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Introduction: Inertial sensors generate objective and sensitive metrics of movement

disability that may indicate fall risk in many clinical conditions including multiple sclerosis

(MS). The Timed-Up-And-Go (TUG) task is used to assess patient mobility because

it incorporates clinically-relevant submovements during standing. Most sensor-based

TUG research has focused on the placement of sensors at the spine, hip or ankles;

an examination of thigh activity in TUG in multiple sclerosis is wanting.

Methods: We used validated sensors (x-IMU by x-io) to derive transparent metrics

for the sit-to-stand (SI-ST) transition and the stand-to-sit (ST-SI) transition of TUG, and

compared effect sizes for metrics from inertial sensors on the thighs to effect sizes for

metrics from a sensor placed at the L3 level of the lumbar spine. Twenty-three healthy

volunteers were compared to 17 ambulatory persons with MS (PwMS, HAI ≤ 2).

Results: During the SI-ST transition, the metric with the largest effect size comparing

healthy volunteers to PwMS was the Area Under the Curve of the thigh angular velocity

in the pitch direction–representing both thigh and knee extension; the peak of the spine

pitch angular velocity during SI-ST also had a large effect size, as did some temporal

measures of duration of SI-ST, although less so. During the ST-SI transition the metric

with the largest effect size in PwMS was the peak of the spine angular velocity curve in

the roll direction. A regression was performed.

Discussion: We propose for PwMS that the diminished peak angular velocity during

SI-ST directly represents extensor weakness, while the increased roll during ST-SI

represents diminished postural control.
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Conclusions: During the SI-ST transition of TUG, angular velocities can discriminate

between healthy volunteers and ambulatory PwMS better than temporal features.

Sensor placement on the thighs provides additional discrimination compared to sensor

placement at the lumbar spine.

Keywords: wearable, gyroscope, gait, mobility, walking, standing, sitting, accelerometer

INTRODUCTION

Multiple Sclerosis (MS) is a progressive neurological disorder
usually presenting in early adulthood whose manifestations
include an unpredictable spectrum of motor, sensory and
autonomic symptoms, usually accompanied by increasing levels
of ambulatory dysfunction (1, 2). The relapsing-remitting form
of the disease (RRMS) involves attacks of sudden exacerbations
of symptoms lasting days to weeks, caused by autoimmunity,
inflammation and demyelination, followed by abatement of
many (but not all) of the new symptoms during periods of
remission. Although MS is currently without a cure or a known
cause, the last decade has seen a renaissance in disease modifying
treatments and symptomatic therapies (3). Researchers’ goals
are to find new medical and physiotherapy treatments that can
improve function after an attack and prevent new attacks (4),
greatly improving the quality of life of patients. Assessment of
intervention efficacy fundamentally depends on making accurate
measurements of disease progression and disability.

Traditional Measurements of Disability
Progression in MS
Objective and precise measurements of movement disability
(including weakness and attenuation of coordination and
control) are needed to make clear assessments about
interventional efficacy and disease symptom progression
(5). However, the day-to-day variation in MS symptom severity,
combined with the relapsing-remitting course of RRMS,
undermine precise assessment of symptomatic progression
at a given moment in time. Furthermore, the efficacy of
new treatments is sometimes disputed because of issues
associated with the disability outcome measures (6, 7). Current
interventions (including medications and physiotherapy) used
to treat MS symptoms are often modestly effective, and may
exert their clinical effects on only a small subpopulation of those
treated. For example, fampridine (4-AP) was shown to elicit a
25% improvement in ambulation of MS patients (compared to

Abbreviations: Ang. Vel., angular velocity; AUC, area under the curve; BDI,

beck depression scale; csv, comma separated variables format of data file;

EDSS, expanded disability and status scale; EDSS-S, self-assessed version of

the EDSS; FSS; fatigue severity scale; HAI, Hauser ambulatory index; ICF,

International Classification of Functioning; IMU, inertial motion unit; IPAQ,

International Physical Activity Questionnaire; L3, Lumbar vertebra 3; MEMS,

micro-electromechanical sensor; MFIS, modified fatigue impact scale; MS,

multiple sclerosis; MSFC, multiple sclerosis functional composite; MSWS-

12, multiple sclerosis walking scale, 12 item version; PwMS, persons with

multiple sclerosis; RRMS, relapsing remitting multiple sclerosis; SI-ST, sit-to-

stand transition during TUG; ST-SI, stand-to-sit transition during TUG; T25FW,

timed-25-foot walk; TUG, timed up and go test.

6% in placebo-treated patients), but only in 35% of such patients
(8).

There is a correlation between clinical progression, as implied
by MRI measures of brain atrophy and gross tissue loss,
and symptomatic progression, although more fine-grained MRI
measures of disease activity such as T2 lesion load do not always
correlate directly with overall symptomatic assessment such as
with the Multiple Sclerosis Functional Composite Score (MSFC)
(9) or with validated tools based on clinical judgment such as the
EDSS (Expanded Disability Status Scale) (10). In summary, both
research and treatment into MS are characterized by uncertainty
because it can be difficult to quantify modest improvements due
to treatments (11, 12).

Inertial Sensors and Other Metrics of
Mobility Dysfunction
In general, detailed measurements of gait function and mobility
require a specialist gait laboratory setting (e.g., for opto-
electronic motion capture) and are too costly, isolated and time-
consuming for routine clinical use. Inertial Motion Units (IMUs)
are a cost-effective, wearable subclass of wireless sensors based
on Micro-Electromechanical Sensor (MEMS) technology, which
often include a collection of accelerometers, gyroscopes and
magnetometers, allowing the derivation of motion of various
body segments; the choice of which body segment (e.g., ankle,
hip, thigh, or a combination) will provide the minimal sensitivity
needed to interpret the task remains controversial (13). Recent
research has highlighted the opportunities for use of inertial
sensors in MS (14), although most of this work has focused
on home-based measures of total physical activity (15), with
a comparatively smaller number of attempts to characterize
walking in MS (16, 17). By contrast, in other causes of movement
disorder [e.g., Parkinson’s disease (18), stroke (19), total knee
arthroplasty (20), and elderly patients at risk of falling (21)],
there is a broader range of data considering the strengths and
weaknesses of the sensor metrics. Recently, at the level of the
thigh, hip range of motion (ROM) has been found to be a useful
metric to assess disability in MS during flat walking (17). In
addition to walking, sensor measurements of ambulatory ability
are broadened by a wide range of clinically-established tasks that
the patient can perform.

TUG and Other Tasks
In the International Classification of Functioning [ICF (22)],
the domain of activities can be broken down into capacity and
performance. While direct tests of muscle strength arising during
maximal isometric contraction can be measured with a force
transducer, to assess clinically relevant disability, muscle actions
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are usually assessed within a more naturalistic context, such as
walking a short distance, walking a longer distance (where fatigue
and walking degradation are possible), or getting out of a chair
and starting to walk. The Timed-Up-And-Go (TUG) task (23)
tests the time it takes for a patient to stand up from a seated
position, walk 3m, turn around 180◦, walk back 3m, turn around
and sit back down again; the task begins when the clinician gives
the signal to start, and it ends when the patient’s body first returns
to the seat pan of the chair. TUG duration is amodest predictor of
frailty and falls (24), and TUG is a threshold test for independent
living. In their original, non-instrumented format, most of these
naturalistic tasks had only a single metric output, which was
either time duration (e.g., TUG) or distance covered successfully
(e.g., the 6min walk).

TUG can be effectively considered as six subtasks (Figure 1A):
the sit-to-stand transition (SI-ST), walking 1 (away), turn 1
(180◦), walking 2 (return journey), turn 2 (180◦), and the stand-
to-sit transition (ST-SI); in analyses, walking 1 and walking 2 are
often bundled together because they represent nearly identical
subtasks, and some analyses elide turn 2 with the ST-SI transition
because the two subtasks usually do not have a clear boundary. A
range of TUG-like variants also exist that shorten the walk [8-UG
(25)] or lengthen it [to 7m each way (26)] in order simplify the
task for patients or to make the walking data more robust.

The Sit-to-Stand Transition and the Thigh
What makes TUG and TUG-like tasks different from other
walking tasks (e.g., the Timed-25 Foot Walk or the 6min Walk)
is the inclusion of the sit-to-stand transition and the stand-
to-sit transition [also some researchers have also investigated
aspects of the turns (16, 27)]. The sit-to-stand transition (and
the continuation into walking) is not only ecologically relevant
for day-to-day living, but it is particularly affected in the frail
elderly who complain of stiffness after extended sitting. It is also
highly dependent on extensor strength in the lower extremity,
and is considered one of the most mechanically demanding of
functional daily activities (28). The stand-to-sit transition is an

indicator of control and balance during eccentric contraction of
the extensors. For stroke, specific SI-ST metrics (such as rising
speed or asymmetry of weight distribution) have been proposed
as possible metrics for detecting improvement during the first
year post-stroke (29, 30). The asymmetry features are particularly
important in stroke because of hemiparesis, although rising speed
might potentially be useful in any movement disorder, including
MS; to the best of our knowledge a similar investigation for MS
has not occurred.

Some groups have looked at single SI-ST transitions, or cycles
of Sit-Stand-Sit transitions, which provide more uniform data
about the SI-ST transition, because TUG often results in elision
of the SI-ST transition and walking 1 when the first step (toe-
off and swing) begins before or immediately at the completion of
contralateral thigh extension. Compared to the ankles, the SI-ST
transition has a profound effect on the directionality of the thigh
segment (and to the torso as well).

Known Sensor Metrics for TUG
Extensive sensor-based research on TUG has been performed
in a range of clinical conditions (31, 32). A brief survey of this
literature reveals at least 90 sensor metrics for TUG have been
derived to recognize falling risk. In a 2014 systematic review of
53 sensor-based studies on the sit-to-stand transition (32), 84%
of the studies used a sensor on the torso, at either the spine
[e.g., L3 (33, 34)] or the sternum [e.g., (18)]. Other studies have
placed sensors on the shanks (16, 27, 35); only in a few cases
placement was on the thigh segment (20, 36, 37), despite the
fact that the thigh would be the most directly involved body
segment during the SI-ST or ST-SI transition. The many metrics
(based on all body segments) have included calculations based on
temporal variables, linear acceleration variables, angular velocity
variables, frequency variables, and descriptive statistics based
on entropy (ApEn) and fractal dimension (dF). Some groups
have measured asymmetry in weight bearing (36). The derived
temporal variables (and asymmetry) are the most clearly related
to traditional gait measures (which are based on position and

FIGURE 1 | Clarification of methods. (A) shows a schematic of the entire TUG task divided into subtasks. (B) shows the approximate directions of pitch, roll and yaw

(depending on precise sensor stability) as we describe in this study. Pitch is nominally rotation around the medio-lateral axis (i.e., within the sagittal plane), roll is

nominally rotation around the dorso-ventral axis (i.e., within the coronal plane), and yaw is nominally rotation around the vertical (superior-inferior) axis (i.e., within the

transverse plane).
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force), while sensor metrics are based on movement (angular
velocity and linear acceleration).

In the current study we sought to compare a collection of
transparent metrics of the SI-ST and ST-SI transitions, assessing
whether there was added value when measurements were made
with sensor placement at the thigh, compared to placement
at the spine. We judged assessment value in terms of effect
size (the rank biserial) of the association of a feature with
its ability to distinguish middle-aged healthy participants from
Persons with MS (PwMS). In addition to temporal measures,
we examined a range of calibrated, transparent sensor metrics,
as well as testing two different measures of the smoothness
of signals. As a rough test of whether our metrics would be
useful in examination of PwMS, we compared an ambulatory
sample of MS patients [Hauser Ambulation Index (HAI) ≤ 2, no
use of walking aids for short distances] to middle-aged healthy
volunteers. Thus, our hypothesis is that there exists a set of thigh-
based sensor metrics of pitch angular velocity that have a higher
effect size in distinguishing PwMS from healthy volunteers than
either the TUG stopwatch time or the published spine based
metrics. Finally, to roughly simulate the value of our features, we
produced a step-wise logistic regression with multiple features.

METHODS

Volunteer Recruitment
Seventeen PwMS (mean age ± sd = 53.06 ± 11.06, 13 female)
were recruited from a local community MS center (MS Sussex),
with approval from Staffordshire University ethics committee.
Twenty-three healthy volunteers (age 46.13 ± 11.12, 14 female)
were recruited from the university community via email. The
exclusion criteria were that no participant had clinically relevant
complicating diseases (other thanMS) that would impact walking
ability or walking rates. This included: not currently suffering
from flu, cold, etc., no current leg/back injuries due to trauma,
no loss of motivation due to obvious psychiatric symptoms
(e.g., no major depression, bipolar disorder, psychosis), and
no loss of walking ability or exercise tolerance due to another
disorder: heart failure, recent myocardial infarction, COPD or
other respiratory disorder.

Procedure
The experimental procedure was approved by the university
ethics committee, and the experiment was run according to the
principles in the Declaration of Helsinki. Each participant was
informed about the nature of the experiment, and they gave
their informed consent for the experiment. Before each volunteer
began, he/she filled in a demographic form (establishing their
age and gender, estimated year of first symptoms, and year of
receiving an MS diagnosis). Three of our sensors were non-
invasively placed on the lateral aspect of their lower left thigh
(the most distal part of the sensor was 5 cm above the superior
border of the patella), lower right thigh, and the small of the
back (at the level of L3). All sensors were worn over clothing
using a lightweight Velcro elasticated webbing system for keeping
the sensors in place. All participants wore standardized running
shoes (Lonsdale) of the correct shoe size, in order to correct for

differences in mobility due to shoe stiffness or heels; our team
have a collection of different sizes of these running shoes to fit all
participants. Sensors were placed on the lateral surfaces of thighs,
to avoid interference with walking; sensors were orientated with
the positive X-axis pointing superiorly (proximally).

Patient Reported Outcome Measures
The participant filled in six forms: the self-assessed version of
the Extended Disability Status Scale [EDSS-S, (38)], the Multiple
Sclerosis Walking Scale [MSWS-12 (39)], the Fatigue Severity
Scale [FSS, (40)], the Modified Fatigue Impact Scale [MFIS, (41)],
the Beck Depression Inventory [BDI, (42)], the International
Physical Activity Questionnaire (IPAQ-short) (43). These six
scales (plus the demographics scale) required approximately
20min to fill in.

Fitting the sensors took 5min, while removing the sensors
took 3min. In general the entire procedure for a single volunteer
lasted 60min (including rest time). The sensors had their data
synchronized at the beginning and the end of the experiment by
being affixed together and being subjected to sudden transient
accelerations, interspersed with periods of non-movement.

Tasks
The timed-up-and-go (TUG) task was performed according to
Steffen et al. (44). The task involves arising from a seated position,
walking 3m, turning around, walking back 3m, turning around
and sitting back down in the chair. Participants started in a
chair with arms, with a tape mark on the floor showing the 3m
distance where they were supposed to turn around. Participants
were given instructions to perform the task “as fast as possible,
but safely,” and they were shown how to do the task. Stopwatch
timing was done according to best practice (44, 45), starting on
the word “Go” and ending when the participant’s buttocks first
made contact with the seat of the chair; a sensor-based full length
TUG duration feature was also calculated based on the attitude of
the thigh. The TUG task was performed twice.

Participants were also asked to perform several other walking
and balance tasks, including a Timed-25-Foot-Walk [T25FW
based on timing with a stopwatch, (46)], which was used to
establish that participants were at the Hauser Ambulation Index
[HAI, (47)] of 2 or below. None of the tasks were stressful or
tiring, and participants were asked before each task if they needed
a rest.

Sensors and Data Analysis
The sensors used were x-IMU by X-io (Bristol, UK), with three
dimensions each of accelerometry, gyroscopy andmagnetometry.
These sensors are factory calibrated for gravitational acceleration
(accelerometers) and angular momentum (gyroscopes), and they
incorporate an onboard algorithm for estimation of heading
and quaternions (48, 49). These sensors have been validated for
accuracy when measuring walking, both in terms of angular
velocities and derived temporal gait metrics (50). Data from
the three sensors in each x-IMU node was gathered at 128Hz
onto the onboard 32 GB micro SD cards (Sandisk Ultra
Micro) with the sensors’ blue tooth transmission off (to extend
battery charge). Time alignments between sensors and with
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FIGURE 2 | Flow chart for calculations of thigh and spine measures during TUG.

other measurements and video tapes were performed using
an automated event-based synchronization strategy [e.g., (51)].
Directions used (i.e., pitch, roll and yaw) are shown in Figure 1B.

Binary file sensor data was transferred to a Windows 7
computer, and the binary files were converted into csv files using
the manufacturer’s provided Graphical User Interface. The csv
files were read into Matlab, and all sensor data was aligned (based
on the synchronization signals at the beginning and end of the
experiment) with a purposed-made script; timing differences
between sensors were interpolated linearly–at no point did the
original sensor acquisition data differ between sensors by more
than 50ms (over the course of 90min of acquisition).

The relevant sensor data for each task was located by Matlab
based on the event’s start and finish time recorded by the sensor,
and all data was low-pass filtered (2.5Hz, 4th order Butterworth,
0 latency, Matlab filtfilt). Peaks were identified with a peak
detector algorithm set to detect a minimum recovery of 20% of
the range of the signal. Timing duration from the spine sensor

was based onWeiss et al. (33, 52), while all other angular velocity
and duration measurements were derived as shown in Figure 2.

Smoothness
To test control of movement, repeated gait movements can be
tested for variation, such as the Coefficient of Variation for any
metric (e.g., step length) (53). For a single movement performed
once (e.g., the SI-ST transition), inconsistent neural control (or
loss of balance) may be reflected by a loss of smoothness (which is
often measured as an increase in jerk for a continuous signal). In
this study, we tested two different measures of smoothness. The
normalized mean absolute jerk (54) is one of the most commonly
used measures for smoothness (smoothness 1):

ηnmaJ , −
1

υpeak (t2 − t1)

t2
∫

t1

∣
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∣
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Another measure of smoothness we used, the speed arc length
(55), has the advantage of being unit-free (smoothness 2):
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Statistics
Statistics were calculated within Matlab (Natick, MA, USA). To
allow for peaks from different legs (and in different directions) to
be compared, all peaks are the peak of the absolute value of the
calibrated signal, and all means are also the mean of the absolute
value of the calibrated signal.

Graphical inspection of healthy and PwMS peak angular
velocity data showed that it was approximately normally
distributed; nevertheless, to allow for those features that were
not normally distributed, for assessments of correlation between
repeated attempts of the same task, an Intraclass Correlation
Coefficient (ICC) was calculated (56). For unpaired comparisons
between the means of two populations, the Wilcoxon Rank
Sum test was used; this was corrected by the Holm-Bonferroni
correction for multiple comparisons. For effect size calculations,
the rank biserial was calculated.

RESULTS

Participants
The two cohorts compared in the main study were ambulatory
persons with multiple sclerosis (PwMS) and middle-aged
healthy volunteers. The PwMS were recruited via a local MS
community center (MS Sussex Treatment Center). The baseline
characteristics of the two groups are shown in Table 1. The two
groups were not statistically significantly different in terms of
height, weight, or age (although the mean age difference was >6
years). In all other measurements of disability and difficulty, the
PwMS had significantly higher Beck Depression Index Scores,
MSWS-12 scores, FSS scores, MFIS scores, and T25FW times
(which were on average 1.5 s longer than the times for healthy
volunteers). This difference in mean T25FW is just over the
established cut-off of 20% that suggests a clinically meaningful
difference (46), and the mean of 6.02 s is almost exactly the 6 s
cut-off established for clinically meaningful cut-off (57).

Format of TUG Data
Pitch gyroscope data from each sensor (and roll data from
the lumbar spine sensor) were used to derive both the rate of
movement during the sit-to-stand (and stand-to-sit) transitions,
as well as the durations that these activities lasted. The features
we calculated were based on finding peaks, calculating the peak
attributes (maximum, start point, end point, 20% rise point, 80%
return point), and from those points calculating the magnitude
of the peak (angular velocity), the duration (time in seconds)
of the peak’s arc (where an arc is the geometric segment of the
angular velocity curve), the mean angular velocity of the peak’s

TABLE 1 | Baseline characteristics of participants.

Variable PwMS Healthy

n 17 23

Gender (f/m) 13/4 14/9

IPAQ (high/medium/low) 3/9/5 11/10/2

Variable Mean St. Dev. Mean St. Dev. P

Age (years) 53.06 ±11.06 46.13 ±11.12 NS

Height (cm) 167.8 ±11.2 170.1 ±10.4 NS

Weight (kg) 74.9 ±26.2 70.6 ±11.2 NS

EDSS-S 4.00 ±1.80 0.1 ±0.2 <0.0001

Beck depression index 11.8 ±8.2 5.6 ±9.8 <0.001

MS walking scale-12 50.6 ±21.5 0 ±0 <0.0001

Fatigue severity scale 5.0 ±1.5 2.8 ±1.3 <0.001

Mod. fatigue impact Sc 42.2 ±21.5 15.7 ±17.0 <0.001

Timed 25 foot walk (s) 6.02 ±1.23 4.53 ±0.68 <0.0001

Timed up-and-go (s) 12.44 ±2.70 10.27 ±1.53 <0.05

P-values are based on the Wilcoxon Rank Sum Test. PwMS, Persons with Multiple

Sclerosis; n, total number of participants in that category; St. Dev., standard deviation; NS,

not significant. f/m, female/male; IPAQ, International Physical Activity Questionnaire; Mod

Fatigue Impact Sc, Modified Fatigue Impact Scale (MFIS); EDSS-S, Self-Administered

Expanded Disability Status Scale.

arc, the area under the curve of the arc, and the smoothness of
the peak’s arc. Representative sensor data is shown in Figure 3.
All traces in this figure are low pass filtered (2.5Hz) and factory-
calibrated. Sharp peaks/troughs correspond to the thigh’s role
in swing phase, while wider simultaneous peaks/troughs are
the stance phase of the contra-lateral lower limb. Panels A
(healthy) and D (PwMS) show both left and right thigh pitch
traces during the entire TUG task; each walking step is clearly
identifiable from the swing phase (sharp peaks) and concurrent
contra-lateral stance phase (wider, blunt peaks), as are the sit-
to-stand and stand-to-sit transitions (wider and lower-amplitude
changes). The turns are more easily identified by the traces for
the yaw gyroscopes (not shown). The first half step (“step 1”)
that occurs immediately after standing up entails a small swing
phase (in panel A it is the right thigh trace between 1.2 and
1.5 s) that peaks at a much lower angular velocity than other
steps.

Figure 3B is a close up of panel A during the sit-to-stand
transition showing the relationship between the peaks of the
spine pitch trace (black line) and the thigh traces. In previous
studies (33, 52), the spine pitch trace was the data used to derive
the timing of the SI-ST and ST-SI transitions. For this volunteer,
the first spine peak (intersection of black time course trace and
left-most vertical gray line) is closely aligned with the initiation
of thigh movements (red and dark blue circles), and the second
spine peak/trough (right-most vertical gray line) is closely aligned
with the beginning of the first half step (i.e., one possible end
of the sit-to-stand transition). For the purposes of computer
identification, zero-crossing points of the thigh traces (black
squares) were used as markers for the end of SI-ST transitions.
Panel C is a close up of panel A during the stand-to-sit transition
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FIGURE 3 | Representative traces of pitch gyroscope sensors data during the TUG task. (A) shows the activity of the left (red) and right (dark blue) thigh sensors

during the entire TUG task for a healthy volunteer. SI-ST, sit-to-stand transition; ST-SI, Stand-to-Sit transition; T1, Turn 1; T2, Turn 2; which elides directly into the

ST-SI transition. (B,C) show expanded views of the same representative traces at the sit-to-stand transition (B) and the stand-to-sit transition (C), labeled with key

points for feature calculation. (D–F) show analogous traces for a PwMS; note that the different panels have slightly different scales on their axes. In addition to the

pitch traces from the left thigh (red) and the right thigh (dark blue), (B,C,E,F) include a pitch trace from the lumbar spine sensor (black), to allow comparisons with

previously published data features based on torso-mounted sensor data. The peaks/troughs for the thigh traces are magenta circles, and the peaks/troughs for the

spine are shown as vertical gray lines. The start of the rise for the left thigh is a red circle, for the right thigh is a dark blue circle, and for the spine is a magenta

diamond. Step end points are shown as black squares, and 20% rise and 80% return points are shown as cyan circles.

showing the relationship between the peaks of the spine pitch
trace and the thigh traces; for this volunteer, the second spine
peak (right-most vertical gray line) is closely aligned with the
thighs’ return to the seat pan of the chair (i.e., the end of the
stand-to-sit transition), which is identified by the 80% return
point (cyan circles). The delay of the thigh pitch traces (red

and blue traces, between 10.8 and 11.3 s) to arrive at 0◦/s (black
squares) in this case is due to abduction/adduction of the thighs
accompanied by thigh rotation, rather than a delay in sitting (i.e.,
the hands bracing against the fall downward). The first spine peak
is delayed compared to knee and thigh flexion (cyan circle on
red line at 9.8 s). The thigh activity of the right lower limb (dark
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blue) is a combination of the final shuffling step during Turn 2
(T2, starting at the dark blue circle) and the subsequent flexion of
sitting down.

The traces related to a PwMS in panel D show a similar set
of activities as in panel A, although the actions are performed
more slowly and with lower angular velocity peaks. The most
noticeable difference is that in panel F the ST-SI transition is
performed much more slowly and carefully.

Figure 4 shows a close up view of the same left thigh
pitch trace during the sit-to-stand transition from Figures 3A,B,
along with the peak attributes and time points used to derive
the features for these movements. A complete description of
the arcs is provided in the Supplementary Materials. Arcs
A-H correspond to the sit-to-stand transition, while arcs J-
R correspond to the same attributes during the stand-to-sit
transition (there is no arc I). Arcs E and N (not shown)
correspond to a 1-s time period centered around the maximum
(i.e., peak of the arc) of the SI-ST transition (arc E) and ST-SI
transition (arc N). The peak (shown here as a black circle) is
bracketed by the step end (to the right, black square) and the start
of the rise (to the left, dark blue triangle). To avoid eccentricities
arising from false starts and additional partial movements, the
start of calculations is sometimes represented by the 20% rise
point (cyan diamond, left), and the 80% return point (cyan circle,
right).

Features of SI-ST and ST-SI Transitions:
Repeatability
Before determining which features were most likely to be affected
in our cohort by MS, we sought to determine which of the
features were clearly repeatable. Because each of the participants
performed the TUG task twice, we compared the value of
each feature during the first attempt and the second attempt.
We analyzed the correlation using the Intraclass Correlation
Coefficient (ICC). The features we tested were based on the pitch
angular velocity measurements from both thighs and the spine
sensor, roll angular velocity measurements from the spine sensor,
a range of smoothness metrics, and an omnibus measure of TUG
duration based on the Anterior-Posterior accelerometer of the
thigh. The calculations were the absolute value (magnitude) of
the peak angular velocity, the many possible durations of the
event (as determined by the arcs as explained in the methods
and Figure 4), the magnitude of the mean angular velocities
for those arcs, the area under the curve for those arcs, and the
smoothness of each arc (see Methods). Each pitch feature was
initially calculated for both left and right thighs (and also for
the spine), and the final thigh features were the maximum of
the two thigh values, the minimum of the two thigh values, the
value associated with the thighmaking the first step, and the value
associated with the thigh making the second step. In broad terms,
we started with 819 features (many of which were highly related),
of which 152 had an ICC≥ 0.60 [a good correlation according to
(58)].

Representative plots showing selected correlations of four
of the features are shown in Figure 5. The most correlated
measurement arcs for the transitions are arc J, K, N, and M all

of which encompass the entirety of the ST-SI peak (including the
peak itself); the least correlated were arcs P and Q, both of which
represent the first half of the ST-SI transition. Themost consistent
among the spine roll metrics are the SI-ST arcs that include the
most possible time for unpredictable activity, including arcs B, F,
E, and A, all of which had excellent correlations (ICC ≥ 0.75).
The vast majority of smoothness metrics were poorly correlated,
although a few were good (between 0.60 and 0.74). This may be
expected, given that lack of smoothness would represent loss of
control, which would per force be inconsistent.

Features of SI-ST and ST-SI Transitions:
PwMS vs. Healthy
In total 819 correlated features were tested, and they were
compared between the healthy volunteers and the PwMS. The
raw P-values (Wilcoxon Rank Sum test) and the effect sizes
(rank biserial) are shown in Table 2 for 27 of the most relevant
TUG micro-features; a total of 134 features had raw P < 0.01.
Those not included in the table were redundant or similar to
other features already in the table [e.g., there were similar effect
sizes for calculations based on the minimum (e.g., left or right
thigh) and maximum]. To account for multiple comparisons,
the Holm-Bonferroni method was used. Under this stringent
method, only three features remained statistically significant, all
of which related to SI-ST transition, based on the thigh pitch
measurements of the area under the curve: feature 1 (Thigh
Maximum Area Under the Curve for Arc B), feature 2 (Thigh
MaximumArea Under the Curve for Arc D) and feature 3 (Thigh
Maximum Area Under the Curve for Arc F). A comparison of
feature 1 between Healthy and PwMS is shown in Figure 6A.
The fastest 50% of healthy volunteers reach angular velocities
that exceed all PwMS, while the slowest quartile of PwMS cannot
reach angular velocities reached by all healthy volunteers (except
for one healthy outlier, who was a tall (175 cm), middle-aged
female who moved slowly and deliberately when getting in and
out of the chair). To illustrate the scale of those differences, a
comparison of the total TUG task durations (as measured by
stopwatch) are shown next to this plot (see Figure 6B).

When comparing the effect sizes (Rank Biserial in Table 2) of
MS in our cohort of the features, several observations arise. The
features relating to the sit-to-stand transition have a larger effect
size (and are more consistently relevant when discriminating
PwMS from healthy volunteers) than the stand-to-sit transition.
The angular velocity features (Area under the Curve, absolute
peak and absolute mean) have larger effect sizes (and are more
consistently relevant when observing PwMS) than the durations.
In our hands, the effect sizes of the durations arising from the
spine sensor [features 21 and 22 in this study, originally from
Weiss et al. (52)] have a smaller effect size than the homologous
features measured with thigh sensors; furthermore, spine pitch
peak angular velocity features (features 14–16) have larger effect
sizes than spine duration features (features 20 and 21).

In our hands, in a univariate analysis roll of the spine sensor
features had low rank biserials compared to the other tested
features; the exception was for smoothness features, four of which
had P < 0.05, including feature 22 (Spine Roll Arc D smoothness
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FIGURE 4 | Arc boundaries used for calculations of features. The left thigh pitch trace from the sit-to-stand transition in Figure 3 is labeled with the relevant time

markers and peak attributes used to calculate the features in this study. Arcs A–H correspond to the SI-ST transition, while arcs J–R represent the ST-SI transition.

How these points were computationally derived is described in the methods; note that arcs E and N (not shown) are 1 s regions centered on the peak, and arc I does

not exist.

2). As stated above, smoothness features were less consistent than
other features. Among non-smoothness features derived from
the roll of the spine sensor, the largest effect size of MS was on
the mean of the angular velocity during ST-SI (arc J), which was
associated with a raw P = 0.067 (rank biserial= −0.345).

Multivariate Analysis With Logistic
Regression
As an unplanned analysis, we sought to understand how
these variables might work together, given that many of the
features were based on similar or related measurements. Using
a stepwise procedure (Matlab), we removed variables that were
weak contributors (low absolute t-values) or were not robust
when subsets of volunteers were selected for the model. A
set of seven features were found and described in a logistic
regression (see Table 3). The regression had an R2 [coefficient
of discrimination (59)] of 0.4708 based on 73◦ of freedom
for error. None of the pairs of variables had a coefficient
of correlation above 0.69 (Table 4). To check for overfitting,
combined data for healthy and PwMS volunteers were randomly
split in half (training set), betas were re-derived for the seven
robust features, and the remaining volunteers (test set) were
compared to predicted values based on the new betas; in 100
attempts, the average correct prediction rate was 0.7982. This
implies that these features may be consistent enough to be
useful in assessing degrees of mobility/disability among MS
patients.

DISCUSSION

Inertial sensor metrics of gait and mobility variables, and their
responsiveness to clinical conditions, are being explored for
the differences elicited by sensor placement on different parts
of the body (60). In this study of MS, we considered myriad
TUG features (derived from previous studies of ambulatory
disabilities of all kinds), and found informative metrics derived
from thigh-positioned wearable inertial sensors that would be
useful for estimating disability in PwMS, particularly with regard
to strength and effort. We also compared a range of the best of
the thigh-based metrics to spine-based metrics (which represent
both strength and control), and ran a logistic regression on
the results. We list seven non-overlapping features that may
be useful together as complementary metrics in assessments of
disability progression in MS, and also as metrics for clinical
efficacy for interventions proposed to improve or limit disability
in MS. In the present study, the test for whether these
features may be useful for estimating disease progression was a
comparison of a small community sample of PwMS with Hauser
Ambulation Index scores ≤2 against a sample of middle-aged,
healthy volunteers. Our novel contribution is to consider the
combination of thigh and spine metrics in MS–as did Motta
et al. (17) during a 1-min walking task. Our data specifically
considers the case of TUG, which includes the SI-ST and
ST-SI transitions; these transitions are particularly challenging
activities in everyday life, and are especially revealing of the
movement of the thigh segment.
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FIGURE 5 | Correlations of selected features of thigh pitch signal (maximum of the left/right thigh) between trial 1 and trial 2 of TUG. Persons with MS are shown as

red circles, healthy volunteers are shown as blue triangles. (A) shows excellent correlation between the two TUG trials each participant performed for the feature: the

absolute value of the peak pitch angular velocity during the Stand-to-Sit (ST-SI) transition (magenta circle in Figure 3C). (B) This can be compared directly to the same

measurement during the Sit-to-Stand (SI-ST) transition (magenta circle in Figure 3B), which shows only fair correlation. (C) shows the absolute value of the mean

angular velocity of the signal (as shown as arc F in Figure 4) during the Sit-to-Stand transition. (D) shows the correlations for the duration of the sit-to-stand phase

(arc F).

As expected, we found that the total time duration of the
TUG task as measured by stopwatch was a consistent and
discriminatory feature (rank biserial = −0.473, P < 0.05) for
these two cohorts; this is similar to a study of TUG in the elderly
[Instrumental Activities of Daily Living (IADL) vs. no IADL] in
which TUG duration was the most discriminatory feature (52),
and to an MS vs. healthy comparison of the Timed 25 Foot Walk
where overall velocity (which is usually measured as a stopwatch
duration) was the most discriminatory mobility feature (53). In
our cohorts we compared a wide variety of sensor-based micro-
features of TUG to two timing features of TUG as a whole; we
found that many of the thigh-derived sensor micro-features are
reproducible and have high reliability, and that a collection of
thigh pitch angular velocity features (including absolute values
of the area under the curve, the peak and the mean) based on
the sit-to-stand transition differed between MS and healthy with
higher effect sizes (rank biserial) than total time duration of TUG;
three of these features were statistically significantly different
(between healthy and PwMS) by the stringent Holm-Bonferroni
method of multiple comparisons. These features were all similar
measurements of the area under the curve for pitch angular
velocity for the SI-ST transition. Because the SI-ST transition is a

demanding task for the musculature, and higher values for pitch
angular velocity would be particularly demanding, we associate
these variables with strength (28). This fits with previous research
on patients with total knee arthroplasty that concluded that
quadriceps weakness has a substantial impact on performance of
the sit-to-stand task (20, 61).

We also tested temporal duration features based on the thigh
SI-ST transition and previously published features based on
the spine-derived SI-ST transition (52), and we found the set
of such spine-derived features that were potentially useful, but
those features resulted in lower effect sizes than the traditional
stopwatch duration of TUG for our cohorts (and thus had
lower effect sizes than the best angular velocity features). For
both sit-to-stand and stand-to-sit transitions, spine data is
discriminatory, but thigh data is more discriminatory for MS
disability. We also measured many features suggesting that thigh
pitch (or spine pitch) is much more discriminatory than spine
roll.

Some previous studies have found discriminatory features
within the roll of the spine (37), within the stand-to-sit transition
(26, 33, 62), and from jerk-related smoothness of angular velocity
signals (21), all of which would reflect diminished balance and
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TABLE 2 | List of selected features comparing healthy to PwMS.

No. Feature Raw P rank sum Rank biserial Healthy median ± MAD PwMS median ± MAD ICC

A Total TUG duration thigh accel ant-post 0.01606 −0.453 9.14 ± 0.68 11.11 ± 2.27 0.86

B Total TUG duration stopwatch 0.01183 −0.473 10.27 ± 1.53 12.44 ± 2.70 0.86

THIGH PITCH SIT-TO-STAND (ANGULAR VEL)

1 Thigh maximum arc B area under curve (abs) 0.00003 0.785 11,720 ± 620 9,685 ± 1,292 0.69

2 Thigh maximum arc D area under curve (abs) 0.00004 0.775 11,634 ± 859 9,552 ± 1,309 0.62

3 Thigh maximum arc F area under curve (abs) 0.00005 0.760 11,448 ± 803 9,519 ± 1,244 0.61

4 Thigh maximum sit-to-stand peak (abs) 0.00030 0.678 117.91 ± 15.62 90.06 ± 15.07 0.74

5 Thigh second step arc F mean (abs) 0.00069 0.637 73.75 ± 9.22 55.12 ± 8.84 0.78

6 Thigh maximum arc F mean (abs) 0.00084 0.627 79.66 ± 9.59 63.44 ± 10.36 0.79

7 Thigh minimum arc F mean (abs) 0.00103 0.616 71.10 ± 11.27 55.12 ± 8.24 0.74

8 Thigh first step sit-to-stand peak (abs) 0.00103 0.616 110.09 ± 13.57 90.06 ± 15.07 0.59

9 Thigh minimum arc D mean (abs) 0.00165 0.591 69.85 ± 9.50 53.38 ± 7.57 0.71

10 Thigh second step sit-to-stand peak (abs) 0.00444 0.535 100.34 ± 14.66 86.35 ± 12.73 0.77

THIGH PITCH STAND-TO-SIT (ANGULAR VEL)

11 Thigh maximum arc K area under curve (abs) 0.00239 0.570 8,958 ± 1,026 7,137 ± 338 0.50

12 Thigh maximum arc M area under curve (abs) 0.00373 0.545 8,616 ± 686 6,931 ± 430 0.51

13 Thigh minimum stand-to-sit peak (abs) 0.09513 0.315 68.73 ± 7.40 60.01 ± 12.53 0.85

SPINE PITCH (ANGULAR VEL)

14 Spine pitch sit-to-stand peak 2 (abs) 0.00676 0.509 79.02 ± 11.37 60.92 ± 11.36 0.79

15 Spine pitch sit-to-stand peak 1 (abs) 0.00796 0.499 110.48 ± 14.30 83.21 ± 10.40 0.70

16 Spine pitch stand-to-sit peak 1 (abs) 0.07994 −0.330 70.84 ± 8.66 62.65 ± 12.46 0.56

17 Spine pitch arc Q AUC 0.44364 −0.146 -3,355 ± 825 −2,906 ± 914 0.66

DURATIONS ALL

18 Thigh maximum arc F duration 0.01858 −0.442 1.19 ± 0.09 1.42 ± 0.15 0.62

19 Thigh minimum arc D duration 0.03871 −0.389 0.81 ± 0.13 0.95 ± 0.16 0.78

20 Spine sit-to-stand Weiss duration 0.13923 −0.279 0.70 ± 0.12 0.77 ± 0.19 0.67

21 Spine stand-to-sit Weiss duration 0.15867 −0.266 1.01 ± 0.10 1.22 ± 0.32 0.54

SPINE ROLL (ANGULAR VEL)

22 Spine roll arc D smoothness 2 0.00675 0.509 −1.243 ± 0.100 −1.413 ± 0.141 0.53

23 Spine roll arc J mean (abs) 0.06679 −0.345 5.80 ± 1.84 8.69 ± 2.92 0.49

24 Spine roll arc B mean (abs) 0.07534 −0.335 15.29 ± 3.69 21.34 ± 8.76 0.80

25 Spine roll stand-to-sit peak 1 (abs) 0.07534 −0.335 30.75 ± 10.08 43.02 ± 15.07 0.75

26 Spine roll stand-to-sit peak 2 (abs) 0.11888 −0.294 15.77 ± 6.53 21.09 ± 5.16 0.40

27 Spine roll arc N smoothness 1 0.28596 0.202 −0.0372 ± 0.0093 −0.0423 ± 0.0172 0.09

All angular velocities refer to pitch unless stated as roll. The features in each category are listed in order of the effect size (rank biserial); note that some features (13, 16, 17, 22, 23–27)

are included as illustrative rather than as discriminatory features. 819 features were tested, so that with a Holm-Bonferroni method for multiple comparisons, only features 1, 2, and 3

(Area Under the Curve for arcs B, D and F) are significant. Arcs are as listed in Figure 4.

control rather than strength/weakness. In our cohorts these types
of features produced smaller univariate effect sizes, and those roll
features that were reliable (ICC) did not reach raw P-values under
P < 0.05 (except for feature 22).

In a logistic regression we found that our initial hypothesis was
supported: themovement of the thigh during the SI-ST transition
was the most informative of all the TUG measures tested, and
that adding a thigh feature (feature 3) robustly improved a
logistic regression compared to using only spine features with
the total TUG duration. However, we were surprised to find that
five of the seven robust features were from the spine sensor,
three were related to roll, and two were related to smoothness;
none of the other thigh features were independent or robust

enough to stay in the analysis after the first one was included.
Of the spine features, it is intuitive that healthy volunteers have
a large pitch SI-ST peak (feature 14, implying torso strength
and effort), and that PwMS have a larger roll peak during ST-
SI (feature 26, implying loss of torso control). It also makes
some sense that healthy volunteers would have a smoother
roll in angular momentum in the 1 s surrounding the ST-SI
peak (feature 27, arc N, Figure 4). It was interesting to find
that the PwMS had a larger AUC of spine pitch in arc Q
(feature 17); arc Q is the first half of the ST-SI transition,
and when picked by our algorithm is made up primarily of
Turn 2 of the TUG. It is less intuitive that the spine roll
signal during most of the SI-ST transition (feature 22, arc D)
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FIGURE 6 | Comparison of TUG variables for Healthy vs. MS Participants for Area Under the Curve for SI-ST Thigh Pitch Angular Velocity (A, all values should be

multiplied by 104) and Total TUG Stopwatch Duration (B). Black horizontal lines are mean values.

TABLE 3 | Logistic regression to discriminate healthy from MS.

Feat. No. Sensor Direction Time Arc Calculation Beta S.E. t p

3 Thigh Pitch SI-ST Arc F AUC 1.0666e-03 3.34579e-04 3.188 0.0026

14 Spine Pitch SI-ST Peak 2 Abs 0.17734 0.05628 3.151 0.0020

B Stopwatch Complete TUG Duration −1.2315 0.3996 −3.082 0.0090

22 Spine Roll SI-ST Arc D Smoothness 2 −92.326 33.041 −2.794 0.0093

26 Spine Roll ST-SI Peak 2 Abs −0.10683 0.03984 −2.681 0.0103

17 Spine Pitch Turn 2 Arc Q AUC −9.3272e-04 4.4917e-04 −2.077 0.0086

27 Spine Roll ST-SI Arc N Smoothness 1 46.015 22.486 2.046 0.0209

Constant −10.149 5.322 −1.907 0.0099

For betas and t values that are positive, an increase in the feature’s value implies the volunteer is healthy, while for negative values t and beta, higher values of the feature suggest that

the volunteer is a person with MS. Rows are ordered by absolute value of t statistic, with the most contributory (and consistently discriminatory) features at the top. SI-ST, sit-to-stand

transition; ST-SI, stand-to-sit transition; AUC, area under the curve; Abs, absolute value.

would be smoother for MS patients than for healthy volunteers;
presumably this relates to MS patients being slower and more
cautious when rising (using the chair’s arms), but none of the
other calculations (peak, mean or duration) is discriminatory in
this way.

This hierarchy of discriminatory power (strength > control)

seems to be supported by some other studies working on other

ambulatory disorders. A previous study examining the shank-
mounted sensor metrics of TUG (as an entire task) in PwMS

(16) found that their regression models for clinical disability
metrics [EDSS and Multiple Sclerosis Impact Scale (MSIS-20)]
incorporated many sensor metrics of angular velocity including
mean angular velocities, maximum angular velocities, and
minimum (i.e., trough negative) angular velocities (all multiplied
by patient height), while it rejected coefficients of variation,
and many gait duration features (e.g., mean stride time, mean
swing time, mean double support %, turning time). In a study
of the elderly (33, 52), the range of the vertical accelerometry
signal (located at the lumbar spine) was a discriminatory feature
for identifying idiopathic fallers among the elderly, while SI-ST
duration and ST-SI duration were not discriminatory.

Relevance of Sensor Assessment of
Mobility in the Clinic
The use of inertial sensor technology in clinical assessment of
disability is moving ahead rapidly in both MS and in disorders of
mobility more generally. The goal of such systems is to increase
the resolution and consistency of measurements of ambulatory
disability (e.g., might it be possible to consistently recognize a
difference between an ambulatory equivalent of EDSS 4.2 vs.
EDSS 4.3). Only further sensor research on clinical populations
will clarify whether this goal is even possible. Currently a
commercial system for measuring mobility during TUG that is
operated by clinicians (i.e., not researchers or engineers) has been
released and assessed by the UK’s National Institute for Health
and Care Excellence (63). Extensive research into this particular
inertial sensor methodology has been driven by the manufacturer
of this system, which places sensors near the ankles. In a cross-
sectional study of early stage relapsing remitting MS, the ankle-
based sensor system used a proprietary algorithm to produce
an EDSS estimate that was shown to correlate moderately well
(R2 = 0.5) with clinician assessed EDSS (16). More recently
the same system was able to predict the 90-day risk of falls

Frontiers in Neurology | www.frontiersin.org 12 September 2018 | Volume 9 | Article 684

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Witchel et al. Thigh Sensor TUG

TABLE 4 | Correlation coefficients for logistic regression variables.

Feat. No. Feature name Feat. 3 Feat. 14 Feat. B Feat. 22 Feat. 26 Feat. 17 Feat. 22 Constant

3 Pitch thigh AUC arc F 1

14 Spine SI-ST P peak 2 0.6497 1

B TUG stopwatch −0.5944 −0.6788 1

22 Spine roll arc D smoothness 2 −0.4708 −0.6108 0.6115 1

26 Spine roll ST-SI peak 2 −0.3076 −0.4255 0.6184 0.6541 1

17 Spine pitch arc Q AUC −0.4127 −0.3760 0.4943 0.5171 0.5824 1

27 Spine roll arc N smoothness 1 0.3912 0.5824 −0.4617 −0.6010 −0.3227 −0.1667 1

Constant −0.6858 −0.6106 0.0647 0.3809 −0.0138 0.3331 −0.2289 1

SI-ST, sit-to-stand transition; ST-SI, stand-to-sit transition; AUC, area under the curve; Abs, absolute value.

of Parkinson’s patients with a 73% accuracy during a 6 month
longitudinal trial (64).

Analysis Details
The most clear result here is that for univariate associations, the
hierarchy of discrimination is broadly: area under the curve >

mean/peak angular velocity> duration. This dominance by AUC
was slightly unexpected, as mean/peak velocity features might
be expected to vary inversely with duration measures; however,
when thinking about the entire movement, duration multiplied
bymovement is a more comprehensive measure of the total effort
and strength than the peak (or the mean) is. It is worth noting
that the ICC for AUC features were generally not as high as for
peak or mean features. Duration features were quite variable.

The rationale for positioning wearable inertial sensors on
the thighs for characterizing the sit-to-stand and stand-to-
sit transitions is that the activity of the thighs during these
transitions is invariably both necessary and sufficient to achieve
these actions, while the activity of the spine and torso are usually
necessary but are definitely not sufficient. For example, additional
torso activity may occur during bodily adjustments or false
starts, and torso activity can be suppressed while rising up or
sitting down with the use of the chair’s arms. Nevertheless, our
regression favored spine metrics.

Regarding false starts and bodily adjustments, it is slightly
easier to detect the difference between healthy and PwMS from
overall absolute peak angular velocity values or from means
derived from time segments that do not include the bottom
20% of activity (i.e., arc F on Figure 3B has a higher effect size
than arc B). The values for pitch angular velocity are higher for
healthy than for MS; the regions of the bottom 20% of activity
may be associated with brief, abortive initiations of standing,
which are inconsistent but common to both healthy andmildMS,
thus masking the appropriate durations or mean values of the
transitions. Note also that the calculations of durations are made
less valid (lower absolute effect size) by including the bottom 20%
of activity; the rank biserial for SI-ST duration (maximum from
either thigh) when based on Arc F (which does not include the
lower 20%, see Figure 4) is−0.442, compared to the rank biserial
for the same value based on Arc B is−0.358.

By contrast, for area under the curve measures, where
increased duration adds to the appearance of strength in the

healthy participants, the bottom 20% of the curve adds slightly
to the discrimination between MS and healthy (i.e., arc B has
a greater absolute effect size compared to arc F). In general
strength measurements based on angular velocity had higher
discriminatory power if the maximum of the two thighs was used
(compared to the lesser value from the two thighs). Also, for spine
roll features, where MS is associated with higher values of roll
angular velocity than seen in healthy volunteers, this increased
roll is easier to detect in longer segments that include the bottom
20% of the entire peak region.

Limitations
One limitation of the current study is that we did not make
concurrent measurements of strength (e.g., the Oxford Scale
for Muscle Strength Grading), nor did we estimate spasticity
(e.g., Modified Ashworth Scale); plainly there are differences in
the types of MS mobility impairment (65), and there would be
a difference in the test results between a PwMS with flaccid
paralysis vs. a PwMS with normal strength and a high level
of spasticity. In future measurements of the SI-ST transition,
measurements of strength and spasticity should accompany
sensor measurements, as this is often not done (16, 66).

Another limitation is that for inertial sensor metrics to be
justified for use in the clinic to assess disability or mobility
impairment, a longitudinal study needs to be performed. Such
a longitudinal study would ideally show that clinically relevant
disability progression (or amelioration due to therapeutic
intervention) could be detected with more sensitivity and
consistency by the sensor metrics than by the EDSS (or possibly
by the MSFC). Recognising fine-grained differences against a
“gold standard” measurement such as the EDSS will require an
agreement or recognition as to how to recognize (or cause) small
changes in disability independently of the EDSS.

Inconsistency between equally disabled patients (or between
measurements from the same patient on different days) may
affect many individual metrics because patients may compensate
for their disability with additional motivation; it would be
expected that when this compensation occurs, there would be
a deterioration of performance control (e.g., spine roll during
TUG) because of the speed-accuracy trade-off (67, 68). When
considering speed and limb movements during walking tasks
(e.g., T25FW), motivation (or lack thereof) can affect walking
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speed; however, lack of motivation alone will be less likely to
affect peak angular velocity during the SI-ST transition, because
standing up slowly requires more prolonged effort than standing
up quickly, due to the disadvantageous torquemoments that have
to be resisted during slow standing (69).

The sensors used during this study were recorded
independently and were later synchronized using an automated
synchronization protocol. While this produces accurate data
synchronization, it prevents real-time analysis, which would
be essential for clinical use. Since the gathering of this data,
the manufacturer of the sensors (x-io) has introduced a new
generation of IMU sensors (NGIMU), which include WiFi
communication and the use of one sensor as a master sensor
to calibrate all others on the network (70). In the future, these
self-synchronizing sensors should be used for gathering data.

In our regression, we found a few features with smaller
effect sizes (many of which are more related to accuracy/control
rather than speed/strength) that may be relevant for estimating
disability in PwMS, particularly when assessing PwMS who have
mild or almost no ambulatory dysfunction. Likewise, the many
uncorrelated features rejected from the final list of features may
include some usefully discriminating features that could be used
as metrics of balance and control during movement.

The generalizability of these results for PwMS may be limited
due to the precise nature of the TUG task format, as well as due
to the idiosyncrasies of PwMS. For example, Boonstra et al. (20)
used a special sit-to-stand assay that differed from the TUG in
several important aspects; their chair did not have arms, their
arthroplasty patients had to position their hands on their hips
so that they could not use their arms to aid in standing, and
the task did not continue directly into a walking task. Another
feature of their protocol that differed from the current study is
that their chair had an adjustable chair height so the participants’
knees always started at 90◦. The precise position of the knees
at the beginning of rising will affect measurements of activity,
especially angular velocity. In the TUG protocol the participant
is allowed to start with their legs in self-selected positions, which
would mean that the first movement during TUG would include
repositioning of the lower limb into an optimum position for the
sit-to-stand transition.

CONCLUSIONS

Our data suggest that positioning sensors on the thighs and
measuring pitch angular velocities during the sit-to-stand
transition can provide information relating to disability in
multiple sclerosis that is more relevant (with larger effect sizes)

than both (a) durations of sit-to-stand derived from a lumbar
spine sensor, and (b) durations of the entire TUG task. Our data
suggests that adding a thigh sensor-based metric can increase
discriminatory power compared to using a spine sensor alone,
and that for mild to modest disability (HAI ≤ 2), features that
reflect weakness (or strength) are more discriminatory than
features that reflect loss of control or imbalance. Finally, the
area under the curve, the peak and mean angular velocities, the
durations, and the roll measures may provide more universal
and broadly-sensitive information if they are combined into a
composite metric, although for any such metric to be adopted
by the medical community, it would have to be transparent. Our
regression data included the SI-ST transition, ST-SI transition,
part of Turn 2, and overall gait performance (TUG stopwatch
time), all of which were contributory to the model.
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