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Regulation of Glomerular Epithelial Cell Production 
of Fibronectin and Transforming Growth Factor-ß 
by High Glucose, Not by Angiotensin II
Nicole F. van Det, Nicole A.M. Verhagen, Jouke T. Tamsma, Jo H.M. Berden, Jan A. Bruijn, Mohamed R. Daha, 
and Fokko J. van der Woude

Accumulation of matrix proteins is a prominent fea
ture o f diabetic nephropathy. Glomerular visceral 
epithelial cells (GVECs) are important contributors to  
extracellular matrix (ECM) production in the glomeru
lus. Factors involved with increased accumulation of 
ECM proteins are high glucose, angiotensin II (ANG 
II), and transforming growth factor (TGF)-p. There
fore, we investigated the effects o f high glucose and 
ANG II on fibronectin and TGF-P production by human 
GVECs in vitro. We found that ANG II had no effect on 
the production o f fibronectin and TGF-p by GVECs. 
Using reverse transcriptase-polymerase chain reaction 
analysis, no ANG II receptor could be detected on 
these cells. However, high glucose induced a twofold 
increase in fibronectin (P  < 0.01) and a three- to sixfold 
increase in TGF-p (jP < 0.001) production. Similar 
results were obtained by analyzing the mRNA levels of 
fibronectin (increased 2.7-fold) and TGF-P (increased 
3.5-fold). Addition o f  increasing concentrations of 
rTGF-p to control cells resulted in increased fibro
nectin production. Neutralizing antibodies against 
TGF-P significantly reversed the increase in fibro
nectin protein and mRNA caused by high glucose back 
to control levels. We conclude that high glucose con
centrations stimulate the synthesis o f fibronectin and 
that this effect is mediated by induction of TGF-p. 
These results suggest that in diabetic nephropathy, 
high glucose levels play a role in changing the matrix 
composition of the glomerular basement membrane 
through induction o f TGF-p. Our results indicate that 
a contribution to this process by an effect of ANG II on 
GVECs seems unlikely. Diabetes 46:834-840, 1997
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ATCC, American Type Culture Collection; ATR1, ANG receptor type 1; 
ATR2, ANG receptor type 2; BSA, bovine serum albumin; D FCS, heat-inac- 
tivated fetal calf serum; DIG, digoxigenin; DMEM, Dulbecco’s modified 
Eagle’s medium; ECM, extracellular matrix; FITC, fluorescein isothio- 
cyanate; GBM, glomerular basement membrane; GVEC, glomerular vis
ceral epithelial cell; MC, mesangial cell; PBS, phosphate-buffered saline; 
PCR, polymerase chain reaction; RT, reverse transcriptase; TGF, trans
forming growth factor.

rA
n important hallmark of diabetic nephropathy is

# m  matrix accumulation in the glomerulus, which is
represented morphologically as thickening and 

JBLexpansion of the glomerular basement mem
brane (GBM) and the mesangium (1). These two types of 
glomerular matrices are each composed of heparin sul- 
fate/chondroitin/dermatan proteoglycans, laminin, fibro
nectin, and type IV collagen (2). The mesangial cells (MCs), 
glomerular visceral epithelial cells (GVECs), and endothelial 
cells are most likely to be responsible for the biosynthesis and 
maintenance of the mesangial matrix and GBM (3). An 
important regulator for the biosynthesis of these matrix mol
ecules is TGF-p. We found that in human MCs, TGF-p 
induced the synthesis of heparan sulfate proteoglycan and 
that the production of this matrix molecule was completely 
blocked after addition of neutralizing anti-TGF-p antibodies 
(4). In rat MCs, it was found that TGF-p induced the pro
duction of biglycan and decorin. The synthesis of other 
matrix molecules by these cells was unaffected (5). Since 
TGF-p production in the glomerulus is also likely to affect the 
epithelial cells, the same authors investigated the effect of 
TGF-p on matrix production in rat epithelial cells and found 
that it enhanced the synthesis of both proteoglycans and 
type IV collagen, laminin, and fibronectin (6). The fact that 
TGF-p specifically induced an increase in nonproteoglycan 
components of the extracellular matrix (ECM) (fibronectin, 
laminin, type IV collagen) in epithelial cells suggests that 
these cells may be responsible in part for the TGF-p-induced 
increase of these matrix components in glomerular diseases, 
including diabetic nephropathy (7-11).

It was previously shown that proximal tubular cells and 
MCs cultured in high glucose express modest increases in 
TGF-p 1 mRNA and bioactivity. Neutralizing TGF-p bioactiv
ity with specific antibodies reversed the effects of high glu
cose on the stimulation of collagen (12). In this study, we 
investigated whether high glucose concentrations had an 
effect on fibronectin production in human GVECs and what 
the role of TGF-P was in this respect.

Besides the obvious increase in glucose concentration, 
there is evidence to suggest a role for ANG II in the patho
genesis of diabetic nephropathy. Inhibition of the generation 
of ANG II by ACE inhibitors or ANG II receptor antagonists 
was found to attenuate the progression of glomerulosclerosis 
in several disease models (13-15) and to slow progression of 
diabetic nephropathy in humans (16). Studies performed with
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MCs, which are known to express ANGII receptors on their 
surface, have shown that ANG II induces syn thesis of several 
matrix proteins (4,17-20). Tlie.se effects of ANG II were found 
to be mediated by induction of TGF-ß (4,18). Some authors 
have suggested a role for ANGII in regulating the matrix pro
duction by GVECs, although evidence for an ANG II receptor 
on these cells is controversial (21-23). Therefore, we studied 
the effect of ANG II on matrix production by GVECs, the role 
of TGF-ß in this respect, and whether the ANG II receptor 
could be detected on these cells.

RESEARCH DESIGN AND METHODS
Cell culture. GVECs wore cultured from glomeruli obtained from normal 
human adult kidneys (>* « 5) that could not be used for transplantation 
because of anatomical reasons. The use of human kidneys (adult and fetal) was 
approved by the Medical Ethical Committee, University Hospital Leiden. 
Methods used to culture GVECs have been published previously (24,25). The 
cells wen» charact erized by their morphology and immunofluorescence stain
ing. In brief, immediately aller outgrowing from the glomeruli (1 week), 
GVECs were passaged using phosphate-buffered saline (PBS)-20 mmol/1 
EDTA into a T25 or T7f> flask and grown in Dulbecco’s modified Eagle’s 
medium (DMEM) with 5% heat-inactivated fetal calf serum (D PCS; llyclone 
Laboratories, Logan, UT), trypsinized, and seeded into T25 or T75 flasks. 
Characterization of GVKCs was done on the basis o f ./) cell morphology (con
fluent monolayer of polygonal cells); JL>) positive staining with monoclonal anti
bodies TNIO, anti-eytokeralin (RGE3) (Eurodiagnostics, Apeldoorn, The 
Netherlands'), and ant i-C ALLA (Dakopatt, Denmark); and S) absence of stain
ing using monoclonal antibodies against TNI), anti-von Willebrand factor, 
and anli-desmin. The monoclonal antibodies TN9 and TN10 specifically rec
ognize proximal tubular epithelial cells and GVECs (20), respectively, and were 
a gift from Drs. G. Müller and M, Ncsper (Medizinische Klinik, Tübingen, Ger
many). Kor experimental purposes, cells were grown in 12-well plates in 
11MKM with r>% 1) FCK l\>r 24 U and subsequently starved for 24 h in DMEM with
0 . I) FCS. Some wells were washed with PBS, trypsinizod, and counted in 
the ( ‘(Hiller counter to determine the number of cells at the beginning and end 
of each experiment. The rest of the wells were cultured for a 3-day period in 
the same medium and assessed Cor fibronectin and TGF-ß production in 
medium alone or in the presence of 15 or 25 mmol/1 glucose or ANG II (Sigma, 
St. Louis, M()) alone (10 mol/l or 2 x 10 M mot/1). Additional experiments were 
performed using neutralizing anti-human TGF-ßl/2,3 monoclonal antibodies 
(2G7) (27) or human recombinant TGF-ß I (R<NtI) Systems, Abingdon, O.K.)* 

For KT-IVK analysis, we also used mesangial cells grown out of glomeruli 
isolated from human kidneys. Methods used to culture these cells are 
described in detail elsewhere (2r>). Kidney cortex was prepared from human 
kidneys by mechanical dissociation.
Imm unofluorescence. Cells were* grown on sterile glass cover slips (10,000 
cells/well) in DMKM containing f>% 1) KCS, The cells were washed three times 
with PBS, fixed in acetone for 5 min at 0'’C, and air-dried; and immunofluo- 
reseent staining was performed by incubating with goat anti-human fibronectin 
antibodies {Sigma) and rabbit anti-EUS lammin (E-Y laboratories, Sau Mateo, 
CA) antibodies for MO min. After extensive washing with PBS, the cells were 
incubated with fluorescein isothioeyanate (FiTC)-eonjugated rabbit anti-goat 
lgG (RAG IgG FITO or FITC-eoivjugated goat anti-rabbit IgG (GAR-FITC) 
(Nordic) for MO min in the dark, F ITC-conjugated rabbit anti-goat IgG and FITC- 
coi\jugated goat anti-rabbit IgG were used as controls. After being washed three 
times with PBS. the slides were mounted in 1,4 diazobicyelo(2,2,2)oetane-glye- 
erol (DABCt )-g)ycerol), assessed for fluorescence at 340-3HÖ nm (FITC), and 
photographed through a Leitz microscope (Wetzlar, Germany).
Fibronectin enzym e-linked im m unosorbent assay (ELISA), Secreted 
fibronectin in the medium was measured using an inhibition ELISA as 
described previously by Nahman et al, (28) with some minor modifications. 
TGF-ß bioassay and ELISA. GVKCs were cultured in 12-well plates and cul
tured as described above. The cell media were analyzed for latent; and active 
TGF-ß. Latent and active TGF-ß were measured by the inhibition of growth 
of the mink lung cell line CCL-01 (American 'type Culture Collection [ATCC], 
Rockville, MD). Growth inhibition was measured as the decreased uptake of 
neutral red t2U). TGF-ß was activated by heating in a water bath for 10 min 
at Nt)’'( followed by immediate cooling in ice water. Specificity for TGF-ß was 
demonstrated by the full reversal of any inhibitory activity by the addition of 
a monoclonal antibody that specifically recognizes human TGF-ß 1,2,3 (2G7) 
(27). Latent and active TGF-ß in the medium was also measured by sandwich 
ELISA, using 10 ng/ml human rTGF-ßl as standard for every plate. TGF-ß was 
activated by pH. In brief, mouse* anti-human TGF-ß (2G7) (2 pg/ml in PBS) was

allowed to adhere to 96-well plates for 1 h at 37°C and overnight at4°C. After 
extensive washing and a 1-h blocking step with PBS, 0.2% Tween-20, 2% 
bovine serum albumin (BSA), the samples were added in duplicate to the wells 
for 2 h at room temperature. After washing, chicken anti-human TGF-f3 cou
pled to digoxigenin (DIG) antibodies were incubated for 1 h at room temper
ature. Plates were washed and anti-DIG F(ab)'a conjugated to horse radish per
oxidase was allowed to bind for 1 h at room temperature. Peroxidase reactivity 
was visualized by addition o f the peroxidase substrate ABTS (2,2-azino-bis-3- 
ethylbenzthiazolin; Sigma) prepared in 100 mmol/1 citrate, 100 mmol/1 phos
phate buffer, pH 4.2. Optical density was measured at 415 nm.
RT-PCR analysis o f  the ANG II receptor. Total RNA was isolated from 
human GVECs, MCs, and kidney cortex, arid these isolates were subsequently 
reverse transcribed into cDNA as described previously (25), Deoxy-oligonu
cleotide primers were constructed from the published cDNA sequences o f ANG 
receptor type 1 (ATR1) (30), ANG receptor type 2 (ATR2) (31), and (3-actin (32), 
The sequence of the ATR1 was 5'-GCCGTGTCCACAATATCTGC-3' for the 5 
primer and 5'-TGTAAGATTGCTTCAGCCAGA-3' for the 3 primer, The 
sequence of the ATR2 was 5'-CCTGAGAAATATGCCCAATGG-3' for the 5 
primer and 5'-CCTTGGAGCCAAGTAATTGG-3' for the 3 primer. The primers 
were prepared with a DNA synthesizer. RT-PCR of human MCs mid kidney cor
tex using the ATR1 primers revealed a band of 506 bp. To exclude any mistakes 
in the PGR reaction, the ANG II PCR 506-bp ampiicon w as subsequently 
cloned in pCT? II  according to the manufacturer’s instructions. One clone 
was selected, and sequence analysis identified the clone fragment sequence 
as identical to ATR1 derived sequence (data not shown).
Northern b lo t analysis. Total RNA was isolated with RNAzol from GVECs 
grown in T25 flasks in medium alone or supplemented with 26 mmol/1 glucose, 
25 mmol/1 glucose plus anti-TGF-p (25 ng/ml), or 25 mmol/1 glucose plus 
rTGF-fB (10 ng/ml). Fifteen micrograms of total RNA was separated on a 1% 
(wt/vol) agarose gel containing 2.2 mol/l formaldehyde, pH 4.0, and MOPS 
buffer (0.02 mol/l MOPS, pH 7.0, 8 mmol/l sodium acetate, 1 mmol/1 EDTA, pH 
8.0) and blotted to reinforced nitrocellulose (Schleicher & Schuell, Keene, Nil), 
as described by Maniatis et a l (33). Prehybridization and hybridization were 
done in a hybridization mix consisting of 0,5 mol/l sodium phosphate buffer, 
pH 7.2, 7% (wt/vol) SDS, 1% (wt/vol) BSA (Sigma), and 1 mmol/l EDTA, 100 
pg/ml single-stranded herring sperm DNA as described by Church and Gilbert 
(34), After 2 h of prehybridization at 65 °C, a cDNA probe specific for TGF-p 1 
(X02812) or a cDNA probe specific for fibronectin (61326) (both from ATCC) 
was radiolabeled with [a-;t“P]dCTP by random primed labeling (35) and added 
to the blot for hybridization overnight at G5°C. After hybridization, the blots 
were washed for 30 min with three buffers with decreasing molarity of 
sodium phosphate buffer (0,5, 0.25, and 0.1 mol/l, respectively [pH 7.2]), 1% 
SDS, and 1 nunol/l EDTA. In addition to cthidium bromide staining, control 
hybridization for equal loading was performed using 0.5-kb glyceraldehyde-3- 
phosphate dehydrogenase (GAPDII) (78105; ATCC). The intensities and areas 
of the bands on the autoradiograms were determined with an Ultroscan XL 
(LICB, Woerden, The Netherlands).
S ta tistica l analysis. The data for control and experimental groups are 
expressed as means ± SD,

Statistical analysis was performed using Student’s I test for unpaired sam
ples and an analysis of variance test for multiple group comparisons. P values 
of <0.05 were used to determine significance.

R ESU LTS

GVECs were characterized according to the described meth
ods. A phase-con trast picture of these cells is given in Fig. 1A. 
Immunofluorescence staining of GVECs with polyclonal anti
bodies that specifically recognize fibronectin resulted in pri
marily extracellular staining. Fibronectin was layered as a 
network on top of the cells (Fig* IB). Fibronectin production 
was measured using a specific fibronectin ELISA, GVECs cul
tured in different concentrations of glucose (15 and 25 
mmol/l) resulted in a 1.7-fold (15 mmol/l) and 2.3-fold (25 
mmol/l) increase in fibronectin production as compared with 
control levels (5 mmol/l) (Fig. 2, left panel). This moderate 
increase was also observed in the mRNA levels (Fig, 5, lane 
1 [control] vs. lane 2 [25 mmol/l]). The addition of different 
concentrations of ANG II (10^’ or 2  X lCT8 mol/l) did not result 
in any changes in fibronectin production compared with con
trols (9.9 ± 1.4, 11.1 ± 2.3, and 10.9 ± 2.8 pg/10fl cells, respec
tively). Therefore, we analyzed with RT-PCR whether ATR1 or
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olism in a number of target tissues, including kidneys of dia
betic rats (53). In a mouse cortical tubule cell line, it was found 
that addition of myo-inositol reduced the glucose-induced 
increase in type I and IV collagen (54). A second mechanism 
involves the nonenzyniatic glycation of extracellular or intra
cellular proteins (52,55-56). This could lead to alterations in 
the structure of receptors and/or regulatory proteins and 
thus alter TGF-0 activity or synthesis. A third mechanism 
could involve TGF-(J itself, since it; is known that TGF-(3 can 
change its production and mRNA levels by self-induction 
(57). Indeed, the mRNA of TGF-(3 was increased when 
GVECs wore cocultured with lTGF-pl. A fourth mechanism 
could involve a high-glucose-induced change in decorin 
metabolism, since this chondroitin/dermatan sulfate proteo
glycan is known to bind and thereby inactivate TGF-fJ (58). 
Filially, protein kinase C could have an important effect on 
mediating TGF-(3 increases in diabetes. Protein kinase C 
activity is highly upregulated in the glomeruli of animal mod
els of diabetes (59,60). Several activators of protein ldnase C, 
such as high glucose, ANG II, phorbol ester (59-62), and 
LDL, increase TGF-(3 bioactivity and mRNA and thereby 
increase I5CM production.

In conclusion, we have shown that; high glucose stimu
lates the synthesis of libronectin and that, these effects are 
mediated by induction of TGF-J3. No effect of ANG II was 
found and no ANG II receptor could be detected on GVECs. 
These results suggest that in diabetic nephropathy, the high 
glucose levels may play a role in changing the matrix com
position of the (JBM.
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