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Abstract. Bose-Einstein correlations up to fourth order are 
presented at a/s = 2 2  GeV. Genuine third-order correla­
tions are observed. The experimental data are compared with 
predictions from a quantum statistical approach of radia­
tion from a partially coherent source and with the FRITIO F 
model.

1 Introduction and formalism

The dynamical properties of complex systems can be de­
scribed by two-, three- and more-particle correlation func­
tions. In statistical physics, e.g. in the theory of gases, mul­
tiparticle correlations are the result of interactions between 
pairs, triplets, etc. of molecules [1]. In high energy strong 
interaction physics, the correlation characteristics of mul­
tihadron production reflect the complex (and not yet estab­
lished) dynamical properties of the space-time evolution and 
hadronization of a quark-gluon system [2], A  specific case 
of short-range two- and multiparticle correlations, the Bose- 
Einstein (B E ) correlation, has an interference origin due to 
the symmetry properties of the probability amplitude of two 
or more identical bosons (pions) (for reviews see e.g. [3- 
6 ]). The characteristics of B E  correlations are determined 
by a number of factors: The space-time size and shape of 
the pion source, its non-static properties (the velocities of
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its movement and expansion), the existence of two or more 
sources of different size, the interrelation between chaotic 
and coherent sources etc..

In the most general case, the inclusive ^-particle densi­
ties Pg(l, •■•,<?) (where the kinematical variables of the par­
ticles are abbreviated to their number 1 ,...,#) are expressed 
in terms of the cluster expansion familiar from statistical 
physics [1,7,8]:

P2 ( l , 2 ) = C2 ( l , 2 ) + p1( lV ,( 2 ) ) ( 1 )
p3( l , 2,3) = C3( l , 2,3) + p, (1)P2<2,3)

(3)

-2p,(l)p,(2)p1(3)l (2)

p4( 1 , 2 ,3,4) = (74(1,2 ,3,4) + 2  p i(l)p 3 (2 , 3,4)
(4)

+ £>(1,2)^(3 ,4)
(3)

- 2 ^ /9|(l)p 1(2)p2(3,4)
(6)

+6p1(l)p 1(2)p1 (3)pi(4), (3)

etc, where the summations indicate that all possible permu­
tations have to be taken. The number under the summation 
sign indicates the number of terms. The correlation functions 
or (factorial) cumulant functions ( 7 ^ ( 1 , g) vanish when­
ever any one of their arguments becomes statistically inde­
pendent of the others. They represent the genuine q-particle 
correlations, while the other terms in the expansions (l)-(3) 
reflect the ’’trivial” contributions from lower-order densities.

It is often convenient to use the normalized inclusive 
densities and correlations:
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ffiq (17 • * • ? Q) Pq( 0 )/P \ ( 1) • * * P\ ((?) j

K q( 1 , . . . ,  q) = C ( 1 , . . .  ,q)/p\{\).. .pi(g).

(4)

(5)

The normalization of the inclusive densities p\, pi, pi and 
for identical particles is defined from the condition that their 
integration over phase space results, respectively, in (n),
(n (ri— 1)}, (n (n — l)(n  —2)) and (n (n — l)(n  ~ 2)(n — 3)), 
where n is the particle multiplicity.

The normalized inclusive density for two identical pions
is

fl2 ( l , 2 ) = l + # 2 ( 1 , 2 ). (6)

In the limit of a completely chaotic and static pion source, 
K 2 (1,2) reduces to the square of the Fourier transform 
F(P\ — P i,E \  ~ E 2) of the space-time distribution of the 
source, K i( l ,  2 ) = |F (1 , 2 )|2, where pi and E i {i = 1 , 2 ) are 
the three-momentum and energy of pion i, respectively.

Frequently, for convenience, the Lorentz-invariant col­
lective variable

Ql Q\ 2 (P, -  P i?  = (p, + p2)2 -  m l (7)
is introduced (M^ is the pion mass) instead of the four 
momenta P \ ,P i [9,10], and an empirical (Gaussian) para- 
metrization is used for \F (Q l) 12'

K i (Q\) = IF  (Q\) I2 = exp (- r2Q l) (8)

The parameter r in (8 ) can be related to the pion source 
radius for a pion pair ensemble with very small energy dif­
ference go =| E\ — E i | or in the dipion rest frame, where 
<2q =0 [4,11]* If the pion source, observed in the dipion rest 
frame, has a spherically symmetric Gaussian form

ƒ(*) = x|2/2rc) (9)

then the parameter r is related to the source r.m.s. radius 
(averaged over the dipion ensemble).

In terms of the Qij variables and for the case of a com­
pletely chaotic source, the normalized inclusive three-pion 
density is [ 1 2 ]

R ,(\ , 2,3) = 1 + IF  (Q]2) | 2 + IF  (Q2,) I2 + IF  (Q23)
+ 2Re{P (Q]2)  F  (Q2,) F  (Q l3) } (10)

with

^ (1 ,2 ,3 ) = 2 R e {P  (Q22) F  (Q?3) F  (Q^)} . (11)

In general, the genuine three-particle correlation 
# 3 ( 1 , 2 ,3) is not expressed completely in terms of the two- 
particle correlation function (8 ), but contains also new infor­
mation on the phase of the Fourier transform of the source. 
To the extent that phase factors may be neglected, is 
related to K 2 via the expression

- ^ 3  (Q l) = 2 exp (- - ¿rQ j) = 2 J k 2 (Q I)
\  2

(12)

with

Q l = Q2m = (Pj + P 2 + P i)1 -  9M l = Q\2 + Q \ 3 + Q223.( 13)

In a more general case, chaotic and coherent components 
may coexist in the pion source [11,13-16]. Although the co­
herent source of itself does not cause any B E  correlation, 
superposition of chaotic and coherent radiation changes the 
interference pattern and the interrelation between correla­
tions of different order, as between (8 ) and ( 1 2 ).

Pion radiation by a partially coherent source (with the 
chaoticity parameter p = (nCh)/(n), where (nch) denotes the 
chaotic fraction in the pion average multiplicity) can be de­
scribed in the framework of quantum statistics, applying an 
approach analogous to that used in quantum optics. Usually, 
it is assumed that the coherent source is pointlike and the

1 1 0  /  0chaotic source has a Gaussian form, /(x) ~  exp(—|x| /r ),
with r(r.m .s.) = ry/3 = tq \/3/2. For the simplified case of 
a symmetric configuration in momentum space one has

Q\ = Qn = Q ]i = ■■■ = Q(q-l)q = 2Q2 /g(<7 1) (14)

(for example, = ¿Q 4 ), where and Qj are
defined in (7) and (13),

Ql = (4 M J (15)

and, in general,

Q l = (qMw) (16)

The normalized two-, three- and four-pion inclusive densities 
are [14-16]:

R i (Q l) = 1 + 2p(l -  P) exp (~ r2Q l)
+ p1 exp (-2 r2Q l) ,

R-i (Q l) = 1 + 6 p (l -  p) exp f

+ 3p2(3 -  2p) exp

(17)

2
3

r ,<3>

t2Q\

+ 2 p3 exp ( - r2Q 3 ) , 

R4 (Q l) = 1 + I2p(l -  p) exp

(18)
1 2r\2

+ 6p2 (7 — 8 p + 2p2) exp

6 4 
1 lr\2

+ 4p3( l l  — 9p)exp 1
2r2Ql

+ 9 pA exp 2r\2 (19)

The normalized two- and three-pion correlation functions
are:
K 2 (Q l) = 2p(l -  p) exp (~ r2Q l) +p2exp (-2 r2Q2) , (20)

# 3  (Q 3 ) = 6 p2(l — p) exp

+ 2 p3 exp (- r2Q f) .

2
Ï ’-Cj

2 /o2

(21)

In quantum optics, the two-particle correlation function 
is also parametrized by an exponential form as a function of
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Qq = J Q \ -  In this parametrization one gets for a symmetric 
configuration [16]:

RiiQi) = 1 + 2 p (l -  p) exp(~rQ 2) + p2 exp(-2rQ i) (2 2 )

RiiQi)  = 1 +6p(l — p) exp i _ 4 =r Qi

+ 3j?2(3 -  2p) exp ^ — -~=7'Ĉ 2

+ 2p3 exp ( ~ ' /3 r Q 3)  (23)

Ra{Qa) = 1 + 12p(l — p)exp ^--^=r<24j

+ 6p2(7 -  8p + 2p2)exp i - ^ r Q ^

+ 4p3(l 1 -  9p) exp ^ - - ^ = rQ 4^

+ 9p4 exp ( - ^ r Q ^ ]  . (24)

In (22)-(24), the parameter r is not directly related to 
the source radius, but characterizes the correlation range in 
Q-space.

At p —> 1 (completely chaotic source) and symmetric 
configuration, (2 0 ) and (2 1 ) reduce to (8 ) and ( 1 2 ), respec­
tively. At p < 1 (partially coherent source), the normalized 
correlation functions (2 0 ) and (2 1 ), in contrast with (8 ) and 
(12), now contain two exponential terms. The maximum val­
ues of the normalized densities (17) and (18) are smaller 
than, respectively, R i(0 ) = 2  and i? 3 (0 ) = 6  expected for a 
completely chaotic source (cf. (17) and (18) at p - 1 with 
(6 ), (8 ) and ( 1 0 )).

One should stress, that the above properties of a partially 
coherent source can be reproduced by a superposition of two 
completely chaotic sources with radii r fG and Tq accidentally
related by Vq/tq ~  \/2 [4]. However, the predictions of 
quantum statistics are definite and contain, in a simplified 
case, only two free parameters (p and r) for the correlation 
of all orders. So, an experimental observation of higher or­
der correlations allows, in principle, to establish quantum 
statistics, a basic approach in various physical fields (such 
as quantum mechanics and field theory, condensed matter 
physics, nuclear physics etc.), also in multiparticle produc­
tion processes.

Apart from a few exceptions, correlations of three and 
more particles have experimentally been studied only dur­
ing recent years [17-26]. While the evidence for the three- 
particle short-range rapidity correlations observed in [17-21] 
is inconclusive, significant genuine correlations are observed 
at small invariant mass of particle triplets [25] and at small 
Q2 for three-, four- and five-particle systems [26]. Three- 
particle B E  correlations are studied in [18,19,20,23,24] and 
are found to be consistent with (12). B E  correlations meaT 
sured in [24] up to fifth order have manifested some incon­
sistency with the expectation from quantum statistics: while 
the chaoticity parameter p is practically constant, the param­
eter r turns out to increase with increasing order q.

The importance of the role of higher order B E  correla­
tions in multiparticle production and the scarcity of available

data stimulate further experimental investigation in this field. 
In this work we present new experimental data on higher 
order (third and fourth order) BE correlations in (7r+/K+)p 
collisions at 250 GeV/c from the NA22 experiment, per­
formed at the CERN SPS with the help of the European 
Hybrid Spectrometer EHS. Earlier results of this experiment 
on two-particle BE  correlations are published in [27-29].

Data sample and reconstruction procedure are described 
in short in the following section. In Sect. 3 we present 
the experimental data on the (genuine) B E  correlations and 
the results of their analysis. Conclusions are summarized in 
Sect. 4.

2 Data sample and reconstruction procedure

The experimental set-up of the European Hybrid Spectrom­
eter (EHS) is described in detail in [30]. In the NA22 exper­
iment, EHS has been exposed to a positive meson enriched 
beam of 250 GeV/c momentum. The hadronic beam content 
has been 15.3% K+, 38.9% tt+ and 45.8% p. The K + and
7r+ components have been individually tagged and proton 
events have been vetoed.

The data reduction procedures are described in detail in
[31.32], A  rapid cycling bubble chamber RCBC filled with 
hydrogen has been used as an active vertex detector. Tracks 
of secondary charged particles are reconstructed from hits 
in the wire and drift chambers of the spectrometer and from 
measurement in the RCBC, to an accuracy of (1 -  2.5)% 
when reconstructed in the first lever arm and 1.5% when 
reconstructed in the full spectrometer. The resolution in Q\ 
is estimated to be 8.10~ 4  GeV2 at Q\ < 0.04 GeV2.

The event-selection criteria are described in detail in 
[28]. Accepted events are satisfactorily measured and re­
constructed and contain at least two negative charged tracks 
with momentum error less than 4%. Each accepted track is 
required to lie in the region of Feynman variable \xp\ < 0.5, 
in order to reduce possible correlations due to phase space 
restriction and biases due to violation of momentum and en­
ergy conservation. Single diffraction dissociation [32,33] is 
excluded. The number of accepted events is equal to 102568. 
For each event, a weight is introduced in order to normal­
ize to the non-single-diffractive topological cross sections
[31.33].

A ll negative particles are assumed to have pion mass. 
The contamination from other particles is estimated to be
(7 ±3)% [33].

3 Experimental results

3.1 The normalized higher-order densities

The normalized g-particle densities R q(Qq or Qq) (q = 
2,3,4) are determined as

Rq(Q2q) = Nq(Q2q)/N*G(Q2), (25)

where N q(Qq) is the number of g-particle combinations at
given Q2, N qG(Q2) that for the reference (background) sam­
ple composed by combining tracks randomly chosen from 
different events of the same charged particle multiplicity.
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The contribution from mixed events of a given multiplicity 
in is proportional to that of real events in Nq(Q2q),
The nominator and the denominator in (25) are normalized 
to an equal total number of combinations in the interval 
0 < Q2 < (Q 2)max much larger than the interference region.
Here, we choose ( Q 2)max = 2  GeV2 and (Qq)max = 1.4 GeV 
for all orders.

The genuine three-particle correlation function C?>(Q2 or 
Q i) and its normalized form K i(Q 2 or Q3 ) are extracted by 
means of (2). The product P\P\P\ in (2) is determined by 
combining three particles with a given Q\ randomly chosen 
from different events with > 3. The product p2p\ is de­
termined by combining three particles with a given Q2, two 
of which are chosen from the same event and the other from 
another event with nv- > 3. The density p3 is determined 
by combining three particles with a given Q2 chosen from 
the same event.

Two methods of normalization are applied for the den­
sity function p3 and the combinations p2pi and pipipi. In 
method I, we use the total number of three-pion combina­
tions in the interval 0  < Q2 < (Q2)m(lx or 0  < Qq < 
(.Qq)maxi as described above. In method II, we use the nor­
malization described in the introduction: (n(n — l)(n  — 2 )) 
for p3 , {n){n(n — 1)) for p2pi and (n)3 for pipipi. These 
two methods lead to very similar results.

In Figs. la,c,e and 2 a,c,e, the measured ratios R q(Q2q) =
N q(Q2q)/N»G(Q2q) and R q(Qq) = Nq(Qq)/N*G(Qq) are
shown for g-2,3,4, respectively. Figures lb,d,f and 2b,d,f 
present the same distributions corrected for Coulomb repul­
sion of the like-charge pions in the final state: each two-pion

combination in Ni(Q\ or Q2) is weighted by a factor (known 
as Gamov factor [34])

w 2 = G ~ \Q i) = exp(̂ 7rT?) - 1, (26)
2tt7]

with T) = aM 7r/Q2 and a = For a triplet and a quadru­
plet of pions containing, respectively, three and six pair com­
binations with variable Qij a factor [19]

Q
W q = n G - \ Q ij), (gr = 3,4) (27)

i<3
is used.

In order to check the consistency of the 7T+ and K + data, 
we have fitted the ratios i? 2 (Q2) and R^(Q2) separately for 
pion and kaon induced reactions to the empirical dependence

Rq(Q2q) = 7g[l + K  eXP(-^Qq)](l + SqQl), (28)

where Xq characterizes the strength of the interference ef­
fects, 7  ̂ is a normalization coefficient and 6m is introduced 
to account for a possible variation of R q(Q2) outside the 
interference peak. The fit results given in Tables 1 and 2 
for 7r+ and K+ data, separately, are in agreement with each 
other. In Figs. 1 and 2  and in the following we, therefore, 
use the combined (tt+/K+) data.

The extracted parameter value, r 2 = 0.82 ± 0.01 fm, is 
consistent with the available data (see [27,28]). Also r 3 = 
0.51 rt 0.02 fm is in agreement with the results from pp- 
collisions at f̂s = 26 GeV [20], e+e~ annihilation at >Js  =
3 — 34 GeV [18,19] and 7 7 -collisions [19].
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Table 1. The results of fitting the various data samples for q = 2 by function (28)

Sample r

(fm)

À 7 6

(GeV~2)

x2/ n d f

Without Coulomb corrections

7T+p 0.82 ± 0.01 0.33 ± 0.02 0.957 ± 0.005 0.029 ± 0.006 93/96

K+P 0.83 ±0.02 0.33 ± 0.03 0.956 ± 0.009 0.029 ±0.011 107/96

(tt+/K +)p 0.82 ± 0.01 0.33 ±0.02 0.953 ±0.004 0.035 ± 0.006 115/96

With Coulomb corrections

7r+p 0.86 ± 0.01 0.38 ± 0.02 0.957 ± 0.005 0.024 ± 0.006 101/96

K+p 0.87 db 0.02 0.38 ±0.04 0.957 db 0.008 0.024 ±0.010 110/96

(7T+/K +)p 0.85 ±0.01 0.38 ±0.02 0.954 ± 0.004 0.030 ± 0.005 127/96

Table 2. The results of fitting the various data samples for q = 3 by function (28)

Sample r

(fm)

A 7 8

(GeV“ 2)

x2/n d f

Without Coulomb corrections

7T+p 0.52 ± 0.02 0.88 ±0.07 0.982 ±0.010 -0.016 ±0.008 122/96

K+p 0.51 ±0.03 0.85 ±0.11 0.960 ±0.019 0.006 ±0.015 114/96

(7T+/K +)p 0.51 ±0.02 0.86 ±0.05 0.972 ±0.009 -0.006 ± 0.007 143/96

With Coulomb corrections

7T+p 0.53 ±0.02 1.00 ±0.07 0.987 ±0.010 -0.024 ±0.010 126/96

K+p 0.53 ± 0.03 1.02 ± 0.13 0.967 ±0.018 -0.005±0.018 115/96

(7r+/iC+)p 0.52 ±0.02 0.99 ±0.06 0.977 ±0.009 -0.015 ± 0.009 149/96

In the following, the measured two-, three- and four- 
particle densities are analyzed in the framework of the quan­
tum statistical approach of partially coherent source radia­
tion. The data of Figs. 1 and 2 are fitted, respectively, by 
(17)-(19) multiplied by a background factor 7 g(l + 5qQ2q), 
and (22)-(24) multiplied by 7 g(l +SqQq), where parameters 
7 q and 8q have the same meaning as in (28). A ll parameters 
are fitted for every order q, separately. The fit results are 
given in Tables 3 and 4 and shown as curves in Figs. 1 and 
2.

For a verification, the FRITIOF-7 model [35] is used 
with two-particle B E  parametrization according to JETSET  
7.3 [36]. An exponential parametrization is used of the form 
R(Q ) = 1 + Aexp(-rQ) with parameter values A = 0.30 and 
r = 0.7 fm. These values are lower than the values A = 0.4 
and r = 0.8 fm used in earlier NA22 publications, since the 
latter overestimate the higher order correlations. The gener­
ated events are subject to the same selection criteria as the 
real data. The MC results corresponding to the data in Ta­
bles 3 and 4 are given in Tables 5 and 6 , respectively. No 
Coulomb repulsion is used in the MC and, therefore, no cor­
rection according to (27) is needed. The MC results are in 
reasonable agreement with the data and are indistinguishable 
from the experimental fits shown in Figs. 1 and 2.

3.2 The q-dependence of the radius r

In Fig. 3, the parameters r and p are presented as a func­
tion of q, the order of the correlation. Also shown are data 
for pp collisions at y/s = 630 and 900 GeV [24]. In these 
experiments a substantial increase of r with increasing q is 
observed. The NA22 data exhibit a similar trend but with 
smaller statistical significance. Moreover, the FR IT IO F re­
sults, also plotted in Fig. 3, indicate a ^-dependence quite 
similar to our data.

In the quantum-statistical model discussed in Sect. 1, the 
parameters r and p are supposed to be the same for all or­
ders, in clear contradiction with the trend of the combined 
data on r. This, however, does not necessarily invalidate 
the QS approach as such, in view of several simplifying 
assumptions underlying (17-19) and (22-24) such as: sym­
metric configuration of q particles, pointlike coherent source, 
stationary source, additivity (as opposed to multiplicativity) 
of coherent and chaotic components, etc. [13-15],

We have checked, whether the increase of the radius 
with increasing order is due to the symmetric pair approx­
imation used in (17)-(19) and (22)-(24), while the experi­
mental data contain also non-symmetric pairs. We studied 
the 3rd and 4th order correlations for ” quasi-symmetric” 
triplets (requiring for each pair Q\j/Q\ = 1/3 ± 1 /6 ) and
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Table 3. The results of fitting the data sample by the functions (17) to (19) multiplied by 7g(l + 8 qQ2)

Order q r p 7 6 x2/N D F

(fm) (GeV-2)

Without Coulomb corrections

2 0.80 ± 0.03 0.19 ±0.01 0.953 ± 0.004 0.035 ±0.006 113/96

3 0.86 ± 0.03 0.15 ±0.01 0.969 ± 0.010 -0.004 ± 0.007 140/96

4 1.17 ±0.07 0.19 ±0.03 1.081 ± 0.020 -0.070 ±0.011 106/95

With Coulomb corrections

2 0.83 ± 0.03 0.22 ± 0.01 0.954 ± 0.004 0.030 ±0.005 123/96

3 0.87 ± 0.03 0.17 ±0.01 0.974 ± 0.009 -0.013 ±0.007 145/96

4 1.07 ±0.07 0.18 ± 0.02 1.060 ±0.024 -0.070 ±0.013 98/95

Table 4. The results of fitting the data sample by the functions (22) to (24) multiplied by 7q(l + 8qQ q)

Order q r

(fm)
V 7 8

(GeV“ 1)

x2/n d f

Without Coulomb corrections

2 0.98 ± 0.08 0.56 ±0.05 0.876 ±0.018 0.122 ± 0.022 57/52

3 1.29 ±0.11 0.49 ± 0.06 0.844 ± 0.044 0.102 ±0.035 65/49

4 1.82 ± 0.13 0.55 ±0.53 0.984 ± 0.074 -0.050 ±0.051 47/44

With Coulomb corrections

2 0.95 ± 0.07 0.69 ± 0.08 0.879 ±0.016 0.113 ± 0.020 68/52

3 1.25 ±0.08 0.63 ± 0.08 0,851 ±0.039 0.085 ±0.025 65/49

4 1.70 ±0.14 0.58 ± 0.42 0.982 ± 0.082 -0.063 ±0.054 48/44

Table 5. The results of fitting the FRITIOF sample by the functions (17) to (19) multiplied by 79(1 + 8qQ2)

Order q r P 7 6 X2 /N D F
(fm) (GeV~2)

2 0.92 ± 0.02 0.17 ±0.01 0.951 ±0.002 0.060 ±0.003 110/96

3 0.84 ± 0.02 0.13 ±0.01 0.951 ±0.006 0.021 ± 0.005 94/96

4 1.07 ±0.04 0.17 ±0.01 1.053 ±0.014 -0.068 ± 0.007 188/95

Table 6. The results of fitting the FRTIOF sample by the functions (22) to (24) multiplied by 7g(l + 8qQq)

Order q r P 7 8 x 2/n d f

•

(fm) (GeV“ 1)

2 1.08 ± 0.01 0.44 ± 0.03 0.866 ± 0.010 0.162 ±0.013 78/ 52
3 1.18 ± 0.08 0.41 ±0.02 0.772 ± 0.037 0.199 ±0.043 31/50
4

.

1.33 ±0.08 0.47 ±0.11 0.729 ±0.105 0.144 ±0.109 75/44



235

Gaussian Exponential

a>
0
E
(0
k -(tì
CL

1.8

1.6

1.4

1.2

1

0.8

0.6

r r r i “ |- i i i r j i > \ r-| i -r ; > | » > i r

a)
A

□
o

NA22 22 GeV 
FRITIOF 22 GeV 
UA1 630 GeV 
UA1 900 GeV

i I t i j I

1 6

a  1

l o . 9
E
2 0.8 
cd

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

i“ r " r

C)

0 □
o

■i « 1. 1

T-T-r^r-pr^-r^T-T -j-r  T~r ? I -r r  i r | r r  i 'r~

■ d)

a £«

! I

i

J. I 1 . I I L I I i. I 1 > .1. .1 i  .

1 5 6 
order q

1 4 5 6 
order q

Fig. 3. The extracted parameters r and p of Gaussian (a,c) and exponential 

(b,d) parametrization as a function of the order q of the correlation, for UA1 

at 630 and 900 GeV [24] and for this experiment compared to FRITIOF 

with BE at 22 GeV

quadruplets (requiring Qfj/Q\ — 1 / 6  db 1 /6 ). We find (with 
Coulomb corrections included) r 3 = 0.97 ± 0.07 fm and 
7*4 = 1.15 ± 0.08 fm for the Gaussian parametrizations (18) 
and (19) and r 3 = 1.39 ± 0.26 fm and 7*4 = 1.76 ± 0.18 fm 
for the exponential parametrizations (23) and (24). So, the 
increase for ’’quasi-symmetric” combinations is not less pro­
nounced than for the total sample (cf. Tables 3 and 4).

We have checked, furthermore, whether the increase of 
the radius with increasing order is caused by the fact that 
somewhat different samples are used to study correlations 
of different orders (> 6  prong events for 2nd order, > 8  

for 3rd order and > 10 for 4th order). We analyzed the 2nd 
order correlations for > 8  and >10 prong events and 3rd 
order correlations for > 1 0  prong events and find results 
practically the same as those presented in Tables 3 and 4.

/
3,3 Genuine three-particle correlations

As mentioned in Sect. 2, our data allow to extract the normal­
ized genuine three-particle correlation function The 
function Ks(Q l) +1 is shown in Fig. 4a after Coulomb cor­
rection. A non-zero K$ is observed for Q\̂ . < 0.2(GeV/c)2. 
We have checked that the effect is also present before 
Coulomb correction.

We now investigate whether the observed genuine three- 
particle correlation can be fully expressed in terms of the
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Fig. 4. The normalized three particle correlation function added

to L The curve is the result of a fit by (29): (a) experimental data, (b) 

FRITIOF results

simple product of two-particle correlation functions accord­
ing to ( 1 2 ) or whether information can be extracted on the 
relative phases of (11). If relation (12) holds, the func­
tion 1 + K^(Q\) can be described by the parameters = 
0.85 ± 0.0i fm and A2 = 0.38 ± 0 . 0 2  deduced from the fit 
of the normalized two-particle density i?2 (Q 2) by (28) (last 
line of Table 1):

K i(Q j)+  1 =7[1 + 2\l/2 exp(-l- r lQ ]m  +SQ23) . (29)

We, therefore, fit the data of Fig. 4 by (29) and compare 
the resulting r 2 and A2 to the values given above. The fit 
results, practically the same for normalization method I and 
II described above, are presented in Table 7. Considering the 
large errors, the resulting parameters r2 and A2 do not con­
tradict those of the two-particle correlations and, therefore, 
do not allow to reveal new information on the phase of the 
Fourier transform F (Q 2).

The parameter values used in FRITIO F provide “ out­
put” results consistent with those given in the last line of 
Table 1. The function K^iQ\) + 1 extracted from FR IT IO F 
events is presented in Fig. 4b. It contains a noticeably smaller 
deviation from unity than observed for the real events in 
Fig. 4a. The fit by (29) leads to the very small value of 
A2 = 0.07 db 0.03, indicating that no significant “genuine” 
correlations are simulated in the three-particle density.

An alternative method is applied in [23]. Using the sim­
plest parametrization for the two-particle correlation (cf. 
(28))
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Table 7. The results of fitting the normalized three panicle correlation function by (29)

normalization

method

T2 (fm) A2 7 6 x 2/ n d f

Without Coulomb corrections

I t 9')+ 0.25 
^  -0.33 0.33 ±0.15 1.000 ±0.008 -0.002 ± 0.007 77/96

I I 1 24+ °-28^  -0.37 0.32 ±0.15 1.007 ±0.008 -0.001 ±0.007 77/96

With Coulomb corrections

I 1 24+ °'21
—0.27 0.40 ±0.15 0.999 ±0.008 -0.001 ±0.007 76/96

I I 1 oc+ 0.23 
—Ö.2K 0.39 ±0.15 1.004 ±0.008 -0.001 ±0.007 76/96

KliQi) = A2 exp(-r?<?2) (30)

neglecting the phase factor of the Fourier transform F (Q ij) 
and replacing the latter in ( 1 0 ) and ( 1 1 ) by F (Q^) =

K iiQ lj), one obtains for the normalized three-particle 
density

RsiQÌi) 3> Q23) -  1 + A2 exp(— Q̂ j)
i< j

+ 2 A f e x p [ - | ^ Q ^  .
i<j

(31)

The normalized density R iiQ l or Q3 ) can be recalcu­
lated by means of (25) after weighting the denominator 
by (31). The parameter values r 2 = 0.82 =1= 0.03 fm and 
A2  = 0.34 ± 0.03, experimentally determined from the sam­
ple of events with at least three 7r"-mesons, are close to the 
values presented in Table 1 for the total event sample.

In [23] this procedure has revealed small irregular de­
viations from the constant value # 3 (6 3̂ ) = 1 expected for 
the case, that the three-particle correlation is completely ex­
pressed in terms of two-particle correlations. Our data for 
the weighted densities i? 3 (Q 3 ) and R i(Q i) are presented in 
Fig. 5. They indeed indicate a small three-particle interfer­
ence effect not described in terms of two-particle correla­
tions.

At qo < 0.3 GeV, we extract the two-particle correlation 
parameters, r 2  = 1 . 0 1  ± 0 . 0 2  fm and X2 = 0.44±0.03, larger 
than those obtained without applying a go-cut. These val­
ues are used for weighting by (31) the densities R^(Q\) and 
RiiQd) for triplets, in which all three doublets simultane­
ously satisfy the restriction qo < 0.3 GeV (not shown). We 
again observe small, but statistically significant deviations 
from the expectation based on two-particle correlations.

4 Summary

A study of Bose-Einstein correlations up to fourth order has 
been performed in (7r+/K+)-interactions at 250 GeV/c with

o
a:
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Fig. 5. The weighted three-particle densities R${Q\) and ^ 3( ^ 3) (see text)

the help of the EHS spectrometer. Genuine third-order cor­
relations are observed which, except for small effects, can 
be described in terms of second-order correlations.

The data on second to fourth order correlations are com­
pared with FR IT IO F and satisfactory agreement is observed. 
The data are also analysed in the framework of a simplified 
optical model, based on the quantum statistics of a partially 
coherent radiation source. Our data are only marginally in 
agreement with this model.
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