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Abstract 

In this paper we will compare the performance of two techniques (the Maximum 
Likelihood Estimation (MLJZ) and the Population Vector (PV)) for estimating the interpre- 
tation of neuronal activity in a population of neurons. Although such a comparison has been 
made before, so far only homogeneous distributions of receptive fields have been investi- 
gated. Since the performance of both methods depends on the distribution of the receptive 
fields we have tested the performance for homogeneous and inhomogeneous distributions. 
The results demonstrate that in general the ML& method outperforms the Population 
Vector. However, the MLE method depends heavily on the shape of the receptive field 
properties of the neurons, which is not the case for the PV method. Moreover, the MLE 
method may give rise to artefactual results for inhomogeneous distributions of receptive 
fields. For the PV method the shape of the receptive field is not as important. Moreover, for 
the Population Vector the optimal width of the receptive field remains more or less 
constant when the decrease in density is small relative to the optimal width. In this case the 
information decreases proportionally with the density of receptive fields. 

J&~wcw&: Neural network; Population vector; Maximum likelihood estimation; Receptive 
field 

1. Intrhwtion 

Research on neural networks is driven by efforts to understand the information 
processing in the nervous system and by efforts to use neural networks for various 
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types of applications. Therefore, a distinction has to be made between biological 
neural networks, which are developed and studied in order to simulate, reproduce 
and understand the function and operation of (a particular part of) the brain, and 
artificial neural networks, which are developed for a particular application. For the 
latter, a good performance is of primary interest and a biological plausibility is of 
minor importance. 

One of the main advantages of artificial neural networks over other techniques 
for complex problem solving is that neural networks can be trained by presenting 
examples. No explicit algorithm for the solution of the problem is required. When 
training has led to a neural network with a good performance, the system behaves 
as a black box which is performing the required input-output mapping. For some 
applications it is sufficient to have such a system. However, for many applications 
it would be important to learn about the implicit rules that the neural network has 
developed during learning in order to understand and to explain the performance 
of the neural network. Therefore, it would be helpful if the weights in the neural 
network could be interpreted in terms of rules which can be extracted from the 
network. 

Neurobiologists studying the neuronal information processing are facing a 
similar problem, since they have to interpret the neuronal activity, which has been 
recorded from single neurons, and the connectivity between neurons, which 
becomes evident in a correlated firing of neurons, in terms of macroscopic sensory 
or motor events. This is implicit in the approach by any neurobiologist, who is 
trying to interpret the neuronal activity such that he can attribute a function to the 
neurons under investigation. 

Several approaches to these problems have been presented in the past. Bialek et 
al. [1,2] have analysed the information-theoretic optimal performance and optimal 
methods for reconstructing information from a neuronal spike train. In their 
approach a linear filter was constructed to estimate the maximal amount of 
information in a single action potential. Since it is generally believed that the 
information is encoded by the activity of an ensemble of neurons, rather than by 
the activity of a single neuron, several authors have developed methods to 
interpret the neuronal code of an ensemble of neurons. The most well-known 
method is the Population Vector, which is simply the summation of the optimal 
sensory input or’ motor output of neurons in a population (optimal in the sense 
that the neuron gives the largest response to that particular sensory stimulus or 
motor response) weighted by the firing rate of each neuron. Successful illustrations 
of these methods can be found in Gielen et al. [6] who tried to find a sensory 
interpretation of neuronal activity in the nervus acousticus of the cat, and in 
Georgopoulos et al. [4,5] who related the activity of .motocortical cells to the 
direction of arm movements. The main problem with the Population Vector 
method is that it assumes a homogeneous sampling of the sensory or motor space. 
In the case of motor cortex, the preferred directions of motocortical cells appear to 
be distributed homogeneously in 3-D space (see Schwartz et al. [13]). However, in 
the acoustic nerve or in monkey visual cortex (area 17) the receptive fields are 
certainly not homogeneously distributed in the frequency domain or in the retinal 
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field of view (see e.g. [3,7]). As a consequence, the Population Vector gives an 
estimate for the sensory stimulus, which is biased by the inhomogenous distribu- 
tion of receptive fields. The same problem arises for other approaches, such as 
maximum likelihood estimators (see e.g. Seung and Sompolinsky [14]), which 
frequently make the implicit assumption of a homogenous sampling. 

In this paper we will compare two frequently used methods to provide an 
interpretation to the neuronal activity in a population of neurons. First we will 
start with the Maximum Likelihood Estimation and we will investigate the effect of 
an inhomogeneous distribution of receptive fields on the information coded by the 
neuronal population. Then we will investigate the conditions under which the 
Population Vector can give reliable estimates for the interpretation of neuronal 
activity. The results will be compared with other procedures which have been 
proposed in the past. 

2. Results 

In order to compare our results to those obtained by others we will follow the 
model proposed by Seung and Sompolinsky [14J which is qualitatively similar to the 
cases discussed by Salinas and Abbott [ill. It consists of a set with N neurons 
responding to visual stimuli with a particular orientation 0 in a range from 0 to 27r. 
Each neuron i has its own preferred orientation t$ which elicits the largest 
responses. The response of the population of the N neurons is described by a 
probability distribution P(r 191, where the vector r is used to represent the 
responses r1,r2,. . . , r, of the N neurons. These responses are assumed to be 
independent Poisson random variables, i.e. each neuron has its own independent 
noise source. The expected value of the response to a stimulus 8 (or mean 
response (ri), where (.> stands for the average with respect to P(r I 0)) is 
represented by fi(0). In Seung and Sompolinsky the distribution g(8) of preferred 
directions Bi was homogeneous over the interval [0,2n]. In this study we will 
investigate inhomogeneous distributions for g(8) and their effect on the informa- 
tion content of the neural responses. 

The response of a neuron depends on the preferred direction ei of the cell and 
on the stimulus 8. Like Seung and Sompolinsky, we will assume that all cells have 
the same response function f,(g) =f(e - I$>, defined by 

f(O) = 
i 

fmi” + (fInax -fnlin> ~0s m((Te)/(2c)>, 18 I <Q 
fti, otherwise 

The exponent m affects the shape of the response curve. 
In this context we like to explain that this particular choice for a direction 

selective response is in no way a restriction. In a similar way direction selective 
responses of motocortical cells for arm movements in 3-D space (see e.g. Geor- 
gopoulos et al. [4,51) can be modelled and the results of our analysis can be applied 
equally well to other types of neuronal activity (see e.g. [10,15,16]). 
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In order to have a measure for the quality of the interpretation of neuronal 
activity we have used the Fisher Information [9]. If a parameter 8 parameterises a 
signal S(t3) and when data {l$} from a set rj gives information about S, then the 
Fisher information Jj with 

is a measure of the information supplied by the data l$ about the parameter 0. For 
a normal distribution, the inverse of Jj is equal to the variance of the probability 
distribution. 

The Shannon Information which is defined as log (p(V I S)/(pW)), is an 
absolute measure of the statistical dependence between V and S, which reduces to 
zero when V and S are independent. The proper Shannon measure to distinguish 
between S and S + AS is the average of the difference of information in V about 
S and S + AS. This can be shown to be equivalent to the Fisher Information which 
can also be interpreted as a measure for the sensitivity of data 5 to small changes 
in 8 (see below). This is the reason why we have chosen the Fisher information as a 
measure for the information contained in a neuronal response. 

2.1. Maximum likelihood estimation 

The Maximal Likelihood Estimation (MLE) method is a standard statistical 
approach for obtaining parameter estimates from experimental data. Under cer- 
tain conditions it can be shown to be optimal in the sense that it minimizes the 
mean square error of the estimated parameters. The general problem is to 
estimate a parameter, say A, from a set of random (usually experimentally 
obtained) variables, say xi, which are a function of the unknown parameter A. The 
problem is to find that value for A, which maximizes the probability that the model 
has generated the observed data. 

In our case the estimated parameter is the orientation 8 which most likely 
corresponds to the stimulus Cl,, which caused the response r. This is equivalent to 
estimating the value Oest, which maximizes the probability P(tI,,,Ir(O,)). 

For a large population of neurons the variance in the estimate for 8 which gives 
the optimal P(t3 Ir) is given by ((6 - 0)‘) = l/J[rKO>, where J[rKe) is the Fisher 
information defined by 

J[r](e) = ilog P(elr) (( 
2 

1) 
which under some general assumptions can be written as 

J[r](e) = - $log P(8 Ir) 
( ) 

(2) 

(see [9]). The Fisher information is a functional of P(8 I r) and can be interpreted 
as the amount of information in r about the stimulus 8. 
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With the definition of the response function fi(O,) for the response of neuron i 
to stimulus 8, and using the assumption of independence of the ri such that 
J[rKt3,) = C,J[ri](9,), straightforward calculation gives 

(3) 

where g(4) represents the density of neurons with preferred orientation +. In 
Appendix 1 the full expression for J[rK9,) is given. 

Fig. 1 shows the mean total information J[rKO)/(Z’Vf,,) for m = 2 as a function 
of parameter a, the ‘width’ of the receptive field of the neurons, for a homoge- 
neous distribution of neurons. Because of the homogeneous distribution of tuning 
curves or receptive fields the mean total information J[rHe)/(Nf_) is the same 
for all stimulus orientations 8. This figure is the same as that shown by Seung and 
Sompolinsb [14]. The mean information increases for smaller u-values because 
the information is proportional to the square of the derivative of the receptive 
field. For smaller u-values, the tuning curve becomes tuned more narrowly and as 
a consequence, the information increases. For very large u-values the receptive 
field becomes very broad such that the derivative of the tuning curve approaches 
zero and the mean amount of information becomes zero. 

When the receptive fields are not distributed homogeneously over the interval 
[-T, n], the results become quite different. Fig. 2 shows the results for a gaussian 
distribution of receptive fields with a peak at orientation tIs = 0 and with a 

I 

00 1 2 3 

receptive field width a 
Fig. 1. Mean total information J[rxB)/(Nf,,) for the Maximum Likelyho Estimator with a 
homogeneous distribution of tuning curves as a function of parameter (I for m = 2 with fmin /f,,,, = 0.1 
(thin line) and fmin /f,, = 0.01 (thick line). 
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standard deviation u. The distribution g(+) of preferred directions of the tuning 
curves over the range [-T, n] is given by 

-b2 

gW = 
ezp 2a2 l-1 

aGerf - 
( 1 & 

(4) 

and is assumed to be periodic modulo 27~. Each panel in Fig. 2 shows the mean 
total information J[rK0) in the response of the set of N neurons for five stimulus 
orientations 8, at 0.1 (A), 0.3 (B), 0.5 (C), 0.75 (D) and 1.5 (E), respectively. 
Because of the inhomogeneous distribution of receptive fields (a = 1.01, the mean 
total information depends on the particular stimulus orientation flS. Notice that the 
absolute value of the information in Fig. 2 decreases for larger values of 8, due to 
the smaller density of neurons for larger gS values. For large values of a the mean 
information approaches zero for each of the orientations es. This is because the 
slope of the tuning curves becomes less steep for larger values of a. The mean 
information increases for smaller a values due to the steeper slope of the tuning 
curve. 

Fig. 3 shows results similar to those shown in Fig. 2 for a different distribution 
of receptive fields (a = 0.1). Each of the panels shows a peak in J[rl(tI) which shifts 
to larger u-values for larger values of the stimulus orientation 8,. For very large 
u-values, the information decreases to zero for reasons explained before. For all 
g,-values the mean information approaches infinity for a JO, just as for the 
homogeneous distribution. However, for larger 8,-values the rapid increase of the 
mean information can only be seen for very small values of a (a I exp( - t3z/2a2>). 
This is related to the fact, that the number of responding neurons decreases for 
larger values of OS due to the lower density of receptive fields. These results 
demonstrate that the MLE method gives most information for very small receptive 
fields, irrespective of the stimulus orientation 8, and the density of receptive fields. 

The second peak in the mean total information, which shifts to larger values of 
u for larger stimulus orientation 8,, originates from the contribution from neurons 
with an optimal tuning near the orientation 8 = 0 and with a width a such the 
slope of the tuning curve is steepest near the stimulus 8,. The latter becomes 
evident in the fact that the optimal value for a increases with the stimulus 
orientation 8,. Obviously, this peak reflects an artefact since the neurons, which 
give the largest responses have their optimal tuning at 8, = 0. Moreover, this peak 
in the information cannot be used in practice, since the optimal width of the 
receptive field can only be chosen after the result (the best estimate for the 
stimulus orientation e,) is known. Moreover, in our case with a symmetric density 
around orientation zero, the code is ambiguous: The same neurons tuned near 
8 = 0 will be active for both 8, as well as for - 8,, and the information contained in 
the neuronal response is the same for 8, and - 8,. 
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Fig. 2. Mean total information J[rKg)/(Nf,,,& as a function of parameter a for five orientations 
(g, = 0.1 (A), 0.3 (B), 0.5 (C), 0.75 (D) and 1.5 (E) radians). The distribution of tuning curves is given by 

v 
w)- 202 

( ) 

‘(‘)= 1/2lo’nf( &) 

with (r = 1.0. The ratio fmin /f,,,, = 0.01; m = 2. 

2.2. Population Vector 

A biologically plausible alternative to MLE is the Population Vector. Following 
Seung and Sompolinsky a more convenient representation of the stimulus 8 is the 
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#!a 
$ 

ma2 
600 

A 0 1 2 
, 

receptive field width a 

Fig. 3. Mean total information J[rxB)/(N&_) s a a function of parameter a for five orientations 
(g, = 0.1 (A), 0.3 (B), 0.5 (C), 0.75 (D) and 1.5 6 radians). The distribution of tuning curves iS given by 

with u = 0.1. The ratio fmin /f,,,, = 0.01; m = 2. 

complex representation. When using the complex equivalent z = eie, the popula- 
tion vector 2 is given by 

(5) 
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where f; is the first Fourier component of the tuning curve f, with the n-th 
Fourier component defined by f^, = 1/(2~) J~“e’“ef(8)d0. Since the tuning curve 
f(8) is symmetric, its first Fourier component fI is real and positive. As shown by 
Seung and Sompolinsky, the mean information J[i] for a homogeneous distribu- 
tion is given by 

2f7: 
J[i] =N,- 

fo-A! 
(6) 

(see also Appendix 2 where we derive a measure for the variance in the estimate of 
the Population Vector, which is also equal to or larger than the inverse of the 
mean total information contained in the responses.) This equation says that the 
information is proportional to the square of the ratio of the population-averaged 

signal <fr> to the population-average noise ( li^ f,, - fi 1. As pointed out by Seung 
and Sompolinsky, this means that the information contained in the population 
vector does not critically depend on the shape of the tuning curve, contrary to the 
information contained in the maximum likelyhood estimator. 

Fig. 4 shows the mean information 

as a function of the width a of the tuning curve for two ratio’s of f&/f,,. The 
mean information approaches zero for large a values. This is because for large a 
values all neurons will respond to the stimulus 8, with approximately the same 
response amplitude. Therefore, all neurons contribute approximately equally which, 

3- 

1 

2. J[i](e) 
Nfmas .. 

1 2 3 

receptive field width u 

Fig. 4. Mean total information J[lXg>/(Nf,,) for the populatoion vector model with a homogeneous 
distribution of tuning curves as a function of parameter a for m = 2 with fmin /f,,,, = 0.1 (thin line) 

and fmin /f,, = 0.01 (thick line). 
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for a homogeneous distribution, gives rise to a cancellation of the contribution of 
the neurons to the Population Vector. As a consequence, the Population Vector 
becomes small or zero and does not contain information any more. For very small 

- receptive field width a - 

Fig. 5. Mean total information J[?J(Ke)/(Nf,,) as a function of parameter a for five orientations 
(6, = 0.1 (A), 0.3 (B), 0.5 (C), 0.75 (D) and 1.5 (E) radians). The distribution of tuning curves is given by 

with u = 1.0. The ratio fmin /f,, = 0.01; m = 2. 
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a values, the neurons have a narrowly tuned response function. As a consequence 
only very few neurons will respond to a stimulus 8, and the information will 
decrease due to the poor signal-to-noise ratio for smaller a values. 

The results for an inhomogeneous distribution are shown in Figs. ‘5 and 6. In 
Fig. 5 the width of the Gaussian distribution of tuning curves (a = 1.0) is relatively 
broad with respect to the stimulus interval [-T, T]. Therefore, this distribution is 
not too much different from a homogeneous distribution for small OS-values. The 
peak value of the mean information decreases for larger stimulus orientations due 
to the lower density at orientations farther away from 8, = 0. Otherwise the traces 
for the information have almost the same shape, with the optimal value for a near 
0.7 for all OS. 

For a distribution deviating more from a homogeneous one (a = 0.1; see Fig. 6) 
the peak value for the information decreases rapidly with stimulus orientation 8,. 
For 8, = 0.1 (i.e. near the highest density) the information is large and the optimal 

1 2 

receptive field width a 

Fig. 6. Mean total information .@X9)/(Nf,,) as a function of parameter a for three orientations 
(0, = 0.1 (A), 0.3 (B), and 0.5 (C) radians). The distribution of tuning curves is given by 

with Q = 0.1. The ratio fmin /f,,,, = 0.01; m = 2. 
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value for a is near 0.1. However, for 8, = 0.3, where the density of tuning curves 
has decreased by more than 95%, larger values for (I give rise to a larger amount 
of information since more neurons are responding giving rise to a better signal-to- 
noise ratio. The increase of information with a in Fig. 6(b) and 6(c) changes to a 
decrease for large values of a (outside figure) for reasons explained before. The 
value for a where the information reaches its maximum depends on the particular 
value of 0, since it depends on a compromise between a reduction in noise due to 
a larger number of responding neurons for larger values of a and a decreasing 
value of the Population Vector due to cancellation of contributions from neurons 
with opposite preferred directions. 

3. Discussion 

In agreement with a previous study by Seung and Sompolinsky we have found, 
that the MLE gives a better performance than the Population Vector for small 
tuning curves (i.e. small a values). Although MLE always outperforms the Popula- 
tion Vector, the performance of the two methods approaches each other for large 
values of a. The fact that MLE outperforms the Population Vector estimate can 
be explained by the fact that the information for the Population Vector is based on 
the average response, whereas for MLE the mean information is the average of the 
information contained in each of the responses. Therefore, the latter must always 
be larger than the information contained in the Population Vector. However, the 
Population Vector has the advantage above the Maximum Likelihood Estimation 
that the former method is rather insensitive to the precise shape of the tuning 
curve. This is in agreement with results of Sanger [12] who demonstrated in a very 
different way, that the fact that the Population Vector produces good estimates 
does not imply that the tuning curves have a cosine function shape. Actually they 
can have any shape as long as the higher order Fouriercomponents of the tuning 
curves for the neurons are uncorrelated. In this study we extend these results for 
inhomogeneous distributions of tuning curves, by showing that the information for 
the MLE is mainly determined by the steepness of the slope of the tuning curves. 
For low densities, this gives rise to artefactual results in that large receptive fields 
are favoured such that the main contribution comes from neurons with a optimal 
tuning near the highest density. 

For the Population Vector the optimal value for a does not change very much 
as long as the change in the distribution of tuning curves is small relative to the 
width of the tuning curve II. This is expressed by the relation 

Q(x) 
l- 

ax 
*2u111. 

For the gaussian distribution with u = 1.0 the gradient 

.agW. 
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is always smaller than 1.1, which indeed is smaller than twice the optimal value for 
a. Only the amount of information decreases proportionally with the density of 
tuning curves. 

In addition to the Maximum Likelihood Estimator and the Population Vector 
several other procedures have been proposed to estimate probabilities of different 
stimuli given the neuronal response. Salinas and Abbott [ill proposed an ‘optimal 
linear estimator’ COLE), which is a linear estimator which minimizes the squared 
difference between the estimated and actual stimulus, averaged over all trials and 
over all possible stimuli. This method is related to the Population Vector. It has a 
correction factor to correct for the correlations in firing rate between all pairs of 
neurons. In their paper, Salinas and Abbott demonstrate that the OLE method 
corrects for any artefacts due to nonuniform distributions of neuronal tuning 
curves. Also, the OLE method requires fewer neuronal responses than the popula- 
tion vector to reach the same accurracy for the predicted stimulus. This makes the 
OLE method another useful procedure to interpret neuronal activity. A quantita- 
tive comparison between the OLE method and the procedures outlined in this 
manuscript cannot be made yet with the available material. 

In another approach Kjaer et al. [8] studied the encoding of spatial pattern 
information by complex cells in the primary visual cortex of awake monkeys. A 
simple feedforward network with one hidden layer appeared to give the best 
performance in terms of the error between estimated and actual stimulus compo- 
nents. A comparison of the accuracy of this method with the other techniques has 
not yet been done. Although this approach may be useful for artificial neural 
networks, it has no relevance for biological neural networks because training the 
feedforward network requires supervised learning. 

Both in the study by Seung and Sompolinsky and in this study we find that the 
information for the MLE approaches infinity for small values of II whereas it 
becomes zero for the Population Vector. This raises the question, whether the two 
measures for information are really the same. The explanation is, that the 
information for MLE (see Eq. (3)) does not depend on the stochastic response 
parameter r, but on the average value of the response f(0,). Since the number of 
responding neurons increases proportionally with a and since the information 
decreases faster than l/a, the increasing amount of information related to the 
steeper slope for small a values dominates over the decreasing amount of 
information by the smaller number of responding neurons for smaller values of a. 
For the population vector, however, the information is contained in the average 
response. Therefore, small values are not favourable since too few neurons are 
responding, whereas large values for a are not favourable either since for large 
values of a neurons with opposite preferred directions become active such that the 
Population Vector decreases for large values of a. Obviously, the optimal value for 
a is somewhere in between. 

It is important to notice, that the Fisher information J only provides a lower 
bound for the variance of the estimate, which is approached only for a large 
number of neurons. It is not known yet, whether the convergence of the variance 
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towards l/J for a total number of neurons N is equally fast for both methods. 
Further simulation studies have to be done to clarify this point. 

The lessons of this study for the neurophysiologist are twofold. First, the 
Maximum Likelihood Estimator may perform better than the Population Vector. 
However, this is true only for very small receptive field sizes, which requires many 
neurons in order to code the complete sensory domain. The latter is very expensive 
in terms of neural ‘hardware’. Secondly, the results of this study show that for 
normal receptive fields the performance of the MLE method is comparable to that 
of the PV method. The advantage of the Population Vector is that it is less 
sensitive to the receptive field size. Especially for an adaptive system, this may be 
an advantage. For the Population Vector the size and shape of the receptive field 
are not important as long as the width is small relative to the scale in which the 
distribution density varies. 

Appendix 1. Maximum likelyhood estimation 

Given the model described in the RESULTS section, the information in the 
response of neuron i to a stimulus with orientation + according to the Fisher 
Information is given by 

J[ril(+) 

-fain>* 

micos*~~*(~~)sin*(~+)-$ 

fmin + ( fmax -ftnin) ‘OS m ( 1 $4 ’ 

Idl<a 

otherwise 

For a homogeneous distribution of tuning curves the total mean information 
J[ r] for the whole population is given by 

N 
=- 

27r ~acfmax- / fmin)* 

~2cos2m~2(~+)sin2(~m)f,~ 

fmin + ( fmax -fmin) COSm ( i $24 
(7) 

For a normalized inhomogeneous distribution g(4), the mean total information, 
when a stimulus 0, is presented, is given by 

J[r](e,) =NIw J[riI(es - 4)g(4)‘4 --7F 
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Appendix 2. Population vector 

For a homogeneous distribution of tuning curves (ej = 24/N) the estimate 
according to the population vector is given by 

ei% 
(i)= L. 

/ 
2Tf(+)ei4g 

Nlf,l 0 
= ({;/I fll)eie~ 

with ?r = & /2~eief(B)dt3. The covariance matrix 

((x-Z)(Y -5% 

G-x’)(Y -S)> ((Y 39’) I 

(9) 

is given by 

1 f. +f2 cos(2~,) f^ sin( 20,) 

2Nf;2 I f2 sin(26,) f;, -L cos(2Q 

From 

we find 

For an inhomogeneous distribution of tuning curves the population vector for a 
stimulus 8, is given by the weighted sum 

Wu>= i $ fk&dwj 
f(e,-ek)=f(e~-e,) 1 1 N 

= z $J(e, - k)ei@k 

iv-r= 1 
=- 

I 
eNf(e - e,)@g(e)de 

fi 8, 
eie, 

=- 
ii I ~~_B~fWei4kz(++e,)~~ 6 

(12) 

where ii is a normalization factor. 
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Using the relations x = Re i and y = Im i the variance in x is given by 

irk(R cos(8,) +I sin(0,)) f&(R cos&) +Z sin(%))’ 

2 

k=l k=l - 

N I &I” Nfi12 

J 

= &kcfdR’ cos “( 6,) + z2 sin ‘( 0,) + 2m cos( 0,) sin( 6,)) 

using the shorthand notation 

R=Re( A) 

ZzIm( fl) 

fk%f( es - ek> 

Similarly the variation in y is given by 

((Y-j?‘) 

= &k$fkP2 sin ‘( 0,) + Z* cos ‘( 8,) - 2m ms( 0,) sin( 0,)) 

and the variation in xy is given by 

((x-Z)(Y -9)) 

= &ktk((R2 -z2) cos(ek) sin(ek) -Rl(cos ‘tek> -sin 2<ek>)) 

Using Eq. (10) for the variance in Cl we find 

2 
% 

1 

=Nlf;14 
vRe( f2) - ZR Im( f2) + 7f0) (13) 

For a homogeneous distribution the imaginary part Z is zero, in which case Eq. 
(13) reduces to the equation for the homogeneous distribution (see Eq. (11)). 
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