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Dear Editor, 69 

The bacterium Treponema pallidum (TP) causes human syphilis (subsp. pallidum; TPA), bejel 70 

(subsp. endemicum; TEN) and yaws (subsp. pertenue; TPE)1. While syphilis reached a world-wide 71 

distribution2, bejel and yaws are endemic diseases. Bejel is found in dry areas in Sahelian Africa and 72 

Saudi Arabia, whereas yaws is present in the humid tropics1. Yaws is currently reported endemic in 14 73 

countries and an additional 84 countries have a known history of yaws but lack recent epidemiological 74 

data3,4. The disease was subject to global eradication efforts in the mid-20th century but reemerged in 75 

West Africa, Southern Asia, and the Pacific region5. New large-scale treatment options triggered the 76 

ongoing second eradication campaign, which aims to eradicate yaws globally by 20205. 77 

TPE is usually considered as a strictly human pathogen. This perception may however partly 78 

result from the lack of detailed data on nonhuman primate (NHP)-infecting treponemes. Indeed, a 79 

number of African NHPs show skin ulcerations suggestive of treponemal infection and antibodies 80 

against TP have been detected in wild NHP populations6,7. While genetic studies confirmed monkeys 81 

and great apes are infected with TP strains8-10, most of these analyses only determined short DNA 82 

sequences. The small number of polymorphic sites examined largely precludes assignment of these 83 

strains to a particular TP subspecies9, especially considering that sporadic recombination events 84 

between subspecies have been reported11. The only simian strain whose whole genome was sequenced 85 

- Fribourg-Blanc, isolated from a Guinea baboon (Papio papio) in 19667 - unambiguously clustered 86 

with human-infecting TPE strains12. 87 

A fundamental question with regard to yaws evolution and possibly yaws eradication is whether 88 

humans and NHPs are commonly infected with the same pathogen, TPE, and whether transmission 89 

between NHPs and humans occurs. To determine which pathogen causes treponematoses in NHPs 90 

across sub-Saharan Africa, we collected samples from symptomatic wild individuals belonging to three 91 

NHP species (Cercocebus atys, Chlorocebus sabaeus, and Papio anubis) from four independent 92 

populations in West and East Africa (Fig 1, Supplementary Table S1, Supplementary Materials). 93 

Samples were collected at Taï National Park (TaïNP; Côte d’Ivoire), Bijilo Forest Park (BFP, the 94 

Gambia), Niokolo-Koba National Park (NKNP, Senegal), and Lake Manyara National Park (LMNP, 95 
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Tanzania). Monkeys presented yaws-like orofacial and limb lesions (TaïNP, BFP) or ulcerative 96 

anogenital skin lesions (BFP, NKNP, LMNP)9. 97 

Using PCR, we showed the presence of TP in skin lesion biopsies or swabs from NHPs at 98 

TaïNP (C. atys), BFP, and NKNP (C. sabaeus). TP infection in olive baboons (P. anubis) at LMNP had 99 

previously been confirmed6. Two samples per NHP population were selected for whole genome 100 

sequencing based on high TP copy number or the ability to amplify long PCR fragments 101 

(Supplementary Table S2). To overcome the background of host genomic DNA, we used targeted 102 

DNA capture coupled with NGS to reconstruct whole TP genomes2,8. Following quality filtering, 103 

removal of PCR duplicates, merging of different sequencing runs from the same sample, and mapping 104 

against the TPE strain Fribourg-Blanc reference genome, we obtained a range of 22,886-470,303 DNA 105 

sequencing reads per sample. All samples showed at least 80% coverage of the reference genome with 106 

depth coverage of three or higher; average genome coverage depth was between 6.1 and 121.0-fold 107 

(Supplementary Table S3). 108 

We generated maximum likelihood, Bayesian and maximum parsimony trees based on the 109 

genomes reconstructed in our study and all available reference genomes (total sequence length: 110 

1,133,379 nucleotides). In all trees, TPE and TPA strains formed reciprocally monophyletic groups, 111 

with a mean TPE/TPA strain divergence of 0.099%. NHP-infecting TP strains all clustered with human-112 

infecting TPE strains (Fig 1; Supplementary Figure S1). The TPE clade exhibited a star-like branching 113 

pattern whereby all basal branches were very short and received low statistical support. Importantly, 114 

this pattern does not support a clear reciprocal monophyly of the TPE strains infecting humans and 115 

NHPs. In line with this, the minimum divergence between strains infecting humans and NHPs was 116 

lower than the maximum divergence amongst human and NHP-infecting strains (0.011% versus 117 

0.015% and 0.024%). Human-infecting TPE strains Samoa D, CDC-2, CDC-2575, Ghana-051, and 118 

Gauthier, which span a broad geographic and temporal range (at least four decades), were less divergent 119 

from each other than the two strains infecting sooty mangabeys from a single social group at TaïNP 120 

(0.011% versus 0.017% sequence divergence, respectively). While intra-group strain divergence was 121 

low for the two African green monkey populations and the olive baboons (0.0003% and 0.0017%, 122 

respectively), intra-species strain divergence for African green monkeys was relatively high when 123 
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compared to the divergence observed between the two most divergent human strains (0.0094% versus 124 

0.015%). 125 

For the sample LMNP-1, we determined the complete genome sequence and structure (average 126 

depth of coverage: 169x; GenBank: CP021113; Supplementary Tables S5-6)12. The LMNP-1 genome 127 

showed the same structure as published complete genomes of human-infecting TPE strains and the 128 

simian strain Fribourg-Blanc. It was more similar to the human-infecting TPE Gauthier strain than the 129 

simian isolate Fribourg-Blanc, showing differences at 266 and 325 chromosomal positions, 130 

respectively. Most differences were single nucleotide substitutions or small indels (Supplementary 131 

Table S7). The LMNP-1 and Gauthier strains exhibited the same number of the 24-bp repeats in the 132 

TP_0470 gene (n=25) and Gauthier had only one 60-bp repeat more than LMNP-1 strain in the arp 133 

gene (LMNP-1 n=9 vs. Gauthier n=10). All 60-bp repeats in the arp gene of LMNP-1 were of Type II 134 

and were identical to other TPE strains13. The tprK gene of LMNP-1 only had three variable regions, 135 

V5-V7, when compared to other TPE strains. In addition to differences in TP_0433, TP_0470, and tprK 136 

genes, relatively large indels were determined in TPEGAU_0136 (33-nt long deletion; specific for 137 

strains Gauthier and Samoa D), in TPFB_0548 (42-nt long deletion; specific for strain Fribourg-Blanc), 138 

in TPEGAU_0858 (79-nt long deletion; specific for strain Gauthier), in the intergenic region (IGR) 139 

between TPEGAU_0628 and TPEGAU_0629 (302-nt long deletion; specific for strain Gauthier), and 140 

in IGR between TPFB_0696 and TPFB_0697 (430-nt long insertion; specific for strain Fribourg-141 

Blanc); the length of other sequence differences ranged between 1-15 nts. RNA operons structure of 142 

the LMNP-1 genome (coordinates 231,180-236,139; 279,584-284,533; according to TPE strain 143 

Gauthier: NC_016843.1) was similar to strains Gauthier, CDC-2, and Fribourg-Blanc, but different to 144 

the strains Samoa D, Samoa F, and CDC-1. The LMNP-1 16S-5S-23S was identical in both operons 145 

and 23S rRNA sequences were identical to other TPE strains except for strain Fribourg-Blanc (having 146 

a single nucleotide difference at position 458). We did not find any mutations associated with macrolide 147 

resistance (e.g. A2058G, A2059G)14. When the two NHP-infecting TPE strains, Fribourg-Blanc and 148 

LMNP-1, were compared to the closest human-pathogenic TPE strains CDC-2 and Gauthier, 149 

respectively, only 7.2% and 9.1% of all coding sequences (77 and 97 coding sequences out of 1065) 150 
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contained amino acid substitutions, suggesting limited functional divergence (Supplementary Tables 151 

S7-9). 152 

Our findings unambiguously indicate that at least three African NHP species (representing four 153 

populations) from West and East Africa currently suffer from treponematosis caused by TPE. Taking 154 

into account the isolation of the Fribourg–Blanc strain from Guinea baboons in 1966 and its recent 155 

sequencing and identification as a member of the TPE clade12, this represents four African NHP species 156 

and five populations whose symptoms can be explained by TPE infections. Coupled with a growing 157 

number of clinical and serological observations6,7,9,10, this suggests infection of NHPs with TPE is 158 

common throughout sub-Saharan Africa. Humans are not the exclusive host for the yaws bacterium and 159 

NHPs are infected with the same bacterial agent. 160 

TPE strains in NHPs exhibit considerable genetic diversity, which at least equals that found 161 

among published human-infecting TPE strains. Importantly, we found no evidence for a clear sub-162 

differentiation of NHP- and human-infecting TPE strains, i.e. these strains did not form well-supported 163 

reciprocally monophyletic groups. Rather, the star-like topology of our phylogenomic tree suggests a 164 

rapid initial radiation of the ancestor of TPE which may have involved transmission across primate 165 

species barriers in a relatively distant past (with respect to the TPE clade depth). These results neither 166 

support, nor allow us to exclude, a possible recent transmission of TPE between NHPs and humans, 167 

especially due to the large geographic and temporal separation between the two groups of samples being 168 

compared. A major hurdle in identifying such potential transmission events is the availability of enough 169 

bacterial genomes. Despite large numbers of human cases, very few genomes have been determined 170 

from human-infecting TPE strains and only from a very limited geographic range. Generating additional 171 

human-infecting TPE genomes represents an important area of research that, coupled with the genomes 172 

of TPE strains infecting NHPs presented here, could now enable the detection of recent zoonotic 173 

transmission events, would any exist. 174 

Since yaws has not been reported for several decades in humans in countries where we find 175 

NHPs to be infected with TPE, we expect that if transmission happens, it is only at very low frequency 176 

(as is the case for many zoonotic diseases). Of course, such low frequency zoonotic transmission does 177 

not explain the reemergence of yaws, which is the consequence of continued human-to-human 178 
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transmission. However, now that eradication of yaws seems within reach15, the finding that TPE strains 179 

circulate in NHPs certainly calls for more research into their diversity and zoonotic potential. 180 
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Figure Legend 208 

Fig 1. Phylogenomic analysis of NHP- and human-infecting Treponema pallidum strains. In this 209 

maximum likelihood tree, nodes that had less than 95% ultrafast bootstrap approximation support are 210 

indicated with grey lines. Tip labels indicate the NHP species sampled, the country of origin, and the 211 

sample ID. The scale is in nucleotide substitution per site. The inset is a map of Africa where sites of 212 

origin of the NHP samples from which a TP genome was determined are indicated with black circles. 213 

A country’s 2013 yaws status based on the World Health Organization’s Global Health Observatory 214 

(http://www.who.int/gho/en/) is indicated by its color: grey indicates no previous history of yaws 215 

infections in humans, yellow indicates a country previously endemic for yaws though the current status 216 

is unknown, and countries in red indicate countries which are currently considered endemic for yaws. 217 

  218 
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Figures 219 

Fig 1 220 

 221 
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