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Abstract

We report on the first measurements o f e+e ” annihilations into hadrons and lepton pairs at centre-of-mass energies 
between 130 GeV and 140 GeV. In a total luminosity of 5 pb” 1 collected with the L3 detector at LEP we select 1577 
hadronic and 401 lepton-pair events. The measured cross sections and leptonic forward-backward asymmetries agree well 
with the Standard Model predictions,

1. Introduction

Until October 1995 the LEP collider was operated 
at centre-of-mass energies around the Z resonance and 
produced about 4 million Z decays for each of the four 
experiments. This large data sample allows an accu­
rate determination of the Z boson properties and thus 
a precise test of the Standard Model of electroweak 
interactions [1].

In November 1995 LEP was operated for the first 
time at energies well above the Z resonance. During 
this run the L3 detector has collected a total integrated 
luminosity of 5 pb-1 at centre-of-mass energies, y/s> 
between 130 GeV and 140 GeV. In this article we 
report on the measurements o f the reactions;

1 Supported by the German Bundesministerium für Bildung, Wis­
senschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract num­
bers 2970 and T14459.

3 Supported also by the Comisión Interministerial de Ciencia y 
Technologia.

4 Also supported by CONICET and Universidad Nacional de La 
Plata, CC 67, 1900 La Plata, Argentina.

5 Also supported by Panjab University, Chandigarh-160014, India.

e+e" —> hadrons(y) , e+e" —* ¡x+ (y)  , 
e+e ” —» T+T~(y)  , e+e~ —>e+e - (y )  , 

e+e ” —► v v y (y )  ,

at these centre-of-mass energies. We measure cross 
sections for all reactions and forward-backward asym­
metries for the charged lepton final states.

In these reactions, the (y )  indicates the possible 
presence o f additional photons. For a large fraction of  
the events, initial-state radiation (ISR) photons lower 
the effective centre-of-mass energy, yfp,  o f  the an­
nihilation process to values close to the Z mass, mz 
( ‘radiative return to the Z* ). A  cut on a/s*7 allows us to 
determine the exclusive cross sections and asymme­
tries for high energy events, \/s* >  mz- The measure­
ments are compared to the predictions o f the Standard 
Model. Together with our Z measurements [2 ] ,  they 
are used to determine the properties o f the Z boson 
in the framework of the S-matrix ansatz [3 ,4 ]. High 
energy measurements are in particular sensitive to the 
parameters describing the interference between pho­
ton and Z exchange.
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2. The L3 detector

The L3 detector [5] consists of a silicon microstrip 
detector [6 ] ,  a central tracking chamber, a high reso­
lution electromagnetic calorimeter composed of BGO 
crystals, a lead-scintillator ring calorimeter at low po­
lar angles [7 ] ,  a scintillation counter system, a ura­
nium hadron calorimeter with proportional wire cham­
ber readout, and an accurate muon chamber system. 
A forward-backward muon detection system extends 
the polar angle coverage o f the muon chambers down 
to 24° in the forward-backward region [ 8] . These de­
tectors are installed in a 12 m diameter magnet which 
provides a solenoidal field o f 0.5 T and a toroidal 
field o f  1.2 T. The luminosity is measured using BGO 
calorimeters preceded by silicon trackers [9] situated 
on each side of the detector.

The response of the L3 detector is modelled with 
the GEANT [10] detector simulation program which 
includes the effects o f  energy loss, multiple scattering 
and showering in the detector materials and in the 
beam pipe.

3. Measurement of fermion-pair production

Hadronic and leptonic final states produced in e+e~  
annihilations are analysed at centre-of-mass energies 
of 130.3 GeV, 136.3 GeV and 140.2 GeV. For lep­
tonic final states the data for the last two energies are 
combined because o f limited luminosity at the highest 
energy point.

The measurement o f  the luminosity, £ ,  proceeds 
as described in [9 ] . For the centre-of-mass energies 
discussed in this paper, the uncertainty on the the­
oretical cross section, calculated with the BHLUMI 
Monte Carlo generator [ I I ] ,  is estimated to be at 
most 0.25% [12]. Other sources of systematic error
are negligible.

Besides the measurement of the total cross section 
including all radiative effects, the most important aim 
of this analysis is to probe the physics at high effec­
tive centre-of-mass energies, y/P >  mz- To separate 
the high energy events from the radiative return to 
the Z, \ /P  is required to be larger than 110 GeV for 
all final states, For e+e _ —»■ e + e ~ (y )  the effective 
centre-of-mass energy is reconstructed directly from 
the invariant mass o f the fermion system. For the other

reactions >/s* is estimated from the ISR photon en­
ergy, £ r ,

For most o f the events the ISR photon escapes along 
the beam pipe and is not detected. The assumption o f  
a three-particle final state and a photon emission along 
the beam axis nevertheless allows the photon energy to 
be determined. The corrections from multiple photon 
radiation are estimated using Monte Carlo simulation.

Selection efficiencies and background contami­
nations of all processes are determined by Monte 
Carlo simulation performed for each centre-of-mass 
energy. The following Monte Carlo event gener­
ators are used to simulate the various reactions: 
PYTHIA [13] (e+e~ hadrons(y), hadronic and 
leptonic two-photon collisions); KORALZ [14] 
(e+e~ —► /x+ju ~ (y ) , r +r “ ( y ) ,  vv (y ) ) \  BHA- 
GENE3 [15] (e+e~ -> e+e ~ ( y ) ) ;  NNGSTR [16] 
(e+e~ v v y (y ) ) \  DIAG36 [17] (e+e~  —>
e+c~¡ul+j&~); GGG [18] (e+e~ —> y y ( y ) ) .

The determination of systematic errors is limited by 
the available statistics of data and Monte Carlo. The 
quoted systematic errors are conservative estimates 
and in all cases small compared to the statistical error 
of the measurements.

The measurements are compared to the predictions 
of the Standard Model [19,20,15] calculated with 
the following parameters: mz = 91.195 GeV [2 ],  
a s(m l)  = 0 .123  [2 1 ] ,m t = 180 GeV [22], a (m l) = 
1/128.896 [23] and mH = 300 GeV.

3.1. e+e ” —*hadrons(y)

3.1.1. Event selection
The selection criteria based on calorimetric infor­

mation are the same as the ones used for the analysis 
of the data taken in the vicinity of the Z pole [2 ] .  
In Fig. la the distribution of the visible energy nor­
malised to the centre-of-mass energy is shown. The 
double-peak structure of the signal arises from the high 
energy events and the radiative return to the Z.

The photon energy for each event is reconstructed 
and Eq. (1 ) is used to calculate the yfs* value. For 
15% of the events with hard ISR, the photon is de­
tected in the electromagnetic calorimeter and found by 
requiring electromagnetic shower shape of the cluster,
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Fig. I. (a) The total visible energy, Ev¡s, normalised 
to the centre-of-mass energy, y/s, for the selection of

hadrons(y) events. The arrow indicates the position of 
the cut value. All other selection cuts have been applied. The 
background is dominated by two-photon collision processes, (b) 
The reconstructed \/7  distribution for e^e"  —*■ hadrons(y) at 
136 GeV, compared to the result of a fit determining simultanously 
the cross sections below and above a \/s? value of 110 GeV. The 
Monte Carlo distributions of events generated below and above a 
y/s* value of 110 GeV are indicated by the dashed lines.

an energy o f more than 15 GeV and an angular sepa­
ration of more than 10° to the nearest energy deposi­
tion. For these photons the energy resolution is better 
than 2%. The other events are clustered into two jets. 
A kinematic fit is performed on the two jets and the 
missing energy vector imposing four-momentum con­
servation. The direction of the missing energy vector 
is constrained to the beam axis. As output the miss­
ing energy is obtained with a resolution of 15% and 
is identified with the ISR photon.

3.1.2. Cross section
For all the selection variables, good agreement be­

tween data and the Monte Carlo prediction is observed. 
The selection efficiencies are listed in Table 1. Com-

pared to the event selection at the Z the selection ef­
ficiency is about 4% lower due to events with hard 
ISR photons. The efficiency loss is caused by the cut 
on the visible energy, 2sVis /v ^  >  0-5, and the lon­
gitudinal energy imbalance, E\ong/ E viS <  0.6. These 
two cuts are not changed because they efficiently re­
ject hadronic two-photon collisions which represent 
the only important background. The systematic error 
of the selection efficiency is dominated by these two 
cuts. The systematic uncertainties are summarised in 
Table 1 for the different event samples.

After application o f the selection cuts the sample 
contains a small background from two-photon colli­
sions and e+e _ —> r + T - ( y )  events. The background 
contributions and their uncertainties for the different 
event samples are also summarised in Table 1. All 
other background sources, in particular cosmic rays 
and beam related backgrounds, are negligible.

The data distribution of the reconstructed v  sf is fit­
ted by two Monte Carlo distributions. These are the 
reconstructed y/F  distributions for events above and
below a y s f value of 110 GeV at generator level. 
Binned log-likelihood fits determine the high energy 
cross sections for the three different centre-of-mass 
energies. These fits have probabilities between 6% and 
55%. The systematic error of the fit procedure is esti­
mated to be 1.3% by varying the y/F  cut value and the
bin size. The distribution of the reconstructed v  sf for 
the 136 GeV data compared to the fitted Monte Carlo 
distribution is shown in Fig. lb.

A systematic error of 1.1% for the total and 1,5% 
for the high energy event sample is assigned to the 
cross section measurements. The number of selected 
events and the total cross sections for the different 
centre-of-mass energies and the different event sam­
ples are listed in Table 2 and compared to the Standard 
Model prediction in Fig. 2.

To derive the ratio between the hadronic and lep- 
tonic cross sections for the high energy event sample, 
V s7 > 110 GeV, the weighted average of the muon 
and tau-pair cross section as given in Table 2 is used. 
The ratio is found to be 9.7 ±  1.9 at 130 GeV and 
10.1 ± 2 .3  at 136 GeV, and agrees well with the Stan­
dard Model predictions of 10.2 and 9.6, respectively.
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Tabic 1
Efficiencies, backgrounds and systematic uncertainties for the total and the high energy, y /F  > 1 1 0  GeV, event samples of the reactions 

—> hadrons(y), e+e -  —► e+e-  —> r +r - (y) and e+e~ —► e+e ~ (y ) .  For the electron pair production the efficiencies
are given tor 44° <  0 < 136° and an acollinearity angle cut of f  < 60°. When differences are observed as a function of y/s the numbers 
for 130 (136) GeV are given separately.

e+e

Total \ % j High energy | % \

e+e —► hadrons(y) Selection Efficiency 95.5 i l . I 99.3 ±0.2
Background 2.3 ±0.3 2.7 ±0.4

Fit Sysiematics --- 1.3
Total Systematics i.l 1.5

e+e-  —► f i+ fi~  {y) Selection Efficiency 60.8 (59.1) ±0.7 (0.7) 70.3 ±1.1
Cosmic Background 3.8 (6.1) ±1.5 (2.1) 5.8 (7.7) ±3.2 (3.8)
Other Background 6.0 ±0.9 3.8 ±1.0
ISR Contamination — 12.9 (12.5) ±0.9 (0.9)

Detector Systematics 3 3
Total Systematics 4 5

e+ e”  —> t + t ~ ( y ) Selection Efficiency 42.9 ±0.5 50.9 (53.4) ±0.8 (0.8)
Background 10.0 ±1.9 II.5 ±3.3
ISR Contamination 15.0 (14.0) ±1.0 (1.0)

Cut Variation 5 5
Total Systematics 5 6

e+ e"  —► e+e-  (y) Selection Efficiency 98.5 ±0.1 95.3 ±0.1
Background 2.7 ±0.3 0.8 ± 0.2
ISR Contamination --------- 0.5 ± 0 .1

Cut Variation 2 2
Total Systematics 2 2

3.2. e+e (y)

3.2J .  Event selection
The event selection for the process e+e~ —> 

f i+f i~ (y )  requires two identified muons within the 
polar angular range given by the acceptance of the 
muon spectrometer, |c o s 0 | <  0.9. Muons are iden­
tified by either a reconstructed track in the muon 
chambers or as a minimum ionising particle in the 
calorimeters, as described in [2 ] .  An event should 
have at least one reconstructed muon chamber track 
to be accepted.

The cut on the highest momentum measured in 
the muon chambers, /?max> is lowered to 50% of the 
beam energy to ensure high acceptance for events with 
hard ISR photons. The momentum distribution for the 
selected events is shown in Fig. 3a. A  cut on the 
acollinearity angle is applied, £ <  90°.

The background from cosmic rays is reduced by

requiring the scintillation counters on the muon tracks 
to have a hit in a time window of ± 3 .5  ns around the 
beam crossing. The difference of the two scintillation 
counter times should be less than 3.5 ns, equivalent to a
2.5 or separation from the expected cosmic ray signal. 
At least one track in the central tracking chamber is 
required to have a distance of closest approach to the 
beam axis of less than 0.5 mm.

The V P  value is determined from the ISR pho­
ton according to Eq. (1 ) .  Photons are detected in the 
electromagnetic calorimeter and found by requiring an 
energy larger than 10 GeV and an angular separation 
larger than 10° to the nearest muon. For these events 
the measured photon energy is used in the calculation. 
In all other cases the photon energy is calculated ac­
cording to

Ey = y/s
sin(0i +  02) \

sin0i +  s in02 +  |s in (0 i + 02) I ’
(2)
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Table 2
Number of selected events and cross sections of the reactions e+e- hadrons(y), e+e /i+£t< (y), e+e+ ¿a — r + r  (y) and

e+e v7
are given for 44° < 0 < 136° and an acollinearity angle cut of £ < 60°.

e+e hadrons(y)

Total High energy

I GeV| C fpb -I M:vcnis oiiad fpb] NiywOVC ms "liud I Pb

130.3
136.3 
140.2

2.74
2.25
0.05

921
645

U

Total

343 ±11 
293 ±12 
235 ±71

263
202

4

High energy

81.8±6.4 
70 .5Ì6 .2  
67 ±47

y f t  f GeV| L  [ p b - 1! Mivcnts
V > -  , p b |

Neve nls jPbl

e+e-  -- / ¿ V  ( r ) 130.3 2.74 47 25.5 ±3.7 19 7.7 ±1.8
136.3 2.30 28 18.1 ±3.3 13 6.1 ±1.7

Total High energy

V s  1 GeV] £  [pb“ 1 J Nevenis <7r+f-  [pb] Ne vents (rT\T~ 1 pb 1

e+e~ --» r +r~ (y ) 130.3 2.54 31 25.5 ± 4.8 15 10.4 ±2.8
136.3 2.25 22 20.3 ±4.6 13 9.4 ±2.8

Total High energy

1 GeV| £  ipb"M N events [pM Ncvaus (pb]

e+e-  --+ e+e- (y) 130.3 2.68 136 50.1 ±4.4 113 43.7 ±4.1
136.3 2.29 110 47.8 ±4.6 95 43.2 ±4.5

where 6 \ and 9o are the polar angles of the outgoing 
muons. The distribution of the reconstructed y/F is 
shown in Fig. 3b. A cut on y/F larger than 110 GeV 
isolates high energy events.

322 . Cross section
The selection efficiencies are listed in Table 1. Con­

servatively an error of 3% on detector and reconstruc­
tion efficiencies is assumed, mainly arising from the 
recently installed forward-backward muon chamber 
system.

The cosmic ray contamination is determined from 
the sidebands of the scintillator time distribution. The 
expected cosmic fraction of the final event sample is 
given in Table 1 and represents the most important 
background source. As a cross check an alternative 
muon-pair selection with a different cosmic rejection 
is performed. Both analyses give consistent results.

with hard ISR photons, are summarised in Table 1. A 
systematic error of 4% for the total and 5% for the 
high energy sample is assigned to the cross section 
measurements.

Table 2 summarises the number of selected events 
and the resulting cross sections for the two different 
event samples at the different centre-of-mass energies. 
The cross sections are extrapolated to the full solid 
angle. In Fig. 4 the comparison to the Standard Model 
prediction is shown.

32.3. Forward-backward asymmetry 
The forward-backward asymmetry, Afb, is defined

as

g 'f-  o'b
o-f +  arb

The background contributions, including the con- where erf (crt,) is the cross section for events with the 
tamination of the high energy event sample by events fermion scattered into the hemisphere which is for-
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Fig. 2. Cross section of the process e+e “  —> hadrons(y) at en­
ergies between 130 GeV and 140 GeV for the total and the high 
energy event sample, y /V  > 1 1 0  GeV. The solid line is the Stan­
dard Model prediction for the total cross section. The dashed line 
is the prediction for y/s* > 1 1 0  GeV. Cross sections measured 
at the Z are also shown.

ward (backward) with respect to the e ” beam direc­
tion, cos 9 >  0 (cos 9 <  0 ) .

The angular distribution in the region | cos 9\ <  0.9 
for an acollinearity angle cut of 90° is approximated 
by the lowest-order Born formula:

dcr
dcos 6 8

oc I ( 1 4- cos2 9) +  Afb cos 9 . (3 )

The asymmetry is determined from an unbinned 
log-likelihood fit o f Eq. (3 )  to the data, where the 
fermion is identified by the muon charge. The effect 
of a wrong charge assignment on the asymmetry is 
negligible.

The background from e+ e r +r (y )  is small
and has the same asymmetry as the signal and thus 
no influence on the measurement. The asymmetry of 
cosmic rays and two-photon collisions is consistent 
with zero and leads to the multiplicative correction c 
listed in Table 3. In case o f the high energy events, c 
includes the correction for the remaining background 
of events with hard ISR photons, as calculated from 
Monte Carlo.

o
o
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c
<x>>
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(DJD
E
ZD
C

• Data 130/136 GeV
MC ^V'(Y)

^ M C  background

I

(a)
1.5 2/ c

Pmax beam

>
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C/3

15 -

co>Q>
10
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£
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5 -
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MC
MC

4V(Y)
background

cut
I

u — r w
„ E p T i f l .  r  r y - n - , --------,-------« p ca -jl------
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Vs7" [GeV]

(b)
140

e+e

Fig. 3. (a) The maximum reconstructed muon momentum, p max. 
normalised to the beam energy, for the selection of

—► (y) events. The arrow indicates the position
of the cut value. All other selection cuts have been applied. 
The background shown is dominated by two-photon process 
e+e~ —► (b) The reconstructed y/s* distribution for
the process e+e“  —> /¿+^t~(y) at 130 GeV. The arrow indicates 
the cut to isolate the high energy events.

Table 3 summarises the number of forward and 
backward events, the background corrections, and the 
corrected asymmetries. In Fig. 4 the comparison of the 
measured asymmetries to the Standard Model predic­
tion is shown.

3.3. e+e T+ r (y)

3.3. L Event selection 
Taus are identified as narrow, low multiplicity jets. 

Events containing two electrons or two muons are re­
jected. Each event is divided into two hemispheres 
defined by the plane orthogonal to the thrust axis. In 
each hemisphere no more than three tracks in the cen­
tral tracking chamber are allowed. The leading particle 
o f the hemisphere is identified by the highest energy
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3
Number of forward and backward events, correction factors and asymmetries of the reactions e+e —► fx (7 ), e+e —* r +r ~ ( y )  
and e+e-  —» e+e“ (7 ) for the total and the high energy» > 110 GeV, event samples. For the muon and tau-pair production an 
acollinearity angle cut of 90 degrees is applied. The electron-pair asymmetries are measured in 44° < 0 < 136° with an acollinearity angle 
cut of 60°. For this channel an additional systematic error of 0.034 for the total and 0.037 for the high energy event sample is assigned.

e+e

e+e

e f'e

(y)

r+ r  ( 7 )

e+e “ (y)

y f t  I GeV I

130.3
136.3

130.3
136.3

130.3
136.3

Total

Nr

30
21

15
15

108
81

17
7

12

4

20
20

c

1.11 ±0.02 
1.14 ±0.02

0.97 ±  0.02 
1.00 ± 0.02

1.16 ±0.05
1.16 ±0.05

0.30
0.55

+0.14
-0.15 
+(). 14
—I). 17

0 16+0,16 
— 0.21

0-471',Vit
0.80 ±0.08 
0.70 ±  0.09

High energy

Ni

16
10

10
11

93
77

3
3

2
1

12

15

c

1.21 ± 0 .0 3  
1.23 ± 0 .0 4

1.17 ± 0 .05
1.17 ±  0.05

1.14 ±  0.05
1.14 ±  0.05

A ib

0.83+“;!*
0 0 9+0.08'

—0.27

0 6<:i+lus 
U,U* -0 .25
0.981',v;2,

* 1 ♦ «m 1 ■

0.88 ±  0.07 
0.77 ±  0.09

calorimetric cluster with an associated track, originat­
ing from the interaction point, within a cone of 10° 
half opening angle. A ‘tau jet’ is formed summing all 
calorimetric clusters inside this cone. The maximum 
tau-jet energy is required to be greater than 15 GeV. 
The largest azimuthal angle between any two tracks 
in a hemisphere is required to be less than 15° to re­
move background from hadronic final states. The po­
lar angles of the two leading particles are restricted 
to I cos#| <  0.9. The angle between the directions of 
the two leading particles is required to be greater than 
90°. In the region 0.72 < | cos#| < 0.80, which is not 
completely covered by the electromagnetic calorime­
ter, only events with at least one hemisphere contain­
ing three tracks are selected.

The two highest energy clusters in the electro­
magnetic calorimeter are required to have energies 
less than 80% and 45% of the beam energy to re­
ject Bhabha background. Radiative Bhabha events 
and events from the two-photon collision process
e+e~ e+e " e +e~ are removed by rejecting events 
with two identified electrons. Electrons are identi­
fied by a cluster in the electromagnetic calorimeter 
with energy larger than 3 GeV, with electromagnetic 
shower shape, and a matched track. All events with 
two reconstructed tracks in the muon chambers are 
removed. The background from cosmic rays is re­
duced by requiring at least one scintillation counter 
to have a hit in a time window of ±3 ns around the 
beam crossing.

The reconstruction of >/F is done according to

Eqs. (1) and (2) using the polar angles of the leading 
particles of both tau jets. A cut of 110 GeV isolates 
high energy events.

3.3.2. Cross section
Selection efficiencies and background contamina­

tions are listed in Table 1. The systematic error of the 
event selection is estimated to be 5%. The samples of 
high energy events contain a contamination of 15% 
and 14% from events with hard ISR photons for the 
130 GeV and 136 GeV data, respectively.

The number of selected events and the total cross 
sections for the different ccntre-of-mass energies and 
the different event samples are listed in Table 2. The 
cross sections are extrapolated to the full solid angle. 
They are compared to the Standard Model prediction 
in Fig. 5.

3.3.3. Forward-backward asymmetry
The forward-backward asymmetry is determined by 

an unbinned log-likelihoodfit of Eq. (3) to events with 
unambiguous charge assignment. The fitted asymme­
try is corrected for charge confusion, which is esti­
mated from the data to be (7 ±  3)%  for a single tau. 
The asymmetries are corrected for backgrounds from 
other final states. For high energy events, the cor­
rection includes the effect of the contamination from 
events with hard ISR photons.

Table 3 summarises the number of forward and 
backward events, the background correction, and the 
corrected asymmetries. In Fig. 5 the comparison of the
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Fig. 4. Cross section (top) and asymmetry for £ < 90° (bot­
tom) of the process e+e~ —► fx*fi~  (y) at energies of 130 GeV 
and 136 GeV for the total and the high energy event sample, 
yfs* > 1 1 0  GeV. The solid lines are the Standard Model predic­
tions for the total cross section and the asymmetry. The dashed 
lines are the predictions for y/s* > 1 1 0  GeV, Cross sections and 
asymmetries measured at the Z are also shown. The asymmetries 
at the Z are corrected to account for the different acotlinearity an­
gle cut. When error bars overlap the yfs  values are slightly shifted 
for better visibility.

measured asymmetries to the Standard Model predic­
tion is shown.

3.4. e+e~ —* e+e~ (y )

3.4.1. Event selection
The selection used in [2] is modified to include 

events with hard ISR photons. The energy, Emax, of the 
highest energy cluster in the electromagnetic calorime­
ter is required to be larger than 60% of the beam en­
ergy. The acollinearity angle between the two high­
est energy clusters has to be less than 60°. To reject 
events from the reaction e+e "  —> y y (y )  a track in the 
central tracking chamber matched with a cluster in the 
electromagnetic calorimeter is required. The ¿-channel

Fig. 5. Cross section (top) and asymmetry for £ < 90° (bot­
tom) of the process e+e~ —» r +r “ (y) at energies of 130 GeV 
and 136 GeV for the total and the high energy event sample, 
y/s* > 1 1 0  GeV. The solid lines are the Standard Model predic­
tions for the total cross section and the asymmetry. The dashed 
lines are the predictions for y/s* > 110  GeV. Cross sections and 
asymmetries measured at the Z are also shown. The asymmetries 
at the Z are corrected to account for the different acollinearity 
angle cut.

contribution from Bhabha scattering is reduced by re­
stricting the polar angle of both leptons to 44° <  0 < 
136°.

The y/F  value is reconstructed from the invariant 
mass of the two highest energy clusters in the elec­
tromagnetic calorimeter. Its distribution is shown in 
Fig. 6a. A cut o f 110 GeV isolates high energy events.

3.4.2. Cross section
The selection efficiencies within the fiducial volume 

and the background contributions are listed in Table 1. 
The total systematic error o f 2% assigned to the cross 
section measurements is dominated by uncertainties 
in the event selection. An alternative selection, differ­
ing in the rejection of e+e -  y y (y )  events, yields
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Fig. 6 . (a) The reconstructed \ / y  distribution for the process 

—> e +e~ (y )  at 136 GeV. The arrow indicates the cut to 
isolate the high energy events. The background is dominated by 
the process e+e~ —► yy{y ) . (b) The differential cross section for 
the high energy event sample, \/s* > ! 10 GeV, of the process 

- ^ e +e “ (y) at 136 GeV.e+e

consistent results.
Table 2 summarises the number of selected events 

and the resulting cross sections for the two event sam­
ples at the different centre-of-mass energies. The re­
sults are given for 44° <  8 < 136° and an acollinear- 
ity angle cut of 60°. The cross sections are compared 
to the Standard Model prediction in Fig. 7.

By requiring the absence of tracks in the central 
tracking chamber the cross section of the reaction 
e+e~" —+ yy (y )  is measured. The results are listed in 
Table 4. The measurements agree well with the QED 
prediction.

Vs [GeV]

Fig. 7. Cross section (top) and asymmetry (bottom) of the pro­
cess e+e -  —*■ e+e~ (y )  for both leptons inside 44° < 0 <  136° 
and an acollinearity angle cut of f  < 60° at energies of 130 GeV 
and 136 GeV for the total and the high energy event sample, 
W  > 110 GeV. The solid lines are the Standard Model predic­
tions for the total cross section and the asymmetry. The dashed 
lines are the predictions for \ f 7  > 110  GeV. Cross sections and 
asymmetries measured at the Z are also shown. They are corrected 
to account for the different acollinearity angle cut. When error 
bars overlap the a/v values are slightly shifted for better visibility.

Table 4
Cross sections for the reaction e+e-  —* y y (y )  within the fiducial 
volume, 44° < 6y < 136°, and an acollinearity angle cut of 
£ < 60°. The QED prediction is calculated with the GGG Monte 
Carlo generator [ 18j.

y/a I GeV] C f p b - ! | Neve nts o $ al Ipb] ^ rED ipb|

130.3 2.68 25 10.0 ± 2.0 8.5
136.3 2.29 16 7.5 ±1.9 7.8

3A 3. Forward-backward asymmetry
The electron direction in the event is determined 

by a two-dimensional method [2 ] based on angular 
and momentum information from the central tracking 
chamber and the silicon microstrip detector. The prob­

ability of a wrong charge assignment is determined 
using the momentum and angular resolutions as ob­
tained from data. It is found to be (7 ±  2)%  for the 
total and (6 ±  2)%  for the high energy event sample, 
and its uncertainty is the dominant contribution to the
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systematic error.
The differential cross section for the high energy 

event sample at 136 GeV is shown in Fig. 6b. The ef­
fect of r-channel photon exchange producing predom­
inantly forward events is clearly visible.

The forward-backward asymmetry is measured by 
counting events in the forward and backward hemi­
spheres. Table 3 summarises the number of forward 
and backward events, the charge correction, and the 
corrected asymmetries. The systematic error of the 
measured asymmetry is estimated to be 0.034 for the 
total and 0.037 for the high energy event sample. In 
Fig. 7 the comparison of the measured asymmetries 
to the Standard Model prediction is shown.

3.5. e+e ppy(y)

e+e
3.5.]. Event selection

Radiative neutrino-pair production, 
vPy{y ), is tagged by ISR photons. The photons are 
detected in the barrel part, 45° < 8y < 135°, and the 
endcap parts, 20° <  6y <  35° and 145° <  6y < 160°, 
of the electromagnetic calorimeter. They are identified 
as calorimetric clusters with electromagnetic shower 
shape, an energy larger than 1 GeV in the barrel or 
10 GeV in the endcaps, and no track in the central 
tracking chamber. The energies of the highest energy 
clusters in the luminosity monitor, the low-angle lead- 
scintillator calorimeter, and the hadronic calorimeter 
must all be smaller than 5 GeV. Contamination aris­
ing from cosmic ray muons with bremsstrahlung is 
suppressed by removing events with reconstructed 
tracks in the muon chambers.

3.5.2. Cross section
After these cuts, 40 events are found, with an 

expected background from e+e-  
e+e“

yy(y) and
e+e- (y) of 13 events. The energy distri-

bution of these events together with the Monte Carlo 
expectation is shown in Fig. 8. The distribution peaks 
at about 35 GeV, showing the photon energy due to 
the radiative return to the Z. To fully suppress the 
background of radiative Bhabha events only photons 
with an energy above 3 GeV are used to measure the 
cross section. The cosmic ray background in the final 
event sample is estimated to be less than 1%.

The trigger efficiency is measured to be (81.2 ±  
1.4)% for photons up to 8 GeV in the barrel. It rises

20
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Fig. 8 . Energy, Er , of single photons in the process 
' ~+ vvy{y )  at of 130 GeV and 136 GeV. The back­

ground is dominated by the process e+e “  —+ e+e- (y).
e+e

to (97.7 db 2.3)% for photons above 10 GeV in barrel 
and endcaps. These efficiencies are determined from 
radiative Bhabha events as described in [24]. Cross 
sections are determined for events with at least one 
photon above 3 GeV and 20° <  Sy < 160°, and for the 
full phase space. The total efficiency for the vvy (y )  
final state is determined to be (56 ±  3)% for the re­
stricted and (6.5 ±  0.4)% for the full phase space. A 
systematic error on the cross section measurements of 
5% is derived.

Table 5 summarises the number of selected events 
and the resulting cross sections for the two differ­
ent centre-of-mass energies together with the Standard 
Model prediction.

To allow the interpretation of the results for single­
photon processes with different spectra the efficiencies 
for photon detection including the trigger are given: 
(75 ±  3) % for photons with an energy from 3 GeV to 
8 GeV in the barrel, and (90 ± 3 )%  for photons with 
an energy larger than 10 GeV in barrel and endcaps.
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Cross sections for the reaction e+e-  —► vv{y)  with Ey > 3 GeV and 20° < 6y < 160° and extrapolated to full phase space. The 
Standard Model prediction is calculated with the KORALZ Monte Carlo generator [14],

Table 5

xA  I GeV|

130.3
136.3

C I pb— I

2.68
2.29

events

17
10

Ey > 3 GeV, 20° < 6y < 160°

(Tpvy [pb]

11.2 ±2.7 
7.8 ±2.5

[Pb]

14.1

12.0

Full phase space

o'vp Ipb]

95 ±  23 
68 ± 22

~ S Mvv

120
105

Pb]

4. Interpretation of the results

Our data are interpreted in the framework of the S- 
matrix ansatz [3], which makes a minimum of the­
oretical assumptions. This ansatz describes the hard 
scattering process of fermion-pair production in e+e” 
annihilations by the s-channel exchange of two spin- 
1 bosons, a massless photon and a massive Z boson. 
The lowest-order total cross section, afot, and forward- 
backward asymmetry, A^, for e+e~ —» ff are given 
as [3,25]

cr^(s) -  \ira 2
»  i

g?
s

_ 1 _

(s — mz ) 2 mzr z-2 T̂2

for a = tot, fb

=  7
3

tot

The S-matrix ansatz is defined using a Breit-Wigner 
denominator with ^-independent width for the Z reso­
nance. To derive the mass and width of the Z boson for 
a Breit-Wigner with ¿-dependent width, the following 
transformations are applied [3] : mz = mz +  34 MeV 
and Tz = Fz ±  1 MeV.

The S-matrix parameters rf, jf and gf scale the Z 
exchange, yZ  interference and y  exchange contribu­
tions. In our approach, the y  exchange contributions 
gf are fixed by QED, g}ot = q2qj! and g^ = 0, where qf 
is the electric charge of the fermion f. QED radiative 
corrections are included by convolution with a radia­
tor function [26].

The program SMATASY [25] together with ZFIT- 
TER [ 19] and ALIBABA [20] is used for the calcu­
lation of the theoretical predictions of cross sections 
and forward-backward asymmetries. The S-matrix pa­
rameters are determined in a x 1 fit to the measure­
ments presented here and to our previously published

Z measurements [2]. The uncertainty on the LEP 
centre-of-mass energy of 70 MeV for the high energy 
measurements [27] has a negligible effect on the fit 
results.

The errors on the yZ  interference parameters are re­
duced when fitting the measurements with a \ fF  cut 
applied. The fitted S-matrix parameters for electrons, 
muons, taus and hadrons, and their correlations, are 
listed in Tables 6 and 7. The fits are performed with 
and without the assumption of lepton universality. The 
parameters obtained for the individual leptons are in 
agreement with each other and support this assump­
tion.

A large correlation between the mass of the Z bo­
son and the hadronic yZ  interference term, j f^ ,  is 
found. This correlation causes an increase in the er­
ror on mz with respect to fits where the hadronic yZ  
interference term is fixed to its Standard Model pre­
diction [4,2,28]. The fitted hadronic yZ  interference 
term is

i tot 
Jhad 0.29 ±0 .41

which agrees well with the Standard Model prediction 
of 0.22 and improves on the accuracy of our previous 
result [4] by almost a factor of 2. The fitted value for 
mz ,

mz = 91196± 9 ± 6 MeV,

where the second error arises from the yZ  interfer­
ence contibutions, agrees well with our previous re­
sult. The total error on mz in a fit with free yZ  in­
terference terms improves from 14 MeV to 11 MeV. 
This decrease arises from the reduction in the error 
component caused by the yZ  interference terms from 
11 MeV to 6 MeV. Fig. 9 shows the correlation con­
tours between mz and j[°ld under the assumption of 
lepton universality.
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Tabic 6
Results on the S-matrix parameters, derived with and without the 
assumption of lepton universality.

Parameter Treatment of charged leptons

Non-universality Universality

Standard
Model

'»z 1 MeV ] 91196 ±11 91196 ±11
r z 1 MeV 1 2494 ± 10 2493 ± 1 0 2498

,.lol 
1 had 2.954 ±0.029 2.953 ±0.029 2.969
,.UU 0.1409 ±0.0018 -----

..lot
V 0.1403 ±0.0017 -----

..toi 0.1421 ±0.0020 -----

V ----- 0,1410 ±0.0015 0.1427

:un
J|md 0.27 ±0,41 0.29 ¿0.41 0,22
:loi
Je —0.08 ±0.11 -----

;lol
Jfl -0 .0 2 3  ±0.072
;ioi
*>r 0.046 ±0.083 -----

jlOl
-1/

— —0.007 ±0.050 0.004

rlhl C 0,0016 ±0,0019 -----

rlb 0.0031 ±0.0012 -----

r,hiT 0,0047 ±0.0017 -----

lh
*7 — 0.00318 ±0.00085 0.00272

• lh  
A- 0.68 ±0.20 -----

• lh 
J/t 0.81 ±0.10 -----

j  T 0.70 ±0.13 -----

• lh
h

--- 0.749 ±0.076 0.799

X ' / DOF 87/111 91/119 ---

Table 7
The correlation matrix for the 8 S-matrix parameters derived with
the assumption of lepton universality.

an p ..lot rlol 
1 z  1 had V

:lot :toi 
J had -11:

ih
r< h

h iz 1.00 0.00 0.01 0.02 -0.55 -0.25 0.14 -0 .0 3

Pz 1.00 0.77 0.69 0.07 0.01 0.04 0.04
..lot 
1 had 1.00 0.88 0.04 —0.02 0.07 0.05
,.lul 1.00 0.03 0.03 0.08 0.07

*’hud 1.00 0,24 - ■0.09 0.04
¡toi 1.00 - -0.01 0.14

1.00 0.15

ilh 1.00

TJ
CO

m7  [GeV]
■C«t*

Fig, 9. Contours in the plane at 68% confidence level under
the assumption of lepton universality. The dashed line shows the 
Z data only whereas the solid line includes in addition the high 
energy data. The Standard Model prediction for j[f^ is shown as 
the horizontal band.

5. Summary and conclusion

Based on an integrated luminosity of 5 pb” 1 col­
lected at centre-of-mass energies between 130 GeV 
and 140 GeV, we select 1577 hadronic and 401 lepton- 
pair events. The data are used to perform the first 
measurements of cross sections and leptonic forward- 
backward asymmetries at these centre-of-mass ener­
gies. All measurements are well described by the Stan­
dard Model.

Our measurements allow an improved determina­
tion of the yZ interference terms and improve the ac­
curacy of the Z mass determined within the S-matrix 
framework.
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