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Abstract

Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We 

compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid 

secretion and cholecystokinin release. Eight healthy male volunteers participated in this study. Gastrin-stimulated gastric acid output was 

9.4 ± 1.1 mmol/30 min during saline perfusion. It was suppressed by medium-chain triglycerides by 43 ± 9% ( P  = 0.04 vs. saline) and 

by long-chain triglycerides by 74 ±  6% ( P  — 0.0003 vs. saline). Thus medium-chain triglycerides inhibited gastrin-stimulated gastric acid 

secretion but less so than long-chain triglycerides. When compared to saline perfusion (73 ± 6 pM X 30 min) integrated plasma 

cholecystokinin concentrations were significantly elevated by long-chain triglycerides (96 ±5 pM X 30 min, P < 0,004) but not by 

medium-chain triglycerides perfusion (65 ±  7 pM X 30 min). We also investigated the role of cholecystokinin infusion on gastrin 

stimulated gastric acid secretion. Higher concentrations (191.4 ± 4,5 pM X 30 min) of CCK than released in the long-chain triglycerides 

perfusion experiment, did not suppress gastric acid secretion. Thus, circulating cholecystokinin appears not responsible for the inhibition 

of gastrin-stimulated gastric acid secretion by dietary fat.

Keywords: Gastric acid secretion; Cholecystokinin; Long-chain triglyceride; Medium-chain triglyceride; Pancreatic polypeptide

1. Introduction

The regulation of gastric acid secretion is important, 

since gastric acid is involved in the pathogenesis of fre­

quently occurring diseases, like reflux oesophagitis and 

peptic ulcers. The presence of nutrients in the small intes­

tine inhibits gastric acid secretion in many species, includ­

ing humans [1-4], The term ‘enterogastrone* has been 

introduced [5] to describe the undefined intestinal factors) 

responsible for this effect. In humans cholecystokinin 

(CCK) appears to be involved [6,7], but other enterohor- 

mones such as secretin [8], somatostatin [9], pancreatic 

polypeptide, peptide YY [10], gastric inhibitory polypep­

tide [11] and neurotensin [12] have also been put forward. 

We have earlier demonstrated that long-chain triglycerides 

but not medium-chain triglycerides (MCT) are potent stim­

uli for the release of CCK and for gallbladder contraction

in humans [13]. We question now whether long-chain and 

medium-chain triglycerides also differ in their effects on 

gastrin stimulated gastric acid secretion and whether CCK, 

infused to plasma concentrations somewhat higher than 

found during perfusion of the duodenum with long-chain 

triglycerides, was able to inhibit gastrin-stimulated gastric 

acid secretion.

2. Materials and methods

* Corresponding author. Tel.: (31-24) 361-4760; Fax: (31-24) 354-0103.

2,1. Subjects

Eight healthy male volunteers (20-25 years) partici­

pated in the studies. Body mass indexes ranged from 22 to 

29 kg/m2. None of the subjects had a history of gastro-in­

testinal diseases or surgery and none was taking any 

medication. One volunteer smoked cigarettes. The study 

protocol was approved by the Medical Ethical Committee 

of the University Hospital Nijmegen, and written informed 

consent was obtained from each volunteer.

0167-01 l5/96/$I5.00 Copyright © 1996 Elsevier Science B.V. All rights reserved. 
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2.2. Materials

Synthetic non-sulphated gastrin-17 for intravenous infu­

sion was purchased from Cambridge Research Biochemi­

cals (UK). It was dissolved under aseptic conditions in 

saline containing 2% human serum albumin and stored at 

— 20°C. Highly purified porcine cholecystokinin-33 for 

intravenous infusion was purchased from Ferring (Malmo, 

Sweden). Synthetic human CCK33 for radioimmunoassay 

was purchased from Peninsula Laboratories (St. Helens, 

UK); radioiodinated porcine PP ( 125I-PPP) from Novo 

Nordisk AS (Bagsvaerd, Denmark). MCT (Ceres-MCT-di- 

etary oil) containing 56% octanoic acid (C8) and 43% 

decanoic acid (C 10), was from Bakker (Etten-Leur, The 

Netherlands). LCT (corn oil), containing 10% palmitic 

acid (C 16:0), 27% oleic acid (C l8:1) and 57% linoleic acid 

(C]8:2) was from Genfarma (Maarsen, The Netherlands).

23. Experimental design

G a s t r i n

*  i; *  *  *  a  *  A  ;V  A* 'k *  * ♦1»

A A A A A A A A A A A A A
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Fig. 1. Design for the three experiments performed in random order in 

eight subjects and for the fourth experiment in six subjects. In all 

experiments the stomach was continuously perfused with a saline solution 

containing 3 mg/1 phenol red at a rate of 8 ml/min. Each experiment 

consisted of the following periods: (a) a basal period of 60 min; (b) an 

intravenous infusion period of gastrin at a dose of 10 pmol/kg per h for 

60 min; and (c) an intraduodenal perlusion/infusion period of equimolar 

amounts (40 mmol/h) of long-ehain triglycerides, medium-chain triglyc­

erides, or saline (60 ml) or intravenous cholecystokinin (1.1 ±0.2 

pmol/kg per h) for 90 min. Blood sampling lor the measurement of 

plasma gastrin and cholecystokinin is indicated by triangles. Gastric juice 

was collected continuously and sampled at 15-min intervals (*).

MCT, LCT or saline was perfused intraduodenally in 

random order on different days separated by at least 1 

week. In a fourth experiment, six of the 8 volunteers were 

also given intravenous CCK. After an overnight fast, the 

volunteers presented at the gastrointestinal research labo­

ratory at 7:30 a.m. A single-lumen polyvinyl perfusion 

catheter was placed into the proximal duodenum under 

fluoroscopic control (in the first three experiments) and a 

polyvinyl gastric drainage tube into the stomach together 

with a small-bore polyethylene perfusion catheter inserted 

into one of the three side holes of the gastric drainage tube 

(in all four experiments). The position of this tube was 

checked by the water recovery method [14]. Subsequently, 

the small-bore gastric polyethylene perfusion tube was 

pulled back about 10 cm, to release it from the drainage 

tube. The stomach was emptied and subsequently perfused

1). During the final 1.5 h of the experiments either saline 

(60 ml), or equimolar amounts (60 mmol/60 ml) of MCT 

or LCT were perfused intraduodenally at a rate of 40 

ml/h. In the fourth experiment cholecystokinin was in­

fused intravenously during the final 1.5 h of the experi­

ment in a dose of LI ± 0.2 pmol/kg per h as measured 

from the tip of the infusion line. No intraduodenal tube 

was inserted in this experiment. Immediately after the 

experiments, blood samples were centrifuged for 15 min at 

4000 rpm and plasma was stored at ~20°C. The volume 

and pH of each 15-min gastric juice sample was recorded, 

and the H+ concentration was determined by titration to 

pH 7.0 with 0.1 M NaOH. Subsequently, gastric samples 

were filtrated and alkalized with 2.5 M NaOH and the

continuously through the small bore polyethylene perfu- concentration of phenol red was measured speclrophoto-

sion tube with a saline solution containing 3 mg/1 of metrically at 560 nm Recovery of gastric juice was calcu-

phenol red at a rate of 120 ml/15 min. Gastric contents lated by the equation: (VA X ABSa ) / ( V v X ABS,,\ in
ft a  ft «  - k « m *

were aspirated continuously during the experiments using 

a suction pump that provided intermittent negative pres­

sure. The gastric aspirates were collected in 15 min por­

tions and kept on ice. Indwelling intravenous catheters

which VA represents the aspirated volume, ABSa ihe phe­

nol red absorption of the aspirated volume, l'(> the per­

fused volume and ABS,, the phenol red absorption of the 

perfused volume, each per 15-min period. The amount of

were placed into the left and right forearm. The catheters acid secreted (m mol/15 min) was calculated as follows: 

were kept patent by a heparin-saline solution. One catheter (acid concentration measured) X  /recovery, 

was used for the collection of blood samples and the other Gastrin, CCK and PP concentrations in" plasma were

for the infusion of non-sulphated gastrin-17 at a dose of 10 measured by sensitive and specific radioimmunoassays as 

pmol/kg per h. This dose produces plasma gastrin concen- previously described [16-19]. 

trations similar to those found after a meal [15]. Blood 

samples were taken every 30 min during the 1 h basal 

period and every 15 min during the subsequent gastrin 

infusion period. Blood samples were collected into ice- 

chilled 10 ml glass tubes containing 15 mg EDTA.

Four 15-min gastric samples were collected under un-

2.4. Data analysis

Results are expressed as mean ± SFM unless stated

otherwise.

Basal gastric acid output is defined as the sum of the 
stimulated conditions. Subsequently, the intravenous gas- last two 15-min portions obtained under unstinuilated con-

trin-17 infusion was started and continued for 2.5 h (Fig. ditions. Gaslrin-sti mu lated gastric acid output is defined as
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the sum of the last two 15-min portions obtained during 

the first hour of gastrin-17 infusion. The percentage of 

inhibition by saline, MCT, LCT or CCK on gastric acid 

secretion was calculated as follows:

(¿4 5  +  t 6Q )  —  (  t f t i ?15o)
X 100%

■ f io

in which t45 + r60 are the amounts of gastric acid produced 

during the final 30 min before fat perfusion and f135 + tl50 

are those produced during the final 30 min of the fat 

perfusion period (Fig. 1). Integrated plasma CCK and PP 

concentrations for the last 30 min of each experimental 

period are calculated by using the trapezoidal rule as area 

under the serum concentration vs. time curves.

Statistical analysis was performed by two-way ANOVA 

and the Student’s r-test for paired results. All P-values are

3. Results

3.1. Plasma gastrin concentrations

GASTRIC ACID  SECRETION
after intraduodenal fat or saline
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Infusion of gastrin increased plasma gastrin concentra­

tions from basal concentrations of 26 ± 4 to 50 ± 6 pM in 

the saline experiment, from 20 ± 3 to 46 ± 4 pM in the 

MCT experiment, from 25 ± 4 to 55 ± 5 pM in the LCT 

and from 20 + 3 to 46 ± 4 pM in the CCK-infusion experi­

ment (means ± SEM). Duodenal perfusion of saline, MCT 

or LCT or intravenous infusion of CCK did not signifi­

cantly affect these plasma gastrin concentrations.

32. Plasma cholecystokinin and pancreatic polypeptide

*30 0 30 60 90 120 150

Time (min)

saline MCT -A — LCT

Fig, 2. Mean gastric acid output ±SEM in eight volunteers under basal 

conditions and during intravenous infusion of gastrin (10 pmol/kg per h), 
subsequently combined with intraduodenal administered long-chain 

triglycerides (40 mmol/h; a ), medium-chain triglycerides (40 mmol/h; 

□ ) or saline (60 ml; • ) .

significant increase in plasma pancreatic polypeptide con 

centrations (Table 3).

concentrations 3.3, Gastric acid secretion

As shown in Tables 1 and 2, saline perfusion had no 

effect on plasma CCK. Perfusion of MCT had no effect 

either. Perfusion of LCT stimulated integrated plasma 

CCK concentrations by 25% (P = 0.004) vs. saline (Table 

1). In experiment four, integrated plasma CCK concentra­

tions were more than doubled during cholecystokinin infu­

sion (Table 2). Cholecystokinin infusion resulted in a

Infusion of gastrin markedly stimulated basal gastric 

acid output (Tables 4 and 5), Intraduodenal perfusion of 

MCT suppressed gastrin stimulated gastric acid secretion 

by 43% compared to saline; LCT resulted in a more 

marked suppression of 74% (Table 4 and Fig. 2). In the 

CCK-infusion experiment, absolute levels of acid output 

were somewhat lower before CCK infusion than before

Table 1

Effect of LCT and MCT on plasma cholecystokinin concentrations 

Treatment Plasma cholecystokinin

Basal Gastrin Gastrin + Fat or Saline Change

(pM X 30 min) (pM X 30 min) (pM X  30 min) (pM X 30 min)

Saline 84.2 ±5.5 71.8 ±6.1 73.1 ±6.1 1.3 ±5.3

MCT 80.4 ±4.1 70.9 ±6.1 64.6 ± 6.8 -4.8 ±4.2

LCT 92.4 ±4.4 76.7 ± 4.8 95.7 ±5.2 19.0 ±4.1 a*h

Mean integrated plasma cholecystokinin concentrations ± SEM before intravenous gastrin infusion (basal), during intravenous gastrin infusion, and during 

intraduodenal perfusion of long-chain triglycerides (LCT), medium-chain triglycerides (MCT) or saline in combination with intravenous gastrin infusion in 

eight subjects. Changes are the effect of fat perfusion during gastrin infusion relative to gastrin infusion alone.

n Compared to saline, P =  0.0039. 

b Compared to MCT, P = 0.0042.
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Table 2

Cholecystokinin concentrations after intravenous cholecystokinin infusion

Treatment Plasma cholecystokinin

Basal

(pM X 30 min)

Gastrin

(pM X 30 min)

Gastrin + CCK or Saline 

(pM X 30 min)

Change

(pM x 30 min)

Saline

CCK

86.0 ±7.3 

81.3 ±6.2

74.9 ±7.7 

82.6 ± 12.8

84.8 ± 8.1 

191.4 ±4.5

l>.9 ± 3.f t

10H.H ± 10.5

integrated plasma cholecystokinin concentrations ± SEM before iniravenous gastrin ¡illusion (teal), during intravenous gastrin infusion, and during 

:nous infusion of saline or cholecystokinin in six subjects. Iniravenous gastrin infusion was continued during saline nr CCK infusion. Changes are
Mean

intravenous infusion of saline or cholecystokinin in six subject, 

the effect of CCK infusion combined with gastrin inlusion relative to gastrin infusion alone,

saline (Fig. 3; ¿=30  to / = 60 min). However, gastric acid 

secretion was not inhibited by CCK relative to control 

(Table 5 and Fig. 3; 120-150 min vs. 30-60 min).

4. Discussion

Our first objective was to determine whether long-chain 

and medium-chain triglycerides have different effects on 

gastrin-stimulated gastric acid secretion, since we have 

earlier demonstrated that long-chain triglycerides but not 

medium-chain triglycerides are potent stimuli for the re­

lease of CCK and for gallbladder contraction in humans 

[13]. We have found that intraduodenal perfusion of fat 

mainly composed of long-chain triglycerides as well as fat 

composed of medium-chain triglycerides suppressed gas­

trin-stimulated gastric acid secretion in humans, MCT 

being less potent than LCT,

Our finding that fat composed of medium-chain triglyc­

erides did not evoke an increase in the release of cholecys­

tokinin, in contrast to fat mainly composed of long-chain 

triglycerides agrees with previous studies [13,20,21],

Our second objective was to examine the role of CCK 

in the inhibition of gastrin-stimulated gastric acid secre- amounts of fatty acids released by hydrolysis [27-29],

The situation in humans is in contrast to what has been 

found in rats. In rats medium-chain triglycerides evoke a 

greater CCK-release than triglycerides with longer chain 

lengths as measured by the same radioimmunoassay [22]. 

The reason for this discrepancy is not obvious, but it 

suggests important species differences with respect to 

plasma CCK release [23],

In previous studies it was found that isocalorie amounts 

of fat, protein, and carbohydrates similarly inhibit gastric 

emptying [24,25], The different inhibitory effect of 

medium-chain triglycerides and long-chain triglycerides on 

gastric acid secretion might also be explained by differ­

ences in caloric load between the long-chain and medium- 

chain triglycerides, vSo far, the effect of caloric load of 

different nutrients on gastric acid secretion has only been 

studied in calves [26] where it was found that energy 

contents did not affect gastric acid secretion. Whether the 

effect of nutrients on iiastric acid secretion in humans is

dependent on the molar or caloric load of fats remains to 

be established. In the present study, we have chosen to 

compare medium-chain and long-chain triglycerides on a 

molar base, since previous studies suggest that the CCK 

stimulating capacity of nutrients is related to the molar

tion. We showed in the present study that circulating CCK 

plays no role in MCT-induced inhibition of gastrin-stimu­

lated gastric acid secretion and also that infusion of CCK 

did not inhibit gastrin-stimulated gastric acid secretion.

Our results suggest that the chain-length of the con-

We have tested the enterogastronc effect of fat on 

gastrin-stimulated rather than on meal-stimulated gastric 

acid secretion to avoid difficulties encountered in the 

sampling of gastric juice after a meal, For the same reason 

we have administered fat intraduodenally. Despite the use
stituent fatty acids is not only important for the release of of gastrin instead of food and the duodenal instead of oral
CCK, but also for the enterogastrone effect of fat. administration of fat, we believe that our findings are of

Table 3

Pancreatic polypeptide concentrations after intravenous cholecystokinin infusion

Treatment Plasma pancreatic polypeptide

Basal

(pM X 30 min)

Gastrin 

(pM X 30 min)

Saline

CCK

465 ±21 

455 ± 26
434 ± 24 

444 ±61

Gastrin 4 CCK or Saline 

(pM x 30 min)
nnituv
(pM * 30 min)

470 ± 47 

75*) ± 15l)

Mean integrated plasma pancreatic polypeptide concentrations ± SEM before intravenous gastrin infusion ihasall. during in.rau-n.Hi> g;

during intravenous infusion ot saline or cholecystokinin in six subjects. Iniravenous gastrin infusion was comimu-d durum silmc or CCK 

are the effect of CCK infusion combined with gastrin infusion relative to gastrin infusion alone
* P = 0.048.

iMrin infusion, and 

inlusion. Changes
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Effect of LCT and MCT on gastrin-stimulated gastric acid secretion
. ♦ t j

Table 4

Treatment Gastric acid output 

Basal

(mmol/30 min)
Gastrin

(mmol/30 min)

Saline
MCT
LCT

2.1 ± 1.24 

1.7+ 1.1 

2.6+ 1.5

10.8 ± 3.7 

12.0 + 2.9 

10.6 + 4.8

Gastrin + Fat or Saline 

(mmol/30 min)

9.4 ±3.1

6.5 + 2.6 

2.3 ±0.9

Change 

(%)

9.4 + 6.5 

-43.0 ±9.1 a

-74.3 ±6.2 b'c

Mean gastric acid output ± SEM before gastrin infusion (basal), during gastrin 17-1 infusion and during (A) intraduodenal perfusion of long-chain 

triglycerides (LCT), mcdium-chain triglycerides (MCT) or saline in eight subjects. Intravenous gastrin infusion was continued during the intraduodenal 

perfusion of fat or saline. Changes are the effect of fat perfusion during gastrin infusion relative to gastrin infusion alone. 
a Compared to saline, P = 0.0426.

b Compared to saline, P — 0.0003. 

c Compared to MCT, P = 0.0499.

physiological relevance. Firstly, infusion of gastrin re­

sulted in plasma gastrin concentrations in the same range 

as observed after a meal [15]. Secondly, gastrins are the 

major factor responsible for postprandial gastric acid secre­

tion [30]. Thirdly, gastrin-17 is the major molecular form 

of gastrins released in response to a meal [31], whereas 

non-sulphated gastrin-17 is equipotent to sulphated gastrin- 

17 in stimulating gastric acid secretion [32], and finally, 

we have perfused fat into the duodenum at a rate that was 

comparable to the gastric emptying rate of fat after a meal

[33].

The mechanisms through which nutrients inhibit gastric 

acid secretion when they enter the small intestine, the so 

called enterogastrone effect, are not clear. Several possibil­

ities have been suggested [7,9-12,34]. Of old, one of the 

most important enterogastrone candidates is CCK [7], In 

previous studies, infusion of high, probably supraphysio- 

logical, doses of CCK inhibited gastric acid secretion [35], 

Recent studies with CCK receptor antagonists also support 

an inhibitory effect of endogenous CCK on gastric acid 

secretion, since specific type A CCK-receptor antagonists 

augmented basal as well as stimulated gastric acid output 

[36-41]. However, in the present study infusion of CCK 

did not inhibit gastric acid secretion, and medium chain 

triglycerides were able to inhibit gastric acid secretion 

without concomitant release of CCK. Therefore, MCT-in- 

duced inhibition of gastric acid secretion acts via another 

mechanism. It might be that CCK has an additive effect in 

case of LCT-induced inhibition of gastric acid secretion. 

We have investigated this possibility in two subjects by

Table 5

Effect of CCK infusion on gastrin-stimulated gastric acid secretion

Treatment Gastric acid output 

Basal

(mmol/30 min)

Gastrin

(mmol/30 min)

Saline

CCK

2.5 + 0.9 

2.8 ± 0.9

10.8 ±0.6 
8.6 ± 1.5

combining intraduodenal perfusion of MCT with intra­

venous infusion of CCK. However, the inhibition of gas­

trin-stimulated gastric acid secretion in these 2 subjects 

was comparable to the effect found during intraduodenal 

perfusion of MCT without CCK infusion (data not shown). 

Therefore the present findings suggest that circulating 

CCK is not responsible for the enterogastrone effect of 

MCT, since MCT did not stimulate CCK release into the 

circulation, Furthermore, it is not likely that the more 

potent inhibitory effect of LCT on gastrin stimulated gas­

tric acid secretion when compared to MCT is a result of 

the ability of LCT to release CCK.

Absence of suppression of gastric acid secretion by 

CCK-33 infusion in the present study agrees with the 

observation that intravenous infusion of CCK-8, inducing 

plasma CCK increments within the physiological range, 

did not significantly alter gastrin stimulated gastric acid 

secretion [42]. Absence of acid suppression by CCK in our 

study was not related to lack of biological activity of CCK, 

since CCK infusion markedly stimulated the release of 

pancreatic polypeptide [43-45].

Although our data are in contrast with a role of CCK as 

an enterogastrone, it can not be excluded that CCK acts 

locally as a neurotransmitter or neuromodulator to inhibit 

gastric acid secretion, since specific cholecystokinin recep­

tor antagonists augment gastric acid secretion in previous 

experiments [36-41].

Our finding that circulating CCK does not inhibit gas­

trin-stimulated gastric acid secretion, does not exclude that 

other peptides might be involved in the inhibition of

Gastrin + CCK or saline 

(mmol/30 min)

Change
a

'0

8.9 ± 0.5 

6.9+ 1.1

-16.7 ±4.3 

- 17.9 ± 6.7

Mean gastric acid output ± SEM before gastrin infusion (basal), during gastrin 17-1 infusion and during intravenous infusion of cholecystokinin (CCK) or 

saline in six subjects. Intravenous gastrin infusion was continued during the intravenous infusion of cholecystokinin or saline. Changes are the effect of

CCK infusion combined with gastrin infusion relative to gastrin infusion alone.
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Effect of LCT and MCT on gastrin-stimulated gastric acid secretion
^ _________  ____

Treatment Gastric acid output

Table 4

Basal Gastrin

(mmol/30 min) (mmol/30 min) (mmol/30 rain)
Gastrin + Fat or Saline Change

(%)
Saline 2.1 + 1.24 10.8 + 3.7 9.4 ±31

MCT 1.7+1.1 12.0 ±2.9 6̂ 5 + 2*6
9,4 + 6.5 

-43.0 ± 9.1a
LCT ________________2.6 ^  ^ ____________________10.6 + 4.8 2.3 ± 0.9 —74.3 ± 6.2 b,c

Mean gastric acid output ± SEM before gastrin infusion (basal), during gastrin 17-1 infusion and during (A) intraduodenal perfusion of long-chain 

triglycerides (LCT), medium-cham triglycerides (MCT) or saline in eight subjects. Intravenous gastrin infusion was continued during the intraduodenal 

perfusion of fat or saline. Changes are the effect of fat perfusion during gastrin infusion relative to gastrin infusion alone. 
a Compared to saline, P - 0.0426.

b Compared to saline, P = 0.0003, 

c Compared to MCT, P = 0.0499.

physiological relevance. Firstly, infusion of gastrin re­

sulted in plasma gastrin concentrations in the same range 

as observed after a meal [15]. Secondly, gastrins are the 

major factor responsible for postprandial gastric acid secre­

tion [30]. Thirdly, gastrin-17 is the major molecular form 

of gastrins released in response to a meal [31], whereas 

non-sulphated gastrin-17 is equipotent to sulphated gastrin-

17 in stimulating gastric acid secretion [32], and finally, 

we have perfused fat into the duodenum at a rate that was 

comparable to the gastric emptying rate of fat after a meal 

[33].

The mechanisms through which nutrients inhibit gastric 

acid secretion when they enter the small intestine, the so 

called enterogastrone effect, are not clear. Several possibil­

ities have been suggested [7,9-12,34], Of old, one of the 

most important enterogastrone candidates is CCK [7], In 

previous studies, infusion of high, probably supraphysio- 

logical, doses of CCK inhibited gastric acid secretion [35]. 

Recent studies with CCK receptor antagonists also support 

an inhibitory effect of endogenous CCK on gastric acid 

secretion, since specific type A CCK-receptor antagonists 

augmented basal as well as stimulated gastric acid output 

[36-41]. However, in the present study infusion of CCK 

did not inhibit gastric acid secretion, and medium chain 

triglycerides were able to inhibit gastric acid secretion 

without concomitant release of CCK, Therefore, MCT-in- 

duced inhibition of gastric acid secretion acts via another 

mechanism. It might be that CCK has an additive effect in 

case of LCT-induced inhibition of gastric acid secretion. 

We have investigated this possibility in two subjects by

combining intraduodenal perfusion of MCT with intra­

venous infusion of CCK. However, the inhibition of gas­

trin-stimulated gastric acid secretion in these 2 subjects 

was comparable to the effect found during intraduodenal 

perfusion of MCT without CCK infusion (data not shown). 

Therefore the present findings suggest that circulating 

CCK is not responsible for the enterogastrone effect of 

MCT, since MCT did not stimulate CCK release into the 

circulation. Furthermore, it is not likely that the more 

potent inhibitory effect of LCT on gastrin stimulated gas­

tric acid secretion when compared to MCT is a result of 

the ability of LCT to release CCK.

Absence of suppression of gastric acid secretion by 

CCK-33 infusion in the present study agrees with the 

observation that intravenous infusion of CCK-8, inducing 

plasma CCK increments within the physiological range, 

did not significantly alter gastrin stimulated gastric acid 

secretion [42]. Absence of acid suppression by CCK in our 

study was not related to lack of biological activity of CCK, 

since CCK infusion markedly stimulated the release of 

pancreatic polypeptide [43-45].

Although our data are in contrast with a role of CCK as 

an enterogastrone, it can not be excluded that CCK acts 

locally as a neurotransmitter or neuromodulator to inhibit 

gastric acid secretion, since specific cholecystokinin recep­

tor antagonists augment gastric acid secretion in previous 

experiments [36-41].

Our finding that circulating CCK does not inhibit gas­

trin-stimulated gastric acid secretion, does not exclude that 

other peptides might be involved in the inhibition of

Table 5

Effect of CCK infusion on gastrin-stimulated gastric acid secretion

Treatment Gastric acid output 

Basal

(mmol/30 min)

Saline

CCK
2.5 + 0.9 

2.8 ± 0.9

Gastrin

(mmol/30 min)

10.8 ± 0.6 
8.6 + 1.5

Gastrin + CCK or saline 

(mmol/30 min)

8.9 ± 0.5 

6.9+ 1.1

Change 

(%)

— 16.7 ± 4.3 

-17.9+6.7

Mean gastric acid output ± SEM before gastrin infusion (basal), during gastrin 17-1 infusion and during intravenous infusion of cholecystokinin (CCK) or 

saline in six subjects. Intravenous gastrin infusion was continued during the intravenous infusion of cholecystokinin or saline. Changes are the effect of

CCK infusion combined with gastrin infusion relative to gastrin intusion alone.
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Fig. 3. Mean gastric acid output±SEM in six volunteers under basal 

conditions and during intravenous infusion of gastrin (10 pmol/kg per h), 

subsequently combined with intraduodenal administered saline (60 ml; 

) or intravenously administered cholecystokinin (1.1 ±0,2 pmol/kg per

h; O).

gastrin-stimulated gastric acid secretion by long-chain and 

medium-chain triglycerides. Possible candidates include 

neurotensin, peptide YY, somatostatin, secretin, and gas­

tric inhibitory peptide. Neurotensin is a hormone that 

might inhibit gastric acid secretion. It is released in re­

sponse to fat in the intestine and requires vagal integrity 

for full activity [46]. However, it has been shown that the 

concentrations of neurotensin released by fat are insuffi­

cient to account for the inhibition of gastric acid secretion 

caused by fat ingestion [12].

Somatostatin is established as an important inhibitor of 

several gastro-intestinal functions, including gastric acid 

secretion [47-53]. It is well known that fat is a stimulant 

for somatostatin release [54] but whether medium-chain 

triglycerides are also able to stimulate the release of 

somatostatin is presently unknown. Secretin has also been 

shown to be an inhibitor of gastric acid secretion in dogs 

[8,55], as well as in humans [56] although it seems less 

potent in humans [57].

The only hormone besides CCK and PP which is known 

to be released differently by long-chain and medium-chain 

triglycerides is gastric inhibitory polypeptide. Gastric in­

hibitory peptide is released more potently by long-chain 

than by medium-chain triglycerides in dogs [58] whereas 

in humans it was found to be released by long-chain 

triglycerides but not by medium-chain triglycerides [59]. In 

dogs gastric inhibitory peptide seems to be an important

enterogastrone [60], but in humans its inhibitory potency is 

relatively weak [60,61] and it cannot fully account for the 

inhibition of gastric acid secretion by fat. The best candi­

date to explain the enterogastrone effect of fat is PYY. 

Circulating concentrations of peptide YY released after fat 

ingestion have been shown to be nearly sufficient to 

account for acid inhibition in dog [62] and man [63], In 

addition, it has been shown in rats that PYY can inhibit 

pentagaslrin stimulated gastric acid secretion [64]. But, 

whether MCT has different effects on PYY release than 

LCT remains to be established. However, it is more likely 

to suggest that no single peptide accounts for the full 

enterogastrone effects of fat in the intestine but that combi­

nations of peptides exert a cumulative inhibitory effect as 

shown in humans for secretin and PYY [65],

In conclusion, the present study demonstrated that the 

enterogastrone effect of fat is dependent on the chain-length 

of fatty acids, and that the enterogastrone effect of MCT is 

not explained by the release of CCK into the circulation. 

Furthermore, exogenous CCK in physiological concentra­

tions did not inhibit gastrin stimulated gastric acid secre­

tion. Our findings thus cast doubt on the enterogastrone 

role of CCK, especially regarding dietary fat.
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