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Osteocytes and Bone Lining Cells: Which are the Best 
Candidates for Mechano-Sensors in Cancellous Bone?
M. G. MULLENDER and R. HUISKES

Biomechanics Section, Institute o f Orthopaedics, University of Nijmegen, Nijmegen, The Netherlands
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covering the bone surface, and osteoblasts have all been pro
posed to play important roles as mechano-sensors in the regula
tory process. In vitro studies showed that the activity of both

Previously, we have investigated the possible role of osteo
cytes as mechano-sensors, and mediators of bone turnover. It
was found that the proposed regulatory mechanism pro- lining cells and osteocytes increased after loading.4’18 Osteocytes 
duced morphologies of trabecular bone, under particular
loading conditions, which were consistent with morphogene
sis and adaptation as seen in reality. The main objective of

were suggested as the most suitable candidates for the role of 
mechano-receptors, because of their location and the intercon- 
nections by which they communicate with each other and with

this study was to discern whether lining cells or osteoblasts cells at the bone surface.2’9’11 It was proposed that these cells are
could possibly play a similar role as effectively with regard to stimulated by fluid flow in the caniculi, due to mechanical
their capacity for self-optimization of the trabecular archi- loading of the tissue.6-24 In fact, it was shown experimentally that
tecture, in terms of a low apparent mass to stiffness ratio. For 
that purpose the earlier analyses with osteocytes as mechano- 
sensors, distributed throughout the bone, were repeated for 
mechano-sensors located at bone surfaces only. Compared to 
the osteocyte model, the surface cell remodeling algorithm 
was reluctant to change its architecture, which implies that it 
is less sensitive to changes in the loading pattern. This resulted 
in less efficient bone adaptation, which was reflected by a 
considerably higher relative mass for a similar apparent stiff
ness in the loading direction. In other words, more mass is

osteocytes are very sensitive to fluid flow across their cell 
membranes.8

The hypothesis that osteocytes sense mechanical signals and 
regulate the local adaptation of bone mass was recently investi
gated for its feasibility, using a computer simulation model.14 In 
this regulatory model, bone density was adapted at any location 
within the tissue, according to a stimulus received from the 
osteocytes in the vicinity. It was shown that the proposed 
regulatory mechanism could explain the genesis and adaptation 
of trabecular patterns in accordance with the external loads,

needed to obtain an equally stiff structure, at the apparent indicating that such a hypothesis is realistic.13’14'20’22 Neverthe-
level, with respect to the externally applied loads. Further
more, stresses and strains at the tissue level vary across a 
much wider range, relative to the osteocyte model, where the 
higher incidence of elevated strains indicates an increased 
failure risk. Therefore, we conclude that mechanical infor- 
mation at the bone surface may not be sufficient to ade- 
quately regulate functional bone adaptation. (Bone 20:527-532;

less, in reality, trabecular bone turnover occurs only at surfaces 
and not within the tissue. Furthermore, the question remains, if 
sensors located at the bone surface (lining cells and osteoblasts) 
could regulate bone remodeling equally well. It was shown in 
many studies that osteoblasts and osteoblast-like cells are very 
sensitive to mechanical loads as well (see Burger and Veldhui-

17
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Introduction

Although it is generally accepted that bone tissue adapts to 
mechanical demands, the regulatory mechanisms responsible for 
this process are not understood. For one thing, the mechanism by 
which the bone tissue senses mechanical stimuli has not been 
established. Neither the cells responsible for transduction of 
mechanical into chemical signals nor the means by which the 
actual bone remodeling processes are subsequently regulated 
are identified.

Osteocytes, located within the bone matrix, bone lining cells,

jzen1 for a review). In addition, Miller et al. and Parfitt 
suggested that bone lining cells probably play important roles in 
bone remodeling by mediating the activation of the bone remod
eling sequence.

We have investigated two questions in this article. First, do 
the results of the regulatory model based on osteocytes 
mechano-sensors differ from those previously described, if, as in 
reality, remodeling is allowed only at trabecular surfaces? Sec
ond, can a simulation model, based on the assumption that lining 
cells and osteoblasts are mechano-sensors and regulators of bone 
turnover, explain mechanical adaptation of trabecular bone 
equally well? To investigate the latter question, a model was 
developed based on the alternative hypothesis that sensor cells 
are located only on the trabecular surfaces. The behavior of this 
regulatory model was compared to the regulatory models in 
which the sensors are located within the bone matrix.

Methods
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Figure 1. Two alternative hypothetical regulatory schemes are com
pared. Bone remodeling is assumed to be controlled by local feedback. 
The first hypothesis is that osteocytes appraise mechanical signals and 
stimulate BMUs to adapt bone mass (1). The second hypothesis states 
that bone surface cells (lining cells and osteoblasts) are the mechano- 
sensors and that these cells stimulate bone turnover by BMUs (2). In both 
schemes, this results in a change of local mechanical properties, which 
again affects local mechanical signals.

marrow
mm ^̂1

interface 
0 < m < 1

FE mesh

Figure 2. The jagged boundaries of the elements prevent an accurate 
representation of a smooth bone surface. This problem has been solved 
by allowing boundary elements to have intermediate densities, represent
ing partial volumes of bone.

and in case of surface remodeling

TF(x,t), X e trabecular surface
(4)

quently stimulate populations of osteoclasts and osteoblasts (ba
sic multicellular units, BMUs) to adapt the local bone mass 
(Figure 1). In the first regulation model, osteocytes are assumed 
to be the sensor cells (osteocyte model), while in the second 
regulatory mechanism it is presumed that only cells covering the 
trabecular surface act as sensors (surface cell model). For the

■

osteocyte model two possibilities were compared. The first is 
“overall remodeling,” which implies that bone density can be 
adapted at any location in the tissue. This model was described

dt

dm(x,t)
dt

*

X £ trabecular surface

with 0 < m(x,t)

where t (MPa i s 1 is a constant regulating the rate of the
process. The local elastic properties were calculated from the 
local relative density using a cubic power relationship in accor
i *,<i * i 1 y t  0 i • | i

earlier by Mullender et al.13 and Mullender and Huiskes.14 The dance with.-experimental data/ Hence, the elastic modulus at

second is “surface remodeling,” where the bone density is al
lowed to

location (i) was calculated from

only at the bone-marrow interface. In the 
surface cell model, surface remodeling was investigated only. E(x,t) (5)

Mathematical Formulation o f the Remodeling Hypotheses
with C (MPa) a constant.

The mathematical foundation of the models was analogous to
Mullender and Huiskes. The strain energy density (SED) was 
taken as the mechanical signal S£t) (MPa) measured by a sensor 
cell /. The strain energy density is in fact the local elastic (strain) 
energy stored per volume of bone tissue. According to the 
difference between the actual signal and a reference signal k, the 
sensor produces a stimulus. The amount of stimulus received by 
the BMUs depends on the distance between the sensor cell i and 
the location x of the actor cells. The local stimulus value F(x,t) at 
location x at time t is the sum of the stimuli received from all

N

F(x,t) (1)
a IJ  IWMW I

*  I

with N the number of sensors and the spatial influence function

exp D/djtx)
(2)

describing the decrease in stimulus with increasing distance d£x)
D deter-between location x and sensor i. The 

mines the decay of the influence function. 
The chance in the relative

governed by the local sti 
overall remodeling

in location x  is
s value F(x,t). Hence, in case of

dm(x,t)
faim

dt
t F( x j ) with 0 < m(x, t ) (3)

Numerical Formulation

The regulatory models were applied to a volume of bone tissue. 
Input to the regulation models was given by the magnitudes and 
directions of the mechanical loads. In turn, the model predicted 
the distribution of bone mass in time, i.e., the development of 
architecture, for given parameter values. The bone tissue was 
modeled by finite elements (FE), which allowed the calculation 
of the mechanical variables inside the tissue for externally 
applied loads. The development of bone architecture in time was 
simulated numerically, i.e., equations (3) and (4) were solved 
recursively, using a numerical integration technique (forward 
Euler) to find the new values for the relative density per element. 
The procedure was continued until the changes in architecture 
were virtually zero. A variable time step was used that was 
calculated from the maximal stimulus and a prescribed maximal 
change in relative density at any location according to van 
Rietbergen et al.

For surface remodeling, it was necessary to define a bone- 
marrow interface within the finite element model as changes in 
density are only allowed at this location. Bone surfaces were 
modeled by elements of intermediate density, representing partial 
volumes of bone and marrow. These elements are located be
tween elements with minimal density (marrow) and elements 
with maximal density (bone) (Figure 2).

The difference between the osteocyte model and the surface 
cell model was the location of the sensors. In the osteocyte 
model, the sensors were uniformly distributed over the mineral
ized bone matrix. In the surface cell model, the sensors were 
located in the centers of the elements representing the bone

22
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Osteocyte model - overall remodeling Table 1. Apparent properties of the produced architectures for each-
model

t

Increment 0 200 400

■ M VTime

Osteocyte model - external remodeling

▼

Increment 0 200 400

Time

Lining cell model

% %  % .% %  *  

*  % % % % % %  *
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Increment 0 200 400
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Figure 3. The equilibrium architectures are presented for the osteocyte 
models using overall remodeling (a), and surface remodeling (b), and for 
the surface cell model (c). The architectures produced by both osteocyte 
models show large resemblance. Note that the architectures produced by 
the surface cell model are closer to the initial architecture.

Model Apparent properties

Principal Young’s 
moduli in orthotropic

directions

Algorithm Load case
Relative
density

p ^11 
(GPa)

T*l
^22

(GPa)
^12

(GPa)

Osteocyte model 
Overall remodeling 1 0.52 1.79 1.04 0.23

2 0.52 1.85 1.08 0.17
Osteocyte model 

Surface remodeling 1 0.55 1.89 1.03 0.22
2 0.54 2.00 1.05 0.23

Surface cell model 1 0.61 1.921 1.50a b
2 0.50 1.77 1.07 0.12

aYoung’s modulus in direction of applied load. 
bArchitecture was not orthotropic.

the models were the reference energy k, the sensor density n 
[equal to their number N  divided by the area of bone tissue 
(osteocyte model) or divided by the length of the bone perimeter 
(surface cell model)], the exponential osteocyte-influence func
tion (characterized by the distance parameter D), and the con
stants t  and C (equal to the maximal elastic modulus), n was 
taken as 1600 m m '2 in the osteocyte model and 40 mm"1 in the 
surface cell model. Osteocyte density was chosen within a 
physiological order of magnitude, which was estimated form 
measurements by Marotti et al.n and Mullender et al.15,16 The 
value for lining cell density was based on an average length of 
the cells of 25 |jim. However, no actual data of lining cell density 
were available. A value of 0.02 MPa was used for k and D was
100 |xm.14 C was taken as 6 GPazl and the rate constant was 
arbitrarily set at t  = 1 MPa“ 1 s

The plate was loaded at each side with uniform stress distri
butions. The stress magnitudes cr{ and a2 were 5 and -2.5 MPa, 
respectively. After 200 increments (after which stable configu
rations were reached), the loading configuration was altered by 
changing the applied stress orientations from 20° to 0° relative to 
the plate. Hereafter, the simulations were continued for another 
200 increments.

21

I

Evaluation of the Results

surface. Stresses and strains in the locations of the sensors were 
calculated via extrapolation of the values in the integration points 
to the nodal points of each element, and subsequently linear

The resulting architectures were evaluated for their apparent 
mechanical properties and the relative apparent density. To 
assess the mechanical properties of the architectures produced by 
the models, the global stiffness matrices were determined for

interpolation to the location in which the sensor was situated. The each equilibrium architecture from the structure morphology and
mechanical signal per sensor was calculated according

1

2
O (6)

the element stiffness matrices according to van Rietbergen et 
al.23 From the global stiffness matrix, the axes of orthotropy and 
the principal Young’s moduli associated with these axes were 
determined.23 To appraise the differences between architectures 
at the tissue level, the stress, strain, and SED distributions in the

where and £,• are the stress and strain tensors in the location of structures produced were determined, by calculation of the
sensor i. imum principal stress and strain values and the SED 

each element.

Application of the Remodeling Hypotheses
Results

The regulation models were applied to a plate of 2X2 mm
(thickness 0.02 mm), meshed with 80X80 four-node elements. All models converged toward equilibrium solutions which re-
The initial architecture was an arbitrary trabecular structure sembled trabecular-like structures (Figures 3a-c). The number of
resembling a lattice (Figure 3). The physiological parameters in increments necessary to reach a stable solution was smaller for
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Figure 4. The distributions are shown of strain energy density in the Figure 5. The maximal principal strain values vary around 3000
of the equilibrium architectures produced by the osteocyte model the architectures produced by the osteocyte models. The maximal

(surface remodeling) and the surface cell model. The distributions for the principal strain distributions for the surface cell model are different for
osteocyte model are very similar for both load cases and peak at the
of the target signal. In contrast clear optimum is present in the
distributions for the surface cell model

each load case. In particular, the architecture produced by the first load
case shows a much wider distribution, indicating that 
adapted to the applied loads.

less well

“overall remodeling” than for “surface remodeling.” In addition, 
the remodeling rate (although given in arbitrary units) was about
two times higher for “overall remodeling” as compared to “surO

face remodeling.” After convergence, the signals (SED) in the 
sensors averaged 0.02 MPa, which is equal to the value of the
reference signal k models

The architectures produced by the osteocyte model described 
earlier and the osteocyte model, in which remodeling was only 
allowed at the bone-marrow interface, were not identical but very 
similar. The apparent properties of the equilibrium architectures 
were very similar as well. In these architectures, the axes of 
orthotropy were identical to the external loading directions. 
Furthermore, the proportion between the principal Young’s mod-

El i and E22 was between 1.7 and 2.0 (Table 1), which
and

With osteocytes as the sensors, the maximum principal stress and 
strain distributions were similar for the two load cases as well as
for both the overall and surface remodeling algorithms. The
narrow shape of the maximum principal strain distributions show 
that the greater part of the tissue was strained at a similar level 
(Figure 5). Compared to the osteocyte models, these distribu
tions were much wider for the surface cell model and also varied 
more between the two equilibrium architectures.

Discussion

l

Previously, we have considered a strain adaptive bone-remodel- 
ing theory for which it was assumed that osteocytes appraise 
mechanical signals and regulate bone adaptation.14 Adaptation of 
bone density could take place at any location within the tissue 
represented in the model. It is known, however, that bone

approximates the proportion between the load magnitudes c 
In other words, the anisotropy of these structures matched the 

externally applied loads. Both the relative apparent densities and 
the maximal principal Young’s moduli were somewhat higher remodeling in trabecular bone occurs only at surfaces. A more

realistic description of the process, based on surface remodeling, 
was compared with the previous model. Both remodeling algo
rithms produced qualitatively similar architectures. This is not

6%) in the structures produced by surface remodeling than 
those produced by overall remodeling (Table 1).

The surface cell model produced very different architectures 
compared to the osteocyte models (Figure 3c). The equilibrium surprising, because although the previous model allowed remod-
architecture after 400 increments shows clearly that, using this eling to take place throughout the tissue, it was in fact limited
remodeling algorithm, the initial architecture is more persistent predominantly to the surfaces of existing trabeculae. 14 Neverthe

the eventual result. Local adaptation occurs, but the equilib less, it was found that remodeling occurs much faster in overall

14

num architecture is closer to the initial one than those produced remodeling as compared to surface remodeling. This is caused by 
by the osteocyte models. The equilibrium architecture for the the restricted volume available for simultaneous transformation 
first load case was not orthotropic, which implies that the in the latter case. We conclude, however, that the results from the

surface remodeling algorithm are very similar to the ones from 
the overall remodeling algorithm reported earlier.

The second goal of this project was to establish whether bone 
11% higher than for the osteocyte model, whereas the apparent surface cells, such as lining cells and osteoblasts, could poten-
Young’s modulus in the main loading direction was only 2% tially regulate bone remodeling by themselves, without mechano-
higher. The stiffnesses in all other directions were considerably sensory stimuli from osteocytes. For this purpose, two regulation
higher than those in the osteocyte models. After changing the models were compared. Some limitations of these models need to

principal Young’s moduli cannot be determined. Instead, the 
Young’s moduli in the directions of the applied loads were 
determined. The apparent density in this architecture was about

direction of loading, the trabeculae re-oriented. In this second 
architecture, which was rather similar to the initial configuration, 
both the apparent density and the apparent stiffness values were 
lower in the surface cell model than in the osteocyte models.

The evaluation of the mechanical variables at the tissue level

be discussed. First, trabecular bone tissue was represented in two 
dimensions. This limits comparison with actual bone, but pre
sumably has no consequences for the comparison between the 
regulatory schemes, because van Rietbergen et al.20 showed that
the osteocyte-based regulation process behaves similarly in a 

revealed that, for the architectures produced by the osteocyte three-dimensional model. Second, the use of square elements
models, the SED values always varied around 0.02 MPa, which 
is equal to the target signal. In contrast, the SED distributions for 
the surface cell model have no clear optimum value (Figure 4).

limits the representation of trabecular geometry. This is partly 
resolved by allowing intermediate bone densities in boundary 
elements (Figure 2). More importantly however, digital models
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introduce solution errors at boundary elements. It has been been introduced by Luo et al.10 and Siffert et al.19 They found
shown that these errors can be significant and that further changes in strut thickness after changing the load magnitudes in
refinement of the element mesh does not necessarily reduce these a unit cell model,19 but also shape changes when applying loads
boundary artifacts.7 The use of smooth boundary models does to idealized structures. However, their results cannot be easily
not solve this problem, for these were shown to produce similar extrapolated to larger, more complex structures, which inhibits
errors. To minimize boundary artifacts, the sensors in the comparison with our results.
surface cell model were chosen at the centers of the boundary 
elements (as opposed to the element nodes). Nevertheless, errors

The present results indicate that osteocytes would be more 
efficient sensors than bone surface cells, in the sense that they

or even
inevitable when calculating signals in boundary elements and produce architectures with a more appropriate mass distribution 
solution for this problem is yet available.5 However, the effect relative to the applied loads. It has long been suggested

implicitly assumed that bone is an optimal structure, however, it 
is uncertain if this is in fact the case. Therefore, the superior

of these errors on the remodeling results should be limited 
because the pattern of boundary errors is oscillatory5 and there
fore, errors averaged out by the influence function
which “filters” the erroneous oscillations and reduces their effect 
on the stimulus distribution. Another limitation is that only one 
specific load case was considered, whereas in reality bone is 
loaded by a variety of loading patterns, changing both in ampli
tude and direction. However, this probably does not affect the 
quality of the differences found between the models and it 
facilitates the assessment of effectiveness of the resulting archi
tectures considerably. Furthermore, only net bone loss or gain 
was considered. Hence, the models do not account for separate 
effects of osteoblasts and osteoclasts and effects associated with 
the remodeling sequence. Finally, strain energy density was 
chosen as the mechanical signal, because the models used here 
are too coarse to obtain a more precise measure of the mechan
ical signals that osteocytes or lining cells perceive when the 
tissue is loaded. Strain energy density is a measure of the energy 
stored as a result of deformation of the tissue, and may be 
considered as a reasonable indication of the mechanical defor
mation which the cells experience. Although in fact, it is still 
unclear how bone cells sense mechanical signals, it is also 
uncertain how a more accurate representation of the mechanical 
signals might affect the results.

It was found that bone remodeling regulated by osteocytes is 
very effective indeed. The bone mass is distributed such that the 
apparent stiffness of the architecture is very well adapted to the
externally loads, i.e., the equilibrium architecture has
properties of (near) minimal mass for a certain average strain 
energy density value. As a result, the total mass of the structure 
produced is relatively independent of the loading direction. 
However, with surface cells as sensors, remodeling is less sen
sitive to the external loads, which is manifested by less change in 
the architecture. When bone remodeling is regulated by osteo 
cytes, it leads primarily to adaptation of the architecture, but if it 
is regulated by surface cells, it mainly causes adaptation of strut 
thickness in the existing architecture, which leads to changes in 
the total mass. Apparently, with osteocytes as sensors, the re
modeling process drifts more easily toward a significantly dif
ferent morphology. Bone adaptation is less effective for changes 
of the loading directions with surface cells as sensors. This is 
evident from the frequency distribution plots, which indicate that 
parts of the structure receive relatively little loading, whereas 
other parts carry relatively high loads. It might be argued, 
however, that in reality loading patterns are relatively constant. 
For changes in load magnitudes only, surface cells should be 
equally capable to regulate adaptation as osteocytes, since 
changes in the load magnitudes require changes in mass rather 
than in architecture. It should be noted that adding surface cells 
to the osteocyte model makes no difference for the output of the 
model. This is due to the choice of the surface cell location in the 
boundary elements, which are also included in the tissue area
where osteocytes are located.

Computational models, according to which strain derived 
signals are evaluated at the tissue surface and where bone mass 
is adapted accordingly, as in the present surface cell model, have

performance of osteocytes as sensors gives no direct evidence 
that they actually fulfill this role.

In conclusion, the incorporation of surface remodeling into 
the remodeling algorithm had no essential effects on the archi
tectures produced or their properties. The regulation of functional 
bone adaptation by mechano-sensitive osteocytes would be the 
most effective modality. This indicates that mechanical informa
tion at the bone surface may not be sufficient to adequately 
regulate functional bone adaptation.
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