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The complete amino acid sequence of a basic liver fatty acid-binding protein (L-FABP) from catfish 

(Rhamdia sapo) was determined. Alignment of sequences shows that it has more similarity to chicken 

basic L-FABP than to mammalian L-FABP. The phylogenetic analysis suggests that basic L-FABP from 

catfish, chicken and iguana diverged from the mammalian protein before the lish-tetrapod divergence, 

thus implying that the two types are encoded by different genes. Supporting this conclusion, a 14-kDa 

protein, structurally closely related to mammalian L-FABP, was isolated from catfish intestine, indicating 

the presence of the two genes in the same species. The catfish basic L-FABP binds only one fatty acid/ 

molecule, while mammalian L-FABP bind two. The former has more affinity for trans-parinaric acid than 

for c/j-parinaric acid, in constrat to the latter proteins.

Keywords: catfish; fatty-acid-binding protein; liver; Rhamdia sapo.

Different types of fatty acid-binding proteins (FABP) have 

been isolated from tissues with active fatty acid metabolism. The 

existence of various FABP in mammalian species and their dis

tribution in different tissues with high lipid metabolism suggests 

that each of them fulfils specific functions according to the phys

iological characteristics of the tissue (Veerkamp et al., 1993; 

Banaszak et al., 1994). FABP isolated from the same tissue of 

different mammals show more primary structure similarity than 

proteins isolated from different tissues of the same species. 

Furthermore, the expression pattern of each FABP type seems 

to be conserved through evolution, on the basis of reports that 

FABP from frog (Xenopus laevis) intestine and from toad (Bufo 

arenarum) heart belong to the same subfamilies as mammalian 

intestinal FABP and heart (H)-FABP, respectively (Shi and 

Hayes, 1994; Schleicher and Santomé, 1994). However, Med- 

zihradszky et al. (1992) isolated from the liver of nurse shark 

(Ginglymostoina cirratum) an FABP more closely related to 

mammalian H-FABP and adipocyte lipid-binging protein (A- 

LBP) than to liver (L)-FABP, and we recently found in catfish 

(Rhamdia sapo) liver two H-FABP (Di Pietro and Santomé, 

1996). The biological significance of the presence of the H- 

FABP in nurse shark liver was attributed to the fact that shark 

liver behaves, in some aspects, like mammalian adipose tissue 

(Medzihradsky et al., 1992), whose FABP is more similar to the 

heart type. Catfish fat reserves are however not concentrated in 

the liver (Machado et al, 1988), as are those of the shark. A 

basic L-FABP was found in chicken (Gallus domesticas) liver, 

instead of the characteristic L-FABP present in mammals (Ce-
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Abbreviations. FABP, fatty acid-binding protein; L-FABP, mamma
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binding protein; DEAE, diethylaminoethyl.

Note, The novel amino acid sequence data reported here have been 
submitted to the SwissProt data bank and are available under accession 
number P80856.

ciliani et al., 1994). Its amino acid sequence and results of phy

logenetic analysis (Schleicher et al., 1995) suggest that avian 

and mammalian L-FABP and ileal lipid-binding proteins (I- 

LBP) belong to a subfamily that diverged from the other sub

groups before the vertebrate-invertebrate split (Schleicher et al.,

1995). Partial amino acid sequencing of an FABP from catfish 

liver suggested that this protein is of the L-FABP type pre

viously reported for chicken (Di Pietro et al., 1996).

Several observations support the idea that mammalian L- 

FABP are structurally and functionally different from the other 

FABP types: mammalian L-FABP binds two fatty acids/mole

cule (Haunerland et al., 1984; Cistola et al., 1989; Nemecz et 

al., 1991a; Rolf et al., 1995; Richieri et al., 1996; Thompson et 

a l, 1997), whereas the other FABP types have a single fatty 

acid-binding site (Nemecz et al., 1991a; Richieri et al., 1994). 

Additionally, L-FABP is able to bind a wide range of hydropho

bic ligands (Burner and Brecher, 1986; Khan and Sorof, 1990; 

Veerkamp et al., 1993; Epstein et al., 1994; Rolf et al., 1995), 

and, unlike other FABP, undergoes conformational changes 

when binding fatty acids (Nemecz et al., 1991b; Li and Ishi- 

bashi, 1992).

In a previous study, we isolated and partially sequenced a 

basic FABP from catfish liver (Di Pietro et al., 1996) and found 

that it is more closely related to the chicken L-FABP than to 

mammalian L-FABP. We now describe its complete amino acid 

sequence, expression pattern, and some ligand-binding proper

ties. We present theoretical and experimental evidence confirm

ing that basic L-FABP from catfish, chicken and iguana and 

mammalian L-FABP are encoded by two separate genes. 

Furthermore, we report the presence of a mammalian-type L- 

FABP in the catfish intestine.

MATERIALS AND METHODS

Matei’ials. [l-l4C]Palmitic acid (57 Ci/mol) was from Du 

Pont NEN. cis- and ira/w-parinaric acids were from Moleculai
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Probes, Inc. Horseradish-peroxiclase-coupled goat antibodies 

against rabbit immunoglobulins were from Dako A/S. Centri- 

prep concentrators were from Amicon. All other reagents were 

of analytical grade from Sigma, Applied Biosystems, Baker, 

Bio-Rad or Pharmacia Biotech.

Animals. Catfish (R. sapo) were collected from the Salado 

river (Chivilcoy, Argentina). Wistar albino rats (200-250 g) 

were used for this study.

Preparation of the cytosolic fraction including I2-16-kDa 
proteins from catfish and rat tissue. Tissues were extracted, 

cut into small pieces, suspended in 40 mM sodium phosphate, 

pH 7 .4, 150 mM KC1, 2 mM EDTA, 4 mM dithiothreitol, and

homogenized with the aid of a teflon potter. Homogenates were 

centrifuged at 20000Xg for 15 min, and the resulting superna

tant were centrifuged at 105 000X# for 90 min in a Beckman 

XL-90 ultracentrifuge with a Ti 90 rotor. The 105000X# super- 

natants were loaded to a Sephadex G-75 column 

(2.5cmX40cm) equilibrated with 30 mM Tris/HCl, 1 mM di- 

thiothreitol, 1 mM EDTA. The pH was either 8.5 (for western 

analyses or isolation of catfish L-FABP) or 9.0 (for purification 

of catfish basic L-FABP). Elution was performed at4°C with the 

same buffer at 16 ml/h. Fractions including 12-16-kDa proteins 

were collected for further analysis.

Purification of basic L-FABP. The protein used for struc

tural analyses was purified as described previously (Di Pietro et 

al., 1996). For functional studies, the purification procedure was 

modified as follows. The cytosolic fraction including 12—16- 

kDa proteins from catfish liver was applied directly to a DEAE- 

cellulose column (1.1 c m X ll cm) equilibrated with 30 mM 

Tris/HCl, pH 9.0. The unbound material was concentrated and 

the buffer changed to a 10 mM sodium acetate, pH 6.0, by using 

a Centriprep concentrator. The concentrated sample was loaded 

to a carboxymethy 1-cellulose column (1 cm X5 cm) equilibrated 

with the same buffer. Pure basic L-FABP was recovered from 

the pass-through fraction. Before fatty-acid-binding analyses, 

the protein was delipidated by incubation at 37°C for 45 min 

with Lipidex beads (Glatz and Veerkamp, 1983), followed by a 

buffer change to 50 mM Tris/HCl, pH 7.4.

Fractionation of 12-16-kDa proteins from catfish intes
tine, The 12 —16-kDa proteins from the cytosol of intestinal mu

cosa (see above) were incubated at 20°C with 0.2 pCi of [1- 

l4C]palmitic acid for 20 min, then loaded to a DEAE-cellulose 

column (1 cm X 6 cm) previously equilibrated with 30 mM Tris/ 

HC1, pH 8.5, The material bound to the column was eluted with 

10, 20, 30, 40, 50, 150 and 500 mM NaCl in the above buffer. 

Eluted fractions were analyzed by liquid scintillation counting 

and by SDS/PAGE and immunoblotting with an antiserum to rat

L-FABP.

Basic L-FABP cleavage and peptide purification. About 

20 pg purified basic L-FABP was cleaved at methionine residues 

with CNBr as described by Montemartini et al, (1993). The re

sulting peptides were separated by HPLC on a Brownlee Aqua- 

pore RP 300 Cs column (2.1 mm X 220 mm) using a linear gradi

ent from 0 to 80% (by vol.) acetonitrile in 0.1 % (by vol.) aque

ous trifluoroacetic acid. For Glu-C protease digestion, 70 jig of 

the pyridylethylated protein was incubated in 0.1 M Tris/HCl,

2 M urea, pH 7.9, with 3.5 pg enzyme at 20°C for 20 h. For 

chymotryptic digestion, 100 pg FABP was incubated with 3.5 pg 

chymotrypsin in the same buffer at 20°C for 14 h. Peptides re

sulting from both digestions were separated by HPLC on a Vy- 

dac C 18 column (4.6 m m X 250 mm), also using an acetonitrile 

gradient in 0.1 % (by vol.) aqueous trifluoroacetic acid.

Catfish L-FABP digestion and peptide purification. Iso

lated L-FABP from catfish intestine was digested with sequenc

ing-grade trypsin following the in-gel procedure of Rosenfeld et 

al. (1992), as modified by Heilman et al. (1995). The resulting

peptides were recovered by passive elution and separated by 

HPLC on a Brownlee Aquapore RP 300 ClH column 

(2.1 mmX220 mm) by using a combination of linear gradients 

ol acetonitrile in 0.1 % aqueous trifluoroacetic acid.

Purification of A^acyl-aminoacyl-peptidase from rabbit 
muscle. We followed the procedure described by Radhakrishna 

and Wold (1989).

Amino acid sequencing of blocked N-terminal peptides.
Two procedures were followed, a) Chymotryptic peptide 4 

(Fig. 1 ) was subjected to /V-acyl-aminoacyl-peptidase digestion 

as described by Radhakrishna and Wold (1989) and sequenced 

by Edman degradation, b) Basic L-FABP was digested with 

Glu-C protease as described above. At the end of the incubation, 

Na2CO* was added until pH 10 was reached. The procedure re

ported by Krishna et al. (1991) was used, with the following 

modifications, for succinylation of peptide amino groups and 

specifically unblocking of the N-terminal peptide and sequenc

ing, Instead of ether extractions to remove succinic acid and 

salts, the succinylation product was loaded to a Vydac C4 column 

(4.6 mmX25 mm) equilibrated with 0.1% (by vol.) trifluoro

acetic acid in water. The column was developed at a flow rate 

of 0.8 ml/min with a linear gradient of 80% acetonitrile, 0,08% 

trifluoroacetic acid in water. Peptides with absorbance at 280 nin 

were collected and digested with /V-acyi-aminoacyl-peptidase. 

The resulting mixture was directly applied to the sequencer.

Amino acid analysis and sequencing. Quantitative amino 

acid analysis and automated peptide sequencing were carried out 

in an Applied Biosystems 420A Amino Acid Analyzer and an 

Applied Biosystems 477A Protein Sequencer, respectively, ac

cording to the manufacturer’s instructions.

Electrophoresis and immunoblotting. SDS/PAGE and im

munoblotting were earned out as described (Di Pietro and San- 

tome, 1996). The preparation of antisera with specificity for cat

fish basic L-FABP (Di Pietro and Santome, 1996) or rat L-FABP 

(Paulussen et al., 1990) has been reported previously.

Fluorescent fatty-acid-binding assay. We followed the pro

cedure described by Nemeez et al. (1991a, b). The fuorescence 

intensity (exitation 324 nm, emission 415 nm) of either cis- or 

mms’-parinaric acid was measured in 50 mM Tris/HCl, pH 7.4,

0.35—0.40 pM delipidated basic L-FABP, and 0.2—8 pM of 

each fluorescent fatty acid. Measurements were performed at 

25 °C in a Kontron SFM 25 spectrofluorometer (Kontron Instru

ments). Fatty acids were added in amounts of 0.5 — 1 pi from a 

solution in ethanol. The fluorescence intensity of a control solu

tion without protein was subtracted from the total intensity at 

each fatty acid concentration. Corrected fluorescence-intensity 

values were fitted to a hyperbolic equation by non-linear regres

sion as reported by Thumser et al. (1996). The data were trans

formed as described by Nemeez et al. (1991a) in order to obtain 

Hill plots of the binding isotherms.

Tryptophan fluorescence. The intrinsic emission spectrum 

of basic L-FABP was registered in the above spectrofluorometer. 

The excitation wavelength was set to 295 ± 5 nm. Measurements 

were performed at 25 °C in a medium containing 50 mM Tris/ 

HC1, pH 7.4, 1 pM delipidated basic L-FABP and 0—5 pM pal

mitic acid. The fatty acid was added in amounts of 0.5-1 pi 

from a solution in ethanol. Ethanol concentrations in the flow 

cell never exceeded 1 %, Each spectrum was corrected by com

parison with that of a protein-free control solution.

Fatty-acid-competition-binding assay. In 10 ml, 1 pM de

lipidated FABP was incubated at 25 °C in 50 mM Tris/HCl, 

pH 7.4, 1 % ethanol, and 1 pM of each of the following fatty 

acids: palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, ar- 

achidic, arachi don ic and eicosapentaenoic. After 20 min, the 

free-ligand fraction was removed by means of a PD-10 column. 

Fatty acids bound by FABP were extracted by the method of
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Fig. 2. Primary structure of catfish basic L-FABP. The numbering of 
peptides is consistent with that of Fig. 1. Peptide fragments (determined 
by Edman degradation) are indicated by arrows and labelled as follows: 
C, chymotryptic peptides; G, Glu-C protease peptides; Gx, peptide ob
tained by the procedure of Krishna et al. (1991); CB, CNBr peptides; 
L, Lys-C peptides whose amino acid sequences have been published 

elsewhere (Di Pietro et al., 1996).

Bligh and Dyer (1959). Fatty acid methyl esters were prepared 
by méthylation with 2% (by vol.) sulfuric acid in methanol in a 
dry shaker at 60°C for 2 h. The fatty acid methyl esters were 
analyzed using a gas chromatograph (Series GC-8A) equipped 
with a 30 mX25 mm DR23 column.
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Fig. 1. HPLC separation of cattish basic L-FABP peptides generated 
by digestion with Glu-C endoprotease, CNBr, and chymotrypsin. (A)
The peptide mixture obtained by Glu~C digestion was fractionated on a 
Vydac C IS column (4.6 mmX250 mm) equilibrated with solvent A (0.1 % 
trifluoroacetic acid in water) and eluted with a linear gradient (dashed 
line) of solvent B [80% (by vol.) acetonitrile, 0.08% (by vol.) trifluoro- 
acetic acid in water]. Absorbance at 254 nm is indicated for detection of 
peptides containing pyridylethyl-Cys. (B) Peptides generated by CNBr 
chemical cleavage were isolated on a Brownlee Aquapore RP 300 CK 
column (2,1 mm X220 mm) equilibrated with solvent A and eluted with 
solvent B as indicated. (C) The products of chymotrypsin digestion were 
separated as described for the Glu-C peptide mixture. Absorbance at 
280 nm is depicted for identification of peptides with Tyr and/or Trp 
residues. The amino acid composition of the peaks of the three digestions 
was determined (not shown). Only those peptides required to complete 
the primary structure were sequenced by Edman degradation and are 
numbered.

RESULTS

Primary structure of catfish basic L-FABP. The amino acid 
sequence of several peptides obtained by digestion of the basic 
L-FABP with endoprotease Lys-C has been published elsewhere 
(Di Pietro et al., 1996). To complete the primary-structure deter
mination, fragments were generated by enzymatic digestion with 
proteases Glu-C and chymotrypsin, and cleavage with CNBr 
(Fig. 1). On the basis of the amino acid composition of peptides 
shown in Fig. 2, it was possible to select those corresponding to 
the catfish-basic-L-FABP fragments whose amino acid se
quences had not been determined previously (Di Pietro et al.,
1996), and also the overlapping peptides required. A map ob
tained after reverse-phase HPLC of Glu-C peptides is shown 
in Fig. 1A. Numbered peaks correspond to sequenced peptides. 
Cleavage with CNBr was performed by employing a similar 
strategy. Fig. 1B shows the HPLC separation of the fragments 
obtained. Peptides represented by numbered peaks in the figure 
were sequenced by Edman degradation. The information ob
tained allowed completion of the total sequence except for the 
12 N-terminal residues (Fig. 2). Because, according to amino 
acid determinations and already established sequences, trypto
phan and tyrosine residues are found only in the N-terminal por
tion of catfish basic L-FABP, the protein was digested with chy
motrypsin, the resulting peptides were fractionated by reverse- 
phase HPLC and those with absorbance at 280 nm selected 
(Fig. 1C). Four peptides (C l— C4) presented this characteristic 
and were subjected to sequencing. One of them yielded negative 
results by Edman degradation (C4), thus indicating a blocked <*- 
amino group. Its amino acid sequence from the second residue 
was obtained following digestion with acyl-aminoacyl-pepti- 

dase, the first residue being established on the basis of the amino 
acid analysis. The overlapping of chymotryptic peptides Cl, C2,
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Fig. 3. Sequence alignment of catfish basic L-FABP with other L-FABP* The amino acid sequences of catfish basic L-FABP (Rs L-FABPb), 
chicken basic L-FABP (ch L-FABPb), human L-FABP (hu L-FABP), cow L-FABP (bo L-FABP), rat L-FABP (ra L-FABP) and nurse shark L-FABP 
(sk L-FABP) were aligned according to Schleicher et al. (1995). The deduced amino acid sequence of the cDNA (GenBank accession code U28756) 
of iguana basic L-FABP (Ap L-FABPb) was included in the alignment. Amino acid residues identical with those in cattish basic L-FABP are shown 
with a black background. A dot indicates a deletion/insertion. Sequence identities to catfish basic L-FABP are indicated.

------- hu H-FABP

Fig. 4, Evolutionary relationship between members of the L-FABP/ 
I-LBP subfamily. Three members of each branch are represented: cat
fish (Rs L-FABPb), chicken (ch L-FABPb) and iguana (Ap L-FABPb) 
basic L-FABP; human (hu L-FABP), cow (bo L-FABP) and rat (ra L- 
FABP) L-FABP; and human (hu I-LBP), mouse (mo I-LBP) and rat (ra 
I-LBP) I-LBP. Human H-FABP (hu H-FABP) is included as an outgroup 
sequence. Rectangles represent regions of the phylogeny where the 
branching order is unresolved (statistically non-significant). Asterisks 

denote the significance of each branch P<  0.001.

C3 and C4 was obtained by sequencing an additional peptide, 
Gx, obtained by the procedure of Krishna et al. (1991).

A summary of the sequence analyses and the resulting pri
mary structure of catfish basic L-FABP are shown in Fig. 2. The 
protein consists of 125 residues and, on the basis of the se
quence, the molecular mass was calculated as 13 899 Da. The 
calculated isoelectric point (9.1) agrees with that obtained exper
imentally (Di Pietro et al., 1996).

Evolutionary relationship. The alignment of the amino acid 
sequence of catfish basic L-FABP with those of FABP isolated 
from the livers of chicken, human, cow, rat and shark is shown

in Fig. 3. The deduced amino acid sequence of a cDNA (Gen
Bank accession code U28756) from the iguana (Anolis pulchel- 
lus) was also included in the alignment. Identities between cat
fish basic L-FABP and the other FABP are indicated (Fig. 3). 
Catfish basic L-FABP appears to be more closely related to 
chicken and iguana basic L-FABP than to mammalian L-FABP. 
The low identity between catfish basic L-FABP and the FABP 
from nurse shark liver is not surprising since the latter does not 
belong to the L-FABP/I-LBP subfamily but to a subfamily in
cluding H-FABP and A-LBP (Medzihradszky et al., 1992; 
Schleicher et al., 1995).

Fig. 4 depicts the evolutionary relationships between the var
ious members of the L-FABP/i-LBP subfamily, with human H- 
FABP being included as an outgroup sequence. The phylogeny 
inferred implies the early divergence of three branches corre
sponding to the basic L-FABP from catfish, chicken and iguana, 
the L-FABP from mammals, and the I-LBP The branch corre
sponding to mammalian L-FABP appears to have diverged from 
that comprising catfish, chicken and iguana basic L-FABP be
fore the fish-tetrapod split. This branching order suggests that 
basic L-FABP from lower vertebrates are not orthologs of mam
malian L-FABP but products of a separate gene. To rule out the 
possibility that the inferred branching order is a consequence of 
unequal mutation rates, we compared the evolutionary distances 
between an outgroup protein (human H-FABP) and the different 
members of the L-FABP/T-LBP subfamily. This was done by 
means of the statistical test described by Shearer and Johnson 
(1993). No significant differences were found (P>0.1 in all 
cases), implying that the mutation rates of members of the L- 
FABP/I-LBP subfamily are statistically indistinguishable.

The expression of basic L-FABP is restricted to liven To re
search the expression pattern of the basic L-FABP in catfish 
tissues, the cytosolic fractions including 12— 16-kDa proteins 
from heart, brain, stomach mucosa, intestinal mucosa, skeletal 
muscle, skin and liver were submitted to electrophoresis and 
immunoblotting. The rabbit anti-(catfish basic L-FABP) Ig did 
not detect the protein in any tissue other than liver thus indicat-
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Fig. 5, Western 'blot analysis of the cytosolic fractions including 
12-16-kDa proteins from different catfish tissues and from rat liver,
About 5 fig of the 12..16-kDa cytosolic proteins from catfish heart (lane

1), brain (lane 2), stomach mucosa (lane 3), intestinal mucosa (lane 4), 

skeletal muscle (lane 5), skin (lane 6) and liver (lane 7), and from rat 

liver (lane 8) were subjected to SDS/PAGE and transferred to nitro

cellulose membranes. Immunodetection was carried out by incubation 

with a polyclonal antibody to catfish basic L-FABP (A) or to rat JL-FABP 

(B), then with goat anti-( rabbit Ig) Ig coupled to horseradish peroxidase. 

I in nut nocomp I exes were visualized with 4-chloro- l-naphtol. The appar

ent molecular mass of marker proteins is indicated in kDa,

trig that basic L-FABP is expressed only in the liver (Fig. 5 A). 

Additionally, the antibodies did not cross-react with rat L-FABP.

Identification of a 14-kDa protein from catfish intestine as a
L-FABP. To check the possibility of an ortholog of mammalian 

L-FABP occurring in any catfish tissue, rmnui nob lotting analy

ses were performed with antibodies to rat L-FABP (Fig. 5B). As 

reported previously (Di Pietro et al, 1996) these antibodies did 

not cross-react with catfish basic L-FABP. The antibodies reeos- 

ni zed a 14-kDa protein from intestinal mucosa. To further char

acterize this protein, the 12—16-kDa fraction from intestinal cy

tosol was incubated with radiolabeled palmitic acid and sub

jected to anion-exchange chromatography (Fig. 6). As inferred 

from irnmunoblotting analysis with anti-(rat L-FABP) ig, the 14- 

kDa protein was recovered in a fraction that displayed signifi

cant fatty-acid-binding activity (Fig. 6), For internal amino acid 

sequencing, the 14-kDa band was submitted to in-gel tryptic di

gestion following the procedure of RosenfeId et al. (1992). The 

peptide mixture was fractionated by re verse-phase HPLC and

were S'‘r" ii;‘n,*'‘ JE r t

VTVTTGSK; and TVVTL.

A computer search for those fragments in the National Cen

ter far B i o tech n o 1 ogy I n form a t i o n d a t a b a n k s,  u sing the B LA S T 

E-mail Server (Altschul et a I., 1990) with a BLOSUM 62 ma

trix, showed considerable similarity with the corresponding se

quences of other FAB P. The highest scores corresponded to 

mammalian L-FABP. Peptide sequences were aligned with the 

corresponding fragments of the L-FABP/1-LBP subfamily mem- 

bers according to Schleicher et a1. (1995) (data not shown). The 

sequences obtained for the catfish intestinal protein averaged 

60% identity with the corresponding fragments in mammalian 

(human, cow, pig and rat) L-FABP, 40% with those of catfish, 

chicken and iguana basic L-FABP, and 25% with mammalian 

(pig, rat and mouse) I-LBP. Additionally, the tyrosine residue of

c o rrc s p o n d s to Ty r 6 of m a m m a I i an L- FA R P. a p o s i t i o n 

that in most FA BP, including basic L-FABP, contains a highly
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Fig. 6. L-FABP from catfish intestine. The cytosolic fraction contain

ing 12—'16-kDa proteins from catfish intestinal mucosa was incubated 

with [ I-NC[palmitic acid and loaded onto a DLAF-cellulose column pre

viously equilibrated with 30 niM Tris/HCl, pH 8.5. The material bound 

to the column was eluted with U), 20, 30, 40, 50, 150 and 500 mM NaCI 

in the same buffer. The eluted fractions were analyzed by absorbance 

(Abs.) at 280 nm. (A) and liquid scintillation counting (mean ±SEM, 

n =2) (B). Fraction 4 contained the bulk of the radioactivity and was 

studied by SDS/PAGE (A, inset, left lane) and irnmunoblotting (A, inset, 

right lane) with an antiserum to rat L-FABP. This fraction presents five 

bands, one of them recognized by the anti~(rat L-FABP) serum. The 

apparent molecular mass of marker proteins is indicated in kDa.

conserved tryptophan residue. Therefore, the 14-kDa protein iso

lated from catfish intestine probably represents the fish ortho log

of mammalian L-FABP.

Fluorescent fatty-acid-binding measurements. Basic L-FABP 

displayed high affinity for cis~ and //r///.v-parinaric acids; fluo

rescence intensity increased in a fatty-acid-conceiitration-depen- 

dent manner and was saturable. A representative binding experi

ment for each fluorescent fatty acid is shown in Fig. 7. Non- 

hnear-regression analyses yielded apparent dissociation con

stants (/Ci) of 1.20 ±0.23 jLiM and 0.55 ±0.11 juM for cis~ and

/7Y//7>v-parinaric acid, respectively (mean ± SEM, // = 3). Hill 

plots of these binding curves are also shown in Fig. 7. The slope 

of these H.ill plots, the apparent order of the binding, was very 

close to 1 in both cases: 1.05 ±0.10 for m-parinaric ac id and 

0.94±0.07 for íra/Lv-parinaric acid. Taking into account that 

FA BP have a //-barrel structure with a central cavity in which 

two fatty acids cannot be independently accommodated, these 

results indicate a 1 : 1  binding stoichiometry (i.e. the protein con

tains only one fatty-acid-binding site for patinarle acids).
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Fig. 7. Fluorescent-fatty-acid interaction with catfish basic L-FABP.

Binding of cis- (A) and trcms- (B) parinaric acid to basic L-FABP was 

determined by the increase in fluorescence intensity. Measured values 

of one representative experiment out of three (for each fatty acid) are 

shown, and the results of non-linear regression are shown as curves. To 

obtain the corresponding Hill plots (insets), the data were transformed 

as indicated in Materials and Methods.

Tryptophan-fluorescence studies. The effect of fatty acid bind- 

ing on the conformation of catfish basic L-FABP was investi

gated by measuring the intrinsic fluorescence emission of its 

single tryptophan residue. The emission spectrum showed a 

maximum at 325 nm (data not shown). Neither the emission 

maximum nor the fluorescence intensity were affected by the 

addition of palmitic acid (up to 5 jiM). This result suggests that 

basic L-FABP does not undergo any major conformational 

change upon fatty acid binding.

Fatty-acid-competition-binding assay. When catfish basic L- 

FABP was incubated with a solution containing 1 pM various 

fatty acids, basic L-FABP bound preferentially palmitic, stearic 

and oleic acids (Fig. 8). The affinity for long-chain polyenoic 

acids appears to be low.

DISCUSSION

According to their primary structure, known FABP from the 

livers of different species can be divided into three types: L~ 

FABP from mammals; L-FABP from catfish, chicken and 

iguana; and the FABP from nurse shark. As mentioned above,
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Fig. 8. Fatty-acid-competition-binding assay. 1 jiM delipidated catfish 

basic L-FABP was incubated in 50 mM Tris/HCl, pH 7.4, containing \ % 
ethanol, and 1 pM palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, 

arachidic, arachidonic and eicosapentaenoic acids. The free ligand frac

tion was removed and the fatty acids bound by basic L-FABP were meth- 

yl-esterified and analyzed by gas chromatography. The means ±SEM 

are given for three experiments.

the latter FABP does not belong to the L-FABP/I-LBP subfamily 

but is evolutionarily related to H-FABP and A-LBP (Medzih- 

radszky et aL, 1992). While this protein appears to be the only 

FABP expressed in the nurse shark liver (Medzihradszky et ah, 

1992), we have found recently that catfish liver contains, in ad

dition to the basic L-FABP, two FABP that are closely related 

to H-FABP (Di Pietro and Santome, 1996). Partial amino acid 

sequencing of an FABP from toad liver (Schleicher and San

tome, 1996) suggests that it belongs to the same group as catfish, 

chicken and iguana basic L-FABP (—60% identity over 89 resi

dues; data not shown).

Phylogenetic analyses of the family of intracellular lipid- 

binding proteins have shown previously that mammalian L- 

FABP and LLBP belong to a subfamily that diverged from the 

other subgroups before the vertebrate-invertebrate split 

(Schleicher et aL, 1995). Although the chicken basic L-FABP is 

part of this subfamily, it has been suggested that it is unlikely to 

be the avian counterpart of mammalian L-FABP but the product 

of a separate gene (Ceciliani et aL, 1994; Schleicher et ah, 

1995). Results presented in this study provide further support 

for this proposal. Thus, the primary structure of the catfish basic 

L-FABP is more similar to that of the chicken basic L-FABP 

than to those of mammalian L-FABP (Fig. 3). Our phylogenetic 

analysis suggests that L-FABP from mammals diverged from 

basic L-FABP from catfish, chicken and iguana before the fish- 

tetrapod divergence, thus implying that L-FABP from mammals 

and those from catfish, chicken and iguana are paralogous pro

teins, i.e. they are encoded by two different genes. In support of 

this conclussion, we identified a 14-kDa protein from catfish 

intestine that is structurally more closely related to mammalian 

L-FABP and may correspond to the fish L-FABP ortholog. Fur

ther investigations will be required to establish whether a basic 

L-FABP homolog exists in mammals.

Cattish basic L-FABP differs from mammalian L-FABP not 

only in its primary structure but also in the following biochemi

cal characteristics.

In the current study, cis- and irans-parinaric acids were used 

to characterize the ligand-binding properties of catfish basic L- 

FABP. Our results indicate that catfish basic L-FABP binds only 

one fluorescent fatty acid (Fig. 7), while rat L-FABP binds two
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cis- or trauy-parinaric acids/molecule (Nemecz et al., 1991a), 
and that catfish basic L-FABP has more affinity for /rans-pari- 
naric acid than for cw-parinaric acid in contrast to the rat L- 
FABP (Nemecz et al., 1991a). We were not able to detect, by 
tryptophan-fluorescence measurements, conformational changes 
in basic L-FABP when it bound palmitic acid though such 
changes had been reported for rat L-FABP (Nemecz et al., 
1991b; Li and Ishibashi, 1992).

Catfish basic L-FABP competition-binding assays show 
more affinity for saturated and monounsaturated fatty acids 
(Fig. 8) while rat L-FABP presents more affinity for polyunsatu
rated fatty acids (Maatman et al., 1994). These results agree with 
those obtained using fluorescent fatty acids on account of cis- 
parinaric acid being used as a probe for unsaturated fatty acids 
and trans-parinaric acid for saturated ones (Nemecz et al., 
1991a).

The immunological properties differ too. Catfish basic L- 
FABP is not recognized by the anti-(rat L-FABP) Ig, and rat L- 
FABP is not recognized by anti-(catfish basic L-FABP) Ig 
(Fig. 5).

Thompson et al. (1997) determined the crystal structure of 
rat L-FABP with two oleic acid molecules bound within the 
central cavity. The carboxylate of one oleic acid interacts with 
Argl22, while the carboxylate of the other oleate is exposed to 
the solvent but is involved in a network of hydrogen bonds. 
According to these authors, the required increase in FABP cavity 
volume to allow the binding of two fatty acid molecules, possi
bly by reductions in size or position changes at seven key resi
due locations, including Seri00 and Thrl02. Larger residues are 
found in other FABP types. Thrl02—>Gln substitution in catfish 
basic L-FABP may account for the binding of only one fatty 
acid, possibly its steric effect may be increased, apart from the 
influence of other residues, by Seri 00—>His replacement. Scapin 
et al. (1990) reported the three-dimensional structure of chicken 
basic L-FABP and placed the fatty acid carboxylate close to 
Lys29 (Ceciliani et al., 1994). Catfish basic L-FABP has the 
same residue in this position. The fatty acid location proposed 
by Scapin et al. (1990) for chicken basic L-FABP differs from 
those of both oleic acids in rat L-FABP (Thompson et aL, 1997). 
On the basis of the close amino acid sequence similarity between 
the basic L-FABP from chicken, catfish and iguana, it is likely 
that they have a similar binding site.

Taking into account that there are three FABP in catfish liver, 
it may be that each of them has a specific fatty-acid-binding 
affinity. Catfish basic L-FABP presents in vitro a marked speci
ficity for C16:0, C18:0 and C l8:1 (Fig. 8). It should be interest
ing to study the binding behavior of the other two FABP in 
catfish liver.

In conclusion, results reported here demonstrate that the ba
sic L-FABP from catfish is structurally and functionally different 
from mammalian L-FABP, and that L-FABP and basic L-FABP 
are present in catfish, but in different tissues (intestine and liver). 
Although the physiological significance of two types of L-FABP 
in animals remains to be determined, their functional differences 
may be related to changes in lipid metabolism in the liver during 
the evolution of vertebrates.

Amino acid analysis and peptide sequencing were performed at the 

LANAIS-PRO (National Protein Sequencing Facility, University of Bue

nos Aires, Buenos Aires, Argentina), and we appreciate the excellent 

technical work of S. B. Linskens and E. V. Dacci. This work was sup

ported by grants from the Consejo Nacional de Investigaciones Científi

cas y Técnicas de la República Argentina and the Universidad de Buenos 

Aires.
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