the high en
ergy sample the measured quantity, Afb, directly gives 
the forward-backward asymmetry for the full solid 
angle, Aft,. To extract Afb for the total event sample a
correction, cx =  Afb/Afb = 0.78±0.01, obtained from 
Monte Carlo is applied.

—> r +r ~ ( y )  is small

2.4. e+e r +r ( r )

*

The background from e+e 
and, assuming lepton universality, has no influence on 
the measurement because it has the same asymmetry 
as the signal. The other background contributions are 
taken into account and the correction is in all cases 
smaller than 0.07. For the high energy sample the cor
rection includes the background from events with hard 
ISR photons as calculated from Monte Carlo. The sys
tematic error on the forward-backward asymmetry is 
estimated to be 0.05. Its main contributions are the un
certainties on background and acceptance corrections.

Table 3 summarises the numbers of forward and 
backward events, the background corrections, and the 
corrected asymmetries. In Fig. 4 the comparison of the 
corrected asymmetries to the Standard Model predic
tion is shown.

Event selection
Taus are identified as narrow, low multiplicity jets, 

containing at least one charged particle. Tail jets are 
formed by matching the energy depositions in the elec
tromagnetic and hadron calorimeters with tracks in the 
central tracker and the muon spectrometer. Two tau 
jets of at least 3.5 GeV are required to lie within the 
polar angular range | cos#| <  0.92.

The reconstruction of s' follows the procedure 
described in Section 2.3 using the polar angles of 
the two tau jets. Events with one-one, one-three and 
three-three prong topologies are accepted. To allow 
for reconstruction inefficiencies one tau jet may also 
have 2 tracks and one-four topology events are ac
cepted. One-one topology events are rejected if at 
least one of the tau jets lies in the region 0.72 < 
cos #| <  0.80, which is not completely covered by the 

electromagnetic calorimeter. Hadronic events are re
moved by requiring less than 13 calorimetric clusters. 
Bhabha events are rejected by requiring the two high
est energy clusters in the electromagnetic calorime
ter to have energies less than 0.4 \fs* and 0.25 y/s*. 
Radiative Bhabha events and events from the process
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e+e~ —> e+e"~e+e-  are removed by rejecting events 
with two identified electrons. Electrons are identified 
as a cluster in the electromagnetic calorimeter with en
ergy larger than 3 GeV, with electromagnetic shower 
shape, and a matched track in the central tracker. All 
events with more than one reconstructed track in the 
muon chambers are removed. The energy of a recon
structed muon has to be less than 0.45 y/s*.

To reject background from two-photon collisions 
only events with a y/s* larger than 60 GeV are ac
cepted. In addition the quadratic sum of the energies
of the tau jets, £jets = ?ell +  £ ? t2, has to be larger

than 0.15 \ /7 .  In Fig. lc the £jets/V ^7 distribution for 
events selected at 172 GeV is shown.

To reject leptonic final states from W-pair produc
tion the acoplanarity of the two tau jets must be less 
than 15°. The background from cosmic muons is re
duced by using scintillation counter time information. 
The total energy in the electromagnetic calorimeter 
has to exceed 4 GeV. Applying this selection the yf~F 
distribution as shown in Fig. 2c for events selected at 
172 GeV is obtained. Good agreement between data 
and Monte Carlo expectation is found.

Cross section
Selection efficiencies and backgrounds are listed in 

Table 1. The total systematic error which is dominated 
by the uncertainty on the background from two-photon 
collision processes is estimated to be 7% for both the 
total and the high energy sample.

The number of selected events and the total cross 
sections for the different event samples are listed in 
Table 2. The cross section measurements are compared 
to the Standard Model prediction in Fig, 4.

high energy sample, the correction includes the effect 
of the contamination from events with hard ISR pho
tons. The systematic error on the forward-backward 
asymmetry is estimated to be 0.10. Its contributions 
are the uncertainties from the background and accep
tance corrections and from the charge confusion.

In Table 3 the number of forward and backward 
events and the corrected asymmetries are given. In 
Fig. 4 the comparison of the corrected asymmetries to 
the Standard Model predictions is shown.

2.5. e+e —> e+e (y)

Event selection
Electron candidates are recognised by an energy 

deposition in the electromagnetic calorimeter with at 
least five associated hits in the central tracking cham
ber within a three degree cone. In addition only elec
trons within the polar angular range 44° <  9 < 136° 
are accepted.

Bhabha events are selected by requiring the two 
highest energy electrons to have an energy larger than 
0.6 Ebeam and 5 GeV, respectively. The acollinearity of 
the two electrons must be smaller than 90°. In Fig. Id 
the energy of the highest energy electron candidate,
êlectron) normalised to the beam energy for events se

lected at 172 GeV is shown.
The y/F  value is reconstructed from the invariant 

mass of the two identified electrons. Its distribution 
is shown in Fig. 2d for events selected at 172 GeV. 
The largest part of the events is from the ¿-channel 
exchange for which the y/F  value is close to the center- 
of-mass energy.

Forward-backward asymmetry
For the determination of the forward-backward 

asymmetry, events with zero charge sum and an 
acollinearity angle between the two tau jets of less than 
90° are used. The procedure to obtain the forward- 
backward asymmetry is described in Section 2.3. The 
corresponding correction, cx, is 0.92 ±  0.01.

The charge confusion of the events is estimated 
from the data to be 2.1 ±  0.2% for the total and 2.5 ±  
0.3% for the high energy sample, and is corrected for. 
The asymmetries are corrected for backgrounds and 
the correction is in all cases smaller than 0.07. For the

Cross section
The selection efficiencies within the fiducial vol

ume and the background contributions are listed in 
Table 1. The background is from tau-pair production. 
The total systematic error of 3% assigned to the cross 
section measurements is dominated by uncertainties 
in the event selection.

In Table 2 the number of selected events and the 
resulting cross sections for the two event samples at the 
different center-of-mass energies are summarised. The 
cross sections are compared to the Standard Model 
prediction in Fig. 5.
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Vs [GeV]
Fig. 5. Cross sections and forward-backward asymmetries of the 
process e+e ”  —► e+e"“ (y) for the total (solid symbols) and 
the high energy sample (open symbols). The Standard Model 
predictions are shown as a solid line for the total sample and 
as a dashed line for the high energy sample. The two electrons 
are required to be inside 44° < Q < 136°. The measurements at 
center-of-mass energies below 161 GeV have been corrected to 
correspond to \Z1F >  0.1 f°r the total and > 0.85y/s for 
the high energy event samples. Measurements at the Z peak which 
are close in center-of-mass energies have been combined.

Forward-backward, asymmetry
The electron direction in the event is determined 

using a combined fit to both tracks as described 
in [2]. The average charge confusion of the events 
is measured from the data to be (5.0 ±  0.5)% and is 
corrected for.

The forward-backward asymmetry is measured by 
counting events in the forward and backward hemi
spheres. In Table 3 the numbers of forward and back
ward events and the corrected asymmetries are sum
marised. The systematic error on the measured asym
metry is estimated to be 0.012 and is dominated by 
the uncertainty on the charge confusion. In Fig, 5 the 
comparison of the measured asymmetries to the Stan
dard Model prediction is shown.

The differential cross sections for the high energy 
samples at the different center-of-mass energies are

COS0
Fig. 6. Differential cross section of the high energy event sample, 
for the process e+e~ —* e+e ~ (y )  at center-of-mass energies of 
161 GeV and 172 GeV. The lines indicate the fit results from 
which the s-channel asymmetry is obtained.

shown in Fig. 6. A binned maximum-likelihood fit to 
the cos 6 distributions is performed to determine the 
s-channel asymmetry for the high energy event sam
ple in the full solid angle. The dominant /-channel and 
s / t  interference contributions are fixed to their Stan
dard Model expectations. The resulting asymmetries 
are 0.3^5 and O.Óq  ̂ for the data taken at center-of- 
mass energies of 161 GeV and 172 GeV, respectively. 
These values agree with the Standard Model expecta
tion which is 0.6 at both center-of-mass energies.

3. Determination of the y Z  interference

The data is interpreted in the framework of the S- 
matrix ansatz [4], which makes a minimum of the
oretical assumptions. The programs SMATASY [24] 
together with ZFITTER and TOPAZO, are used for 
the calculation of the theoretical predictions and QED 
radiative corrections of cross sections and forward- 
backward asymmetries.

The lowest-order total cross section, afol, and
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forward-backward asymmetry, for e+e 
ff [4] are:

4 2 1 7ra gf
a

±s
j f Cs  -  m |)  +V{“ s 
(s — m |) 2 4- m | f | .

for a = tot, fb

o
=  T

3 oft(J)

The S-matrix ansatz defines the Z resonance using a 
Breit-Wigner denominator with ¿-independent width. 
In other approaches usually a Breit-Wigner denomi
nator with ¿-dependent width is used which implies 
the following transformation of the values of the Z bo
son mass and width [4]: mz = niz +  34.1 MeV and 
Tz = fz  +  0.9 MeV. In the following the fit results 
are quoted after applying these transformations. The 
S-matrix parameters rf, jf and gf scale the Z exchange, 
y Z  interference and y  exchange contributions. Here 
the y  exchange contributions gf are fixed to their QED 
predictions.

The S-matrix parameters are determined in a x 2 fit 
to the measurements presented here and to our previ
ously published measurements [2,3]. The uncertain
ties on the LEP beam energy of 27 MeV and 30 MeV 
for the 161 GeV and 172 GeV data [25], respectively, 
have a negligible effect on the fit results.

The fitted S-matrix parameters for electrons, muons, 
taus and hadrons, and their correlations, are listed 
in Tables 4 and 5. The fits are performed with and 
without the assumption of lepton universality. The pa
rameters obtained for the individual leptons are com
patible with each other and support this assumption.

A large correlation, —43%, is found between the 
mass of the Z boson and the hadronic yZ  interference 
term, jf^ . This correlation causes an increase in the 
error on mz with respect to fits where the hadronic 
y Z  interference term is fixed to its Standard Model 
prediction [26,2,27]. Under the assumption of lepton 
universality the fitted hadronic yZ  interference term is:

jSd = 0.39 ±  0.29 ,

which agrees with the Standard Model prediction of 
0.22 and improves the precision of our previous re
sult [3] significantly. The fitted value for mz is:

mz = 91193 ± 9  ± 3  MeV.

Table 4
Results of the fits in the S-matrix framework with and without 
the assumption of lepton universality.

Parameter Treatment of charged leptons Standard
Model

Non-universality Universality

mz  1 MeV] 
Tz [MeV]

91193 ±  10 
2494 ±  10

91193 ±  10 
2494 ±  10 2497

riot
hadrtot

2.956 ± 0.029 
0.1410 ±  0.0018

2.955 ±  0.028 2.967

j-KH
V 0.1404 ±  0.0017 —
rtol
r 0.1421 ±  0.0019 —

rlOl
7 — 0.1411 ±  0.0015 0.1426

¡101 
J had 0.38 ±  0.29 0.39 ±  0.29 0.22
jinl
Je -0.07 ±  0.11
itot
J ft 0.001 ±  0.064 —
¡UH
J r 0.040 ±  0.076 —
¡101
J/ — 0.002 ±  0.045 0.004

r"1 0.0016 ±  0.0018 —

rlh‘a 0.0030 ±  0.0012 —

l T 0.0046 ±  0.0017 —

r"1lf. — 0.00307 ±  0.00085 0.00267

ic 0.65 ± 0 .1 9 —

J? 0.736 ±  0.089 —

j? 0.68 ±  0.12 —
■fl,
Ji — 0.706 ±  0.066 0.799

; r  / DoF 100/127 103/135 _

Table 5
The correlation matrix for the 8 parameter S-matrix fit in Table 4.

mz r z r lol
'had

r lol
I,

jtot
Jfiad

jto i
Jf r* J?

mz 1.00 0.05 0.03 0.03 -0 .43 -0 .19 0,14 -0 .0 4

Fz 1.00 0.80 0.72 -0.01 -0 .01 0.04 0.04
..lot
‘ had 1.00 0.88 0.02 -0 .01 0.06 0.05
,.101 1.00 0.01 0.05 0.07 0.07
JlOl
Jhad 1.00 0.16 -0 .0 6 0.04
j im
J/7 1.00 0.01 0.23

1.00 0.14

. i ? 1.00
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mz [GeV]

Fig. 7. Contours in the (mz, jjJ’j )  plane at 68% confidence level
under the assumption of lepton universality. The dashed line shows 
the Z data only; including the results from 130 GeV to 172 GeV 
the solid line is obtained. The Standard Model prediction for 
is shown as the horizontal band.

The contribution of the uncertainty on the yZ  interfer
ence has been separated from the total experimental 
error and is quoted as the second error. It is reduced 
by a factor of 2 with respect to our previous publica
tion [3], Fig. 7 shows the 68% confidence level con
tours in the (mz, j ^ )  plane for the data taken at the 
Z-pole and after including the 130-172 GeV measure
ments. The improvement arising from the high energy 
measurements is clearly visible.

4, Summary and conclusion

Based on an integrated luminosity of 21.2 pb“ 1 col
lected at center-of-mass energies between 161 GeV 
and 172 GeV, we select 2728 hadronic and 868 
lepton-pair events. The data is used to measure cross 
sections and leptonic forward-backward asymmetries. 
The measurements are performed for the total event 
sample and for the high energy sample. The results 
are in good agreement with the Standard Model. Our

measurements provide an improved determination 
of the yZ  interference terms and the Z-boson mass 
within the S-matrix framework.
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