PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/24427

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

Raf Vervoort－Neil R．M．Buist • Wim J．Kleijer
Ron Wevers • Jean－Pierre Fryns • Inge Liebaers
Willy Lissens

Molecular analysis of the β－glucuronidase gene： novel mutations in mucopolysaccharidosis type VII and heterogeneity of the polyadenylation region

Received： 25 July 1996 ／Revised： 17 October 1996

Abstract

We used polymerase chain reaction（ PCR ）／sin－ gle－strand conformation polymorphism analysis and di－ rect sequencing of the coding region of the β－glucuroni－ dase cDNA and gene to detect mutations causing β－glu－ curonidase enzyme deficiency in five MPS VII patients． Four patients presented with hydrops fetalis，one with an early infantile form of the disease．Genetic heterogeneity of MPS VII alleles was further confirmed in this study． Recurrent mutations were observed in patients of related origin．Previously unknown alleles detected were R110X， F361 $49,1270+1 G \rightarrow \mathrm{~A}, \mathrm{~S} 52 \mathrm{~F}$ and $1480 \Delta 4$ ．Reverse tran－ scription／PCR analysis of the $1270+1 \mathrm{G} \rightarrow \mathrm{A}$ messenger showed aberrant splicing：inclusion of intron 7 or skip－ ping of exons 6－7 and 9．Messenger RNA transcribed from the R110X and 148044 alleles was unstable．We de－ tected a $2154 \mathrm{~A} / \mathrm{G}$ change in the 3^{\prime} non－coding region of the gene，in the neighbourhood of the two consensus poly－ adenylation sites． 3^{\prime}－Rapid amplification of cDNA ends／ PCR of fibroblast cDNA revealed equal usage of two al－ ternative polyadenylation sites．The 2154A／G substitution did not influence adenylation－site choice，nor the amount of stable messenger produced．The finding that 2 out of 30

[^0]normal controls carried the 2154 G allele indicated that the $2154 \mathrm{~A} / \mathrm{G}$ substitution is a harmless polymorphism．The S52F and F361 49 cDNAs were constructed in vitro and used to transfect COS cells transiently．Both mutations completely abolished enzyme activity．

Introduction

Deficiency of the lysosomal enzyme β－glucuronidase （E．C．3．2．1．31）causes mucopolysaccharidosis type VII （MPS VII；Sly et al．1973；reviewed by Neufeld and Muenzer 1995）．An extremely wide spectrum of clinical presentations of the disease has been observed．Diagnosis of the disease therefore greatly depends on laboratory findings，such as low β－glucuronidase enzyme activity， mucopolysacchariduria and the presence of granulations in many tissues．The existence of a pseudodeficiency al－ lele for the β－glucuronidase gene further complicates bio－ chemical diagnosis of MPS VII（Chabas et al．1991；Ver－ voort et al．1995）．

The cDNA and the gene coding for human β－glucuro－ nidase have been cloned and characterized（Oshima et al． 1987；Miller et al．1990）．Multiple unprocessed pseudo－ genes complicate the molecular analysis of the gene． Methods for selective amplification of the gene by the poly－ merase chain reaction（PCR）have been designed（Shipley et al．1993；Vervoort et al．1993，1996），allowing genetic studies of MPS VII patients；these studies have shown ex－ tensive genetic heterogeneity（Tomatsu et al．1990，1991； Shipley et al．1993；Vervoort et al．1993，1995，1996；Wu and Sly 1993；Wu et al．1994；Yamada et al．1995）．Ge－ netic heterogeneity has also been observed in a relatively homogeneous clinical phenotype（i．e．hydrops fetalis）．In the present study，we have analysed the β－glucuronidase gene and cDNA of five MPS VII patients．To investigate the effect of a $2154 \mathrm{~A} / \mathrm{G}$ change on polyadenylation and mRNA stability，we have used 3＇－rapid amplification of cDNA ends（RACE）／PCR analysis of the β－glucuronidase cDNA．

Subjects, materials and methods

Subjects

Patient 1 was born to a non-consanguineous couple from the Netherlands. The index case was a 16 -week hydropic fetus. Cultured amniocytes were available for study. Two previous pregnancies resulted in an affected hydropic fetus. In the first pregnancy, which ended after 34 weeks. hydrops was detected at week 25: increased intra- and extra-medulary haematopoiesis were documented. In the second pregnancy, hydrops, granulocytopenia and anaemia were noted at week 15 . One healthy child was born to this couple.

Patient 2 was of Mexican descent. The parents denied consanguinity. At 17 weeks, mild oedema was observed on ultrasound; the fetus developed ascites, pleural effusions and an echogenic bowel. Analysis of fetal umbilical blood lymphocytes by electron microscopy showed numerous lysosomes with a particulate content. The pregnancy was terminated at 23 weeks. Total RNA and genomic DNA were prepared from frozen tissue (heart, liver), One previous pregnancy ended with a 30 -week fetal demise. The oedematous baby was otherwise anatomically normal.

Patient 3 was a severely affected child from Czechoslovakia. Symptoms were present at birth: hepatosplenomegaly, pectus carinatum and infundibular formation of the thorax. At 5 months of age, bilateral inguineal hernia, slight hypertelorism, hydrocoele and hypergranulation of leacocyles were observed. The infant had psychomotoric retardation and macrocephaly. Cultured fibroblasts were available for this study.

Patient 4, from Belgium, was described as a hydropic fetus (Lissens et al. 1991). Detection of the paternal mutation of this fetus has been reported previously (Vervoort et al. 1993).

Patient 5 was a hydropic fetus of Belgian origin. Hydrops fetalis was noted on ultrasound in two previous pregnancies. In the first pregnancy, rapidly increasing ascites, subcutaneous oedema and placental thickening were noted at 22 weeks. Echocardiography showed no structural cardiac defects or arrhythmia. Microscopy of the placenta showed prominently vacuolated Hofbauer cells. Histology of the fetus showed numerous vacuolated macrophages in liver, spleen, lymph nodes and bone marrow. Scattered foamy macrophages were seen in the lungs, the myocardium, the adrenals and the kidneys. Renal tubular cells were vacuolated but stained only faintly for mucopolysaccharides. Microscopically, the heart showed a slightly thickened fibrotic endocardium. In the second pregnancy, oedema of the neck and the back was noted at 12 weeks' gestation (this neck oedema had also been seen at an early stage in the first pregnancy). As in the previous fetus, no other macroscopic abnormalities were found. The third fetus was also hydropic and, at autopsy, no other abnormalities were found. Cultured amniocytes of the third pregnancy were used for mutation analysis.

RNA preparation, reverse transcription/PCR,
single-strand conformation polymorphism analysis and sequencing
Isolation of total RNA, reverse transcription (RT)/PCR, singlestrand conformation polymorphism analysis (SSCP) and sequencing of PCR products were performed as reported previously (Vervoort et al. 1996). The oligonucleotides used here for PCR and sequencing were as defined in Shipley et al. (1993) and Vervoort et al. (1996).

Genomic DNA preparation, PCR, SSCP and sequencing
Genomic DNA was prepared from the material available. Amplification with PCR, SSCP and sequencing of PCR products were performed as reported previously (Vervoort et al. 1996). To amplify the promoter region and exon 1 of the β-glucuronidase gene, we used primer pair RAF26-1r as described; a second PCR amplification of
this product with hemi-nesting primer pairs RAF26-RAF25 and RAFI-Ir was employed. These PCR products were better templates for direct sequencing. Exon 9 sequences were determined in the sense direction by RAF13. with a cycle sequencing protocol (Thermo-Sequenasie, Amersham).

3^{\prime}-Rapid amplification of cDNA ends/PCR

For 3^{\prime}-rapid amplification of cDNA ends (RACE). we used a kit for RT-PCR from Perkin Elmer. However. RT was primed with the Not $I-d(T)_{1 s}$ primer supplied by Pharmacia. The first PCR amplification was carried out with sense primer RAF1 3 and the Not 27 antisense primer (consisting of the anchor portion of the Nol $l-d(T)_{g, ~}$ primer). This product was reamplified with primer pair RAF15Not27 and the subsequent product wats purified on agarose gel, reamplified and sequenced with primers RAF15 and HUG16; sequencing of the 3^{\prime} end was carried out with primer RAF48 (cDNA position 1981-2000, 5'-GAGCAAGACTGATACCACCT-3'), by using Thermo-Sequenase (Amersham).

Expression studies

For expression in COS cells, mutations were introduced into the wild-type β-glucuronidase cDNA cloned in the expression vector pJCl19 (Oshima et al. 1987). We amplified eDNA with PCR, derived mutant restriction fragments and replaced the fragment in the expression vector. Mutant constructs were verified by sequencing the appropriate region of the cDNA.

Results

Detection of MPS VII mutations

Methods for mutation analysis of the β-glucuronidase cDNA and gene have been described previously (Shipley et al. 1993; Vervoort et al. 1996). The deleterious alterations found on MPS VII alleles of patients $1-5$ are summarized in Table 1 and Fig. I. The 1107 427 deletion was easily detected when PCR products were run on agarose or polyacrylamide gels and were localized in a 55 -nt interval (nt 1092-1146). The second allele of patients I and 5 resulted in greatly reduced amounts of stable mRNA (RNA-). Restriction analysis with BgIII of PCR-amplified exons 6-7 from genomic DNA of patient 1 revealed an R357X allele. In order to find the MPS VII mutation on the second chromosome of patient 5, PCR fragments amplified from genomic DNA were sequenced; an $1480 \Delta 4$ deletion of 4 nt in exon 9 was the only other change found. Aberrant PCR products amplified from the cDNA of patient 2 suggested a splice-site mutation. SSCP analysis of PCR-amplified exons 6-7 and exons 7-8 from genomic DNA of this patient showed altered mobility of both fragments. Direct sequencing disclosed the $1270+$ $1 \mathrm{G} \rightarrow \mathrm{A}$ transition in the first nucleotide of intron 7, localized in the overlap of the fragments analysed with SSCP. As this change creates a new restriction site for NlaIII, it could be confirmed unambiguously after digestion of PCR products with this enzyme. The R374C change (patient 3) was detected with PCR-SSCP and direct sequencing of the cDNA. Although the second allele of this patient was equally expressed in his mRNA, no other

Table 1 Summary of MPS VII mutation analysis

Patient number and origin	Phenotype	Nucleotide change:	Amino acid change"	Exon	Effect on RNA ${ }^{\text {a }}$	Haplotype ${ }^{\text {c }}$		
						1766	1972	2154
Patient 1	Hydrops	1107 A 27		7	-	C	C	n.d.
The Nethertands,		$1095 \mathrm{C} \rightarrow \mathrm{T}$	R357X	7	RNA-	C	C	n.d.
Patient 2	Hydrops	$1270+1 \mathrm{C} \rightarrow \mathrm{A}^{\text {b }}$	-	Intron 7	Aberrant	C	C	n.d.
Mexicaln descent		$1270+1 \mathrm{G} \rightarrow \mathrm{A}$	-	Intron 7	splicing	C	C	n.d.
Patient 3	Neonatal	$11+6 \mathrm{C} \rightarrow \mathrm{T}$	R347C	7	-	C	T	$\mathrm{G}^{\text {d }}$
Czechoslovakia		$181 \mathrm{C} \rightarrow \mathrm{T}$	S52F	1	-	C	C	A
Patient 4	Hydrops	$672 \mathrm{C} \rightarrow \mathrm{T}$	R216W	4	-	C	T	A
Belgium		$354 \mathrm{C} \rightarrow \mathrm{T}$	R110X	2	RNA	C	T	A
Patient 5	Hypdrops	$1107 \Delta 27$		7	-	C	C	A
Belgium		$1480 \Delta 4$	frameshift	9	RNA-	C	C	A

"Both alle les of cach patient are given. - No effect
${ }^{\text {b }}$ Unable to exclude a full deletion of the β-glucuronidase gene on a patient's second chromosome
'Four polymorphic loci were analyzed: $1091+27 \mathrm{C} / \mathrm{G}, 1766 \mathrm{~T} / \mathrm{C}$, $1972 \mathrm{C} / \mathrm{T}$ and $2154 \mathrm{~A} / \mathrm{G}$. The $1091+27 \mathrm{C}$ or G allele was always associated with the same 1972 T or C atlele, respectively; therefore analysis of $1091+27 \mathrm{C} / \mathrm{G}$ is not listed. $n . d$. Not determined
changes were disclosed with RT-PCR-SSCP. After complete sequencing of the coding region of both the cDNA and the gene, we found that this patient also carried an S52F allele. Molecular analysis of the cDNA of the fourth patient showed that he was a compound heterozygote for a R216W allele and a second allele not stably expressed in his mRNA (Vervoort et al. 1993). After complete sequencing of the coding region of the gene, a $354 \mathrm{C} \rightarrow \mathrm{T}$ transition in exon 2, predicting a R110X premature termination, was found on his maternal allele.

Aberrant processing of the $1270+1 \mathrm{G} \rightarrow \mathrm{A}$ mRNA

cDNA of patient 2 was amplified with PCR and the products were analysed on polyacrylamide gel electrophoresis (PAGE). Aberrant bands were eluted, reamplified and sequenced (Fig.2). A band amplified with RAF11-RAF12 included a mutant ($1270+1 \mathrm{G} \rightarrow \mathrm{A}$) intron 7 ; introns 8 and 9 were spliced out correctly from this messenger. Inclusion of an intron in the mRNA is not a common effect of 5^{\prime} splice mutations on mRNA (Scott et al. 1993). However, as a consequence of the multiplicity of aberrant splicing products and the length of most introns, these messengers are easily overlooked. Two short bands amplified with RAF9-RAF12 missed exons 6 and 7; the shortest product also missed exon 9 (Fig.2). One aberrant product amplified with primers RAF9-RAF12 was also amplified from the cDNA of most other MPS VII patients; direct sequencing showed its sequence to be identical with that of nt 253-410 of SMA 4 cDNA (Theodosiou et al. 1994). SMA 4 is a member of a family of expressed sequences consisting of various combinations of β-glucuronidase-related pseudoexons; PCR amplification of these sequences with our primers occurs accidentally when binding sites are conserved and are present in the correct orientation.
"Three changes were found on both alleles of patient $3(\mathrm{~S} 52 \mathrm{~F}$, R374C, 2154G). The $2154 \mathrm{~A} / \mathrm{G}$ change is probably a (relative rare) harmless polymorphism. 21.54G was assigned to his R374C allele, since it was also found on the R374C allele of another MPS VII patient. As a consequence, the only change on the second allele of patient 3 was the S52F missense mutation, which destroys enzyme activity completely in a transfection experiment

Additional polymorphisms in exon 12

Sequencing of the PCR product amplified from genomic DNA of patient 3 showed that he was heterozygous for a $\mathrm{A} \rightarrow \mathrm{G}$ transition at position 2154, in the non-coding part of exon 12. Since patient 3 also carried an R374C and an S52F allele, the 2154 G change could be on either allele. No material from relatives of this patient was available; therefore, we analysed position 2154 in another carrier of R374C (German patient 8 in Vervoort et al. 1996). Surprisingly, this patient was homozygous for 2154G. Thus, patient 3 and the German patient probably carry the same R374C-2154G allele and have a different MPS VII mutation on their second chromosome. We screened 30 unrelated Belgian controls for 2154G with single-track sequencing of PCR-amplified exon 12. Two individuals carried a 2154 G allele (estimated allele frequency 3%). Sin-gle-track sequencing of exon 12 disclosed an additional polymorphism located 3^{\prime} of the wild-type polyadenylation site (and therefore not present in mRNA); one healthy individual was homozygous for $2243 \Delta \mathrm{GT}$ (Fig. 1).

Alternative polyadenylation sites

To compare the expression of the 2154 G and 2154 A messenger, we used 3^{\prime}-RACE-PCR. 3^{\prime}-RACE-PCR products were amplified from cDNA of patient 3 and of a control carrier of 2154 G and directly sequenced. Sequencing results demonstrated that both alleles were almost equally represented in cDNA (Fig. 3).

When 3^{\prime}-RACE products were directly sequenced, the involvement of two different polyadenylation sites was observed. The 3^{\prime} end of the first cDNA was identical with the published 3^{\prime} sequence; the second cDNA was 13 nt shorter (Fig. 3). Sequences derived from both messengers

Fig. 1 Detection of nucleotide changes in the β-glucuronidase gene. The strategy used for PCR amplification has been described previously. Results obtained after direct sequencing of PCR products amplified from patient genomic DNA $\mathrm{S} 52 \mathrm{~F}, \mathrm{R} 110 \mathrm{X}, 1270+1 \mathrm{G} \rightarrow \mathrm{A}$, $1480 \Delta 4,2154 \mathrm{~A} / \mathrm{G}, 2243 \Delta \mathrm{GT})$ or CDNA (F361 49) are shown. F36149, $1270+1 \mathrm{G} \rightarrow \mathrm{A}$ and R110X were sequenced in one direction only; $1270+1 \mathrm{G} \rightarrow \mathrm{A}$ was confirmed unambiguously by digestion of the PCR product with restriction enzyme NlaIII. All other changes were sequenced in both directions. WT Wild-type sequence

had almost equal intensity. The $2154 \mathrm{~A} / \mathrm{G}$ polymorphism is localized between the two potential polyadenylation signals. However, polyadenylation was not influenced by the $2154 \mathrm{~A} / \mathrm{G}$ allele: both sites were equally used in cDNA of individuals with $2154 \mathrm{~A} / \mathrm{A}, 2154 \mathrm{G} / \mathrm{G}$ or $2154 \mathrm{~A} / \mathrm{G}$ alleles.

Expression studies

To investigate the causal relationship between the S 52 F and the F361 49 change found on one patient's MPS VII allele and the observed enzyme deficiency, mutant cDNA
was constructed in vitro and used to transfect COS cells transiently. After transfection, media and cells were collected, and β-glucuronidase enzyme activity was measured and compared with activity obtained after transfection with wild-type cDNA and vector only. The results clearly demonstrate that both changes completely destroy enzyme activity (Table 2). In vitro expression of the R357X and R374C mutations has been reported previously (Shipley et al. 1993; Vervoort et al. 1996). The effect of the R110X and $1480 \Delta 4$ mutations on enzyme activity was not studied, since they resulted in premature termination of translation.

Fig. 2 Aberrant splicing of the $1270+1 G \rightarrow A$ mRNA. When cDNA of a patient homozygous with respect to his genomic DNA for the $1270+1 \mathrm{G} \rightarrow$ A mutation was amplified with PCR (primer pairs RAF9-RAF12 and RAF11-RAF12), bands with aberrant lengths were seen on PAGE. These bands were eluted, reamplified and sequenced; skipping of exons 6 and 7 with or without skipping of exon 9 , and inclusion of the mutant intron 7 were found, whereas in normal messenger, only alternative skipping of exon 6 was seen. Skipping of exon 9 did not occur together with inclusion of intron 7. The cDNA (centre), the position of both primer pairs and the aberrant fragments amplified when using them are shown

Discussion

Mutation analysis
Analysis of the β-glucuronidase gene of MPS VII patients has revealed extensive genetic heterogeneity, even within a homogeneous group of patients presenting with hydrops fetalis. However, an increasing number of mutations have been found in more than one family, especially in families of related ethnic origin (A619V in Japan, L176F in Spain, R477W in Arabs). In the present study, another three changes have been demonstrated in more than one family (R374C, R357X and F36149). It is unlikely that these mutations have arisen independently. They are found on the same haplotype background (1766C-1972T-2154G, 1766C1972 C and 1766C-1972C, respectively) in families originating from neighbouring countries (Germany-Czechoslovakia, The Netherlands-Belgium and The Netherlands-Belgium, respectively). As a consequence, screening for previously described (unique) MPS VII mutations might simplify molecular analysis in patients of related ethnic origin.

To date, four small deletions have been found in the β glucuronidase gene: the $1107 \Delta 27,1480 \Delta 4$ and $1900 \Delta \mathrm{GA}$ deletions on MPS VII alleles, and the 2243Δ GT polymorphism. Cooper and Krawczak (1993) have studied large series of small deletions in human genes and discuss possible mutational mechanisms. Small direct repeats flanking or overlapping all small deletions are consistent with a slipped mismatch repair mechanism. Increased frequencies of some tri- and tetranucleotides surrounding small

Fig. 3A, B 3'-RACE-PCR of cDNA. A Strategy used for RACEPCR. Top mRNA; the coding region of the exons is boxed. The position of the sequence polymorphisms is indicated. Bottom Synthesis of the first cDNA strand is shown together with the position of the primers for PCR and sequencing (arrows). B Alternative polyadenylation of mRNA and messenger stability are not influenced by the $2154 \mathrm{~A} / \mathrm{G}$ allele. Sequencing results obtained with primer RAF48 are shown. The positions of the polyadenylation consensus sequences, the polyadenylation sites (arrows) and $2154 \mathrm{~A} / \mathrm{G}$ polymorphism are indicated

Table 2 Expression of normal and mutant enzymes in COS cells. At 60 h after transfection with wild-type or mutant cDNA cloned in the expression vector $\mathrm{pJC119}$, COS cells were collected from p60 plates and lysed in 0.5\% deoxycholic acid. Cell lysates and media were assayed for β-glucuronidase activity by using 4-methylumbelliferyl- β-D-glucuronide (1 unit is the amount that releases 1 nmol 4-methylumbelliferone/h). The endogenous activity was measured in parallel COS cells transfected with expression vector without the insert. Each construct was transfected in duplicate

Construct	β-Glucuronidase activity (units/mg cell protein minus endogenous)		
	Cell	Media	Total
Wild type	1542	1400	2942
S52F	21	0	21
F361 59	0	0	0

deletions have also been found. The deletions in the β glucuronidase gene are in good agreement with the conclusions of Cooper and Krawczak (Fig.4).
GTGAGCAACTCTAACTATGCAGCA
ATCCGAGGGAAGGGCTTOGACTGGCCGCTGCTGGTGAAGGACTTCAACCTGCTTCGC
AGCTTTAACTGIGGTGTGGACTTTTGAGA
AGCTTTAACTGIGGTGTGGACTTTTGAGA
TTCCTIITGCGAGAGAGATACTGGAAGA
TTCCTIITGCGAGAGAGATACTGGAAGA

Fig. 4 Sequence environment of small deletions. The sequence surrounding the four small deletions is shown (nucleotides $1480 \Delta 4$. $1107 \Delta 27,2243 \Delta \mathrm{GT}$ and $190(0) \Delta \mathrm{GA})$. The deleted sequence is bered: direct repeats are underlined with bold arows. Sequences found with increased frequency near small deletions (Cooper and Krawczak 1993) are underlined; sequences in the antisense strand are orerlined

Nonsense mutations affecting mRNA quantity

Although the RT-PCR method used here provides no information on the absolute levels of mRNA expressed, it allows a comparison of mRNA levels synthesized from both alleles of a heterozygous patient. Analysis of the cDNA of patients 1,4 and 5 has revealed only one mutant allele. Analysis of genomic DNA is required to detect the mutation on the second allele, which has subsequently been confirmed to be absent in the cDNA (R357X, R110X, 1480 44); thus, these alleles produce greatly reduced levels of stable mRNA (RNA-). The present observations fit the translation-coupling model of Urlaub et al. (1989), a model that explains the 5^{\prime}-to- 3^{\prime} gradient of the influence of nonsense mutations on mRNA levels. Indeed, the R110X allele, mutated in exon 2, and the $1480 \Delta 4$ frameshilt, resulting in a premature stop codon in exon 10 , are RNA- alleles. It is interesting to note that $1107 \Delta 27$, which does not affect the reading frame, produces higher (and probably normal) levels of mRNA than that found in R357X and $1480 \Delta 4$.

Alternative polyadenylation in fibroblasts

Sequencing of 3^{\prime}-RACE-PCR products has disclosed the use of two altemative polyadenylation sites in fibroblasts. The longest messenger corresponds to the published cDNA (Oshima et al. 1987), the second is 10-13 nt shorter (Fig. 3). Both 3^{\prime} termini are amplified in equal amounts. Equal usage of both polyadenylation sites is not restricted to fibroblasts: it has also been observed when cDNA of lymphoblastoid cell lines is amplified (results not shown). Two consensus AATAAA signals are present near the 3^{\prime} end of the β-glucuronidase cDNA. Both cleavage sites are separated by $7-10 \mathrm{bp}$ and 24 bp from the second signal. Since the usual distance between the signal and the polyadenylation site is $10-30 \mathrm{bp}$, only the second AATAAA signal may be functional.

The $2154 \mathrm{~A} / \mathrm{G}$ change is localized between the two polyadenylation signals. Nucleotide changes affecting polyadenylation are generally found in the consensus sequence; however, mutation of surrounding nucleotides might affect the efficiency of polyadenylation and, as a
consequence, affect mRNA levels in some cases (Cai et al. 1992). Studies of mammalian polyadenylation have demonstrated the importance of downstream or upstream efficiency elements (for a review on polyadenylation, see Manley 1995). Therefore, we have compared the expression of both 2154 alleles in two heterozygotes. Since equal amounts of both alleles are expressed, we conclude the $2154 \mathrm{~A} / \mathrm{G}$ change does not affect mRNA stability. Furthermore, we have observed no influence of the 2154 haplotype on alternative polyadenylation in homozygotes. These results, together with the relatively high allele frequency (3% in controls), demonstrate that the $2154 \mathrm{~A} / \mathrm{G}$ change is probably a harmless polymorphism.

Acknowledgments R.V. is supported by a grant from the Belgian National Fund for Scientific Research (N.F.W.O.). We thank Dr. Macek, Prague, for sending cells from one of the patients. We also thank Gilberte De Dobbeleer for cell culture, and Eric Van Emelen for photography.

References

Cai S, Eng B, Francombe W, Olivieri N. Kendall A, Waye J, Chui D (1992) Two novel β-thalassemia mutations in the 5^{\prime} and the 3^{\prime} noncoding regions of the β-globin gene. Blood 79:1342-1346
Chabas A, Giros M, Guardiola A (1991) Low β-glucuronidase activity in a healthy member of a family with mucopolysaccharidosis VII. J Inherit Metab Dis 14:908-914
Cooper D, Krawczak M (1993) Human gene mutation. BIOS, Oxford
Lissens W, Dedobbeleer G, Foulon W, De Catte L. Charels K, Goossens A, Liebaers I (1991) β-Glucuronidase deficiency as a cause of prenatally diagnosed non-immune hydrops fetalis. Prenat Diagn 11:405-410
Manley J (1995) A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Dev 5:222-228
Miller R, Hoffmann J, Powell P, Kyle J, Shipley J, Bachinsky D, Sly W (1990) Cloning and characterization of the human β-glucuronidase gene. Genomics 7:280-283
Neufeld E, Muenzer J (1995) The mucopolysaccharidoses. In: Scriver C., Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 2465-2494
Oshima A, Kyle J, Miller R, Hoffmann J, Powell P, Grubb J, Sly W, et al (1987) Cloning, sequencing, and expression of cDNA for human β-glucuronidase. Proc Natl Acad Sci USA 84:685689
Scott H, Litjens T, Nelson P, Thompson P, Brooks D, Hopwood J, Morris C (1993) Identification of mutations in the α-L-iduronidase gene (IDUA) that cause Hurler and Scheie syndromes. Am J Hum Genet 53:973-986
Shapiro M, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155-7173
Shipley J, Klinkenberg M, Wu B, Bachinsky D, Grubb J, Sly W (1993) Mutational analysis of a patient with mucopolysaccharidosis type VII, and identification of pseudogenes. Am J Hum Genet 52:517-526
Sly W, Quinton B, McAlister W, Rimoin D (1973) Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr 82:249-257
Theodosiou A, Morrison K, Nesbit A, Daniels R, Campbell L, Francis M, Christodoulou Z, Davies K (1994) Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in $5 q 13$. Am J Hum Genet 55:1209-1217

Tomatsu S, Sukegawa K, Ikedo Y, Fukuda S. Yamada Y, Sasaki T, Okamoto H. Kuwabara T, Orii T (1990) Molecular basis of mucopolysaccharidosis type VII: replacement of Ala ${ }^{(119}$ in β-glucuronidase with Val. Gene 89:283-287
Tomatsu S. Fukuda S. Sukegawa K, Ikedo Y, Yamada S. Yamada Y, Sasaki T. Okamoto H, Kuwahara T, Yamaguchi S, Kiman T, Shimtaku H, Isshiki G. Orii T (1991) Mucopolysaccharidosis type VII: characterization of mutations and molecular heterogeneity. Am J Hum Genet 48:89-96
Urlaub G, Mitchell P, Ciudad C, Chasin L (1989) Nonsense mutations in the dihydrofolate reductase gene aftect RNA processing. Mol Cell Biol 9:2868-2880
Vervoort R, Lissens W, Liebaers I (1993) Molecular analysis of a patient with hydrops fetalis caused by β-glicuronidase deficiency, and evidence for additional pscudogenes. Hum Mutat 2:443-44.5
Vervoort R, Islam R, Sly W, Chabas A, Wevers R, Jong J de, Liebaers I, Lissens W (1995) A pseudodeficiency allele (D152N) of the human β-glucuronidase gene. Am J Hum Genet 57:798804

Vervoort R, Islam R, Sly W, Zabot M, Kleijer W, Chabas A, Fensom A, ct al (1996) Molecular analysis of patients with β-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII. Am J Hum Genet 58:457-471
Wu B, Sly W (1993) Mutational studies in a patient with the hydrops fetalis form of mucopolysaccharidosis type VII. Hum Mutat 2:446-457
Wu M, Tomatsu S, Fukuda S, Sukegawa K, Orii T, Sly W (1994) Overexpression rescues the mutant phenotype of L176F mutation causing β-glucuronidase deficiency mucopolysaccharidosis in two Mennonite siblings. J Biol Chem 269:23681-23688
Yamada S, Tomatsu S, Sly W, Islam R, Wenger D, Fukuda S, Sukegawa K, Orii T (1995) Four novel mutations in mucopolysaccharidosis type VII including a unique base substitution in exon 10 of the β-glucuronidase gene that creates a novel 5^{\prime} splice site. Hum Mol Genet 4:651-655

[^0]: R．Vervoort • I．Liebaers • W．Lissens（《）
 Department of Medical Genetics，University Hospital， Vrije Universiteit Brussel，Laarbeeklaan 101， B－1090 Brussels，Belgium
 Tel．：＋32－2－4776077；Fax：＋32－2－4776072
 N．R．M．Buist
 Pediatric Metabolic Laboratory， Department of Molecular and Medical Genetics and Pediatrics， Oregon Health Sciences University，Portland，OR，USA

 W．J．Kleijer
 Department of Clinical Genetics，University Hospital， Erasmus University，Rotterdam，The Netherlands

 R．Wevers
 Stichting Klinisch－Genetisch Centrum Nijmegen， Academisch Ziekenhuis Nijmegen，Nijmegen，The Netherlands
 J．－P．Fryns
 Center for Medical Genetics，Katholieke Universiteit Leuven， Leuven，Belgium

