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Abstract 

This study investigated the performance of four pilot-scale biofilters for the removal of 

bioaerosols from waste airstreams in a materials recovery facility (MRF) based in Leeds, UK. 

A six-stage Andersen sampler was used to measure the concentrations of four groups of 

bioaerosols (Aspergillus fumigatus, total fungi, total mesophilic bacteria and Gram negative 

bacteria) in the airstream before and after passing through the biofilters over a period of 11 

months. The biofilters achieved average removal efficiency (RE)  of 70% (35 to 97%) for A. 

fumigatus, 71% (35 to 94%) for total fungi, 68% (47 to 86%) for total mesophilic bacteria and 

50% (-4 to 85%) for Gram negative bacteria, provided that the inlet concentration was high 

(103 – 105 cfu m-3), which is the case for most waste treatment facilities. The performance was 

highly variable at low inlet concentration with some cases showing an increase in outlet 

concentrations, suggesting that biofilters had the potential to be net emitters of bioaerosols. The 

gas phase residence time did not appear to have any statistically significant impact on 

bioaerosol removal efficiency. Particle size distribution varied between the inlet and outlet air, 

with the outlet having a greater proportion of smaller sized particles that represent a greater 

human health risk as they can penetrate deep into the respiratory system where gaseous 

exchange occurs. However, the outlet concentrations were low and would further be diluted by 
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wind in full scale applications. In conclusion, this study shows that biofilters designed and 

operated for odour degradation can also achieve significant bioaerosol control in waste gas. 

Keywords: Biofilter; bioaerosols; odour; waste management; woodchips.  

1. Introduction 

With continuous emphasis on meeting the landfill diversion targets in the UK as established in 

the Landfill Directive (1999/31/EC) and with the launch of the Landfill Allowance Trading 

Scheme (LATS) in 2004 (Calaf-Forn et al., 2014), there has been an increase in the number of 

waste management facilities (Stagg et al., 2010; Environment  Agency, 2017). Some of these 

facilities are enclosed, and can include mechanical biological treatment (MBT), in-vessel 

composting (IVC), anaerobic digestion (AD) and materials recovery facilities (MRF) or 

combinations of different waste management systems. These facilities, while achieving cutting 

edge recycling performance and value recovery from waste streams, have the potential for air 

pollution within the facility and externally via their extract ventilation especially due to odour 

and bioaerosol emissions. 

Bioaerosols, which comprise predominantly plant pollen, microorganisms (viable or non-

viable) and/or microbial metabolites, have the potential to cause health problems in exposed 

persons with symptoms such as irritation of the respiratory tract and eyes, coughing, wheezing, 

tiredness, rashes on skin, diarrhoea, asthma, headache, allergic rhinitis and hypersensitivity 

pneumonitis (Husman, 1996; Menetrez et al., 2009). Studies show that bioaerosol exposure can 

cause ill-health in exposed population  (Douwes et al., 2003; Searl, 2008; Pearson et al., 2015) 

Lower forced vital capacity was reported in exposed compost workers (n = 190) than in controls 

(n = 38) (van Kampen et al., 2012). Hambach et al. (2012), while assessing work-related health 

symptoms among compost workers, reported elevated proportion of exposed group (n = 31) 

presenting with respiratory symptoms (29.0%), eye, nose and throat irritation symptoms 
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(35.5%), gastrointestinal symptoms (29.0%) and skin rashes (20.0%) as against the control 

group (n = 31) who showed 3.3%, 13.3%, 6.7% and 0.0%, respectively, for these symptoms. 

The risk of waste workers’ exposure to bioaersols may be dependent on the work task (mostly 

indoors for enclosed facilities), their proximity to the source of bioaerosols and the abatement 

system being used on site (Stagg et al., 2010). 

In the UK, the Environment Agency (EA) is responsible for regulating waste management 

facilities, usually done through the granting of Permits to Operate. Part of the EA’s remit is to 

ensure that odours and bioaerosols do not adversely impact the surrounding population 

(Frederickson et al., 2013), and so have included bioaerosol monitoring requirements as an 

environmental permit condition, and to assess the performance of abatement systems at 

operation in such facilities (Environment  Agency, 2017).  The EA gave a precautionary 

guidance for composting operators when applying for operating permits. This guidance 

stipulates that concentrations of bioaerosols (as predicted or measured directly) need to be 

maintained no higher than acceptable levels at 250 m from the composting site or the nearest 

sensitive receptor (such as a dwelling or workplace which is not part of the composting site), 

whichever is closer (Environment  Agency, 2010). These acceptable levels have been defined 

as 500 cfu m-3, 1000 cfu m-3  and 300 cfu m-3 for Aspergillus fumigatus, total bacteria and 

Gram-negative bacteria, respectively, as measured by the standardised monitoring protocol (i.e. 

the AfOR protocol later replaced in 2017 by the M9 protocol). However, an updated regulatory 

position statement (RPS) on monitoring bioaerosols at regulated facilities was provided by the 

EA in January 2018, and excluded the reporting of Gram-negative bacteria (Environment  

Agency, 2018). In the UK, there are no regulatory occupational limits for bioaersols as the 

acceptable levels stated above are not based on dose-response relationships (Pearson et al., 

2015). However, the Control of Substances Hazardous to Health (COSHH) Regulation issued 

by the Health and Safety Executive (HSE) provides employers with the requirements for 
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assessing, monitoring and controlling the exposure of employees to hazardous substances at 

work environments (HSE, 2013), and thus, applies to workers in waste handling facilities. In 

Germany, there is a regulatory occupational limit of 50 000 cfu m-3 for mesophilic fungi 

(including A. fumigatus) in breathable air within the workplace (BAUA, 2013 cited in Pearson 

et al., 2015).  

Biofilters have been used as an abatement method in the waste management industry for many 

years with varying degrees of success. Biofilters are three phase bioreactors (gas, liquid, solid) 

composed of filter beds which have high porosity; high buffer capacity; high nutrient 

availability and high moisture retention capacity which altogether provide suitable internal 

environments that support the growth and attachment of a mixed-culture of pollutant-degrading 

microorganisms (Elias et al., 2002; Dastous et al., 2005). Biofilters offer a cost-efficient and 

potentially environmentally friendly alternative to traditional air treatment technologies, 

particularly for odour and gas treatment because of the low energy requirement; relatively low 

construction cost; no generation of secondary pollutants that require subsequent disposal; and 

capacity to treat a broad spectrum of gaseous compounds (Devinny et al., 1999; Fulazzaky et 

al., 2014). Biofilters are a method of biological air treatment systems that utilise populations 

of microorganisms to convert certain organic and inorganic pollutants into compounds and/or 

forms that are less toxic and/or odourless. The microbial population, which may be dominated 

by a single species or be composed of different interacting species, employ oxidative, and 

sometimes, reductive reactions to convert the airborne pollutants into CO2, water vapour, and 

to increase their population using these pollutants as energy and carbon sources (Fletcher et al., 

2014). The design and operation of the early biofilter systems were based on a very basic 

understanding of their method of operation. Although in recent years the structural materials 

used for biofilters have become more sophisticated, and in the UK there is a move towards 
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using emission stacks, the fundamental design criteria have changed very little (Fletcher et al., 

2014). 

Several studies have been carried out over the past two decades, in an attempt to better 

understand the principles of biofilter design and operation to achieve significant odour and 

bioaerosol removal. Some of these have looked at the microbiology of the biofilters (Juteau et 

al., 1999), technical characteristics(Pagella and De Faveri, 2000), performance (Jorio et al., 

2000), modelling (Alonso et al., 1999), and economic viability (Gao et al., 2001). It is 

acknowledged that biofilters offer a versatile and cost effective option for the management of 

contaminated air from waste handling and treatment facilities (Devinny et al., 1999; Kummer 

and Thiel, 2008; Frederickson et al., 2013). However, there is a lot of contradictory data and 

many gaps in the knowledge which need to be addressed if biofilters are to be designed to 

effectively control all emissions and to perform efficiently. In particular several authors have 

suggested that media characteristics such as porosity, moisture content, nutrient content, 

temperature and water retention capacity are the most important factors governing biofilter 

performance, although the optimum ranges quoted in the literature vary significantly from one 

author to another (Devinny et al., 1999; Nicolai and Janni, 2001a; Quigley et al., 2004; 

Schlegelmilch et al., 2005; Álvarez-Hornos et al., 2008; Frederickson et al., 2013). Other 

authors suggest that operating parameters such as empty bed residence time (EBRT), 

contaminant loading rate and upflow or downflow configuration are important factors but again 

there seems to be little consensus as to what the optimum ranges are (Leson and Winer, 1991; 

Lu et al., 2002; Chen and Hoff, 2009; Liu et al., 2009). 

Recent studies by Frederickson et al. (2013) and Fletcher et al. (2014) have evaluated the 

performance of laboratory-scale and full-scale biofilters in terms of their capacity for 

simultaneous control of odour and bioaerosols by considering what parameters were vital in 

defining what design, conditions and maintenance schedules were required for optimum 
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performance. However, these studies concluded that the literature contains apparently 

contradictory information regarding the impact of biofilter design and operating parameters 

(such as empty bed residence time, moisture content, media pH and temperature) on odour and 

bioaerosol emissions and removal. This is a major issue for waste management operators and 

regulators as there is no clear guidance in terms of design and operating parameters that would 

provide a robust evidence base against which to benchmark the effectiveness of existing 

biofilters and future abatement system proposals including biofilters. Although bioaersosols 

removal mechanisms by biofilter have been thought to include inertial deposition, diffusional 

(or Brownian) deposition and flow line interception (Ottengraf and Konings, 1991), 

Frederickson et al. (2013) recommended that further research is required to determine the 

relationship between odour and bioaerosol emissions from biofilters to determine the extent to 

which biofilters may be used to effectively reduce both odour and bioaerosols, and to identify 

best practice techniques for optimising biofilters to maximise control of both odour and 

bioaerosol emissions. This is especially necessary because of the differences in the removal 

mechanisms of odour and bioaerosols. Literature suggests that odour removal mechanisms is 

dependent on sorption of the odorous compounds into the biofilm layer on the media surface 

where biodegradation takes place, a function which relies on long residence time; whereas 

bioaerosol removal is achieved via particle impaction onto the media partcles, and so an 

extended residence time may not impact positively on removal (Devinny et al., 1999; Fletcher 

et al., 2014). Thus, it is imperative to develop a better understanding of biofilter design and 

effective performance monitoring techniques especially if they are to continue to control all 

emissions and achieve their full potential. 

This study was aimed at investigating the performance of pilot-scale biofilters for removal of 

bioaerosols from waste airstreams from a materials recovery facility (MRF) which acted as a 

source of bioaerosols. The objectives of this research were: (1) to assess the impact of empty 
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bed residence time (EBRT) on the performance of pilot-scale biofilters in terms of bioaerosol 

reductions; (2) to evaluate the net bioaerosol emitting potentials of biofilters and to assess the 

effect of inlet concentration on bioaerosol control; and (3) to assess size distribution of 

bioaerosol particles in biofilter exhausted air and to relate these to the tidal volume inhaled by 

humans. To achieve these objectives, four groups of bioaerosols were measured including 

Aspergillus fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria. The 

choice of these microorganisms was informed by the need to reflect the range covered in the 

Sniffer report (ER36) on understanding biofilter performance and determining emission 

concentrations under operational conditions (Fletcher et al., 2014) as well as those specified in 

the Technical Guidance Note (M9) for monitoring of bioaerosols at regulated facilities 

(Environment  Agency, 2017). Bioaerosol concentrations were measured in the airstream 

before (inlet) and after (outlet) passing through the biofilters over a period of 11 months. The 

inlet and outlet concentrations were compared to evaluate removal efficiencies, and these were 

also compared with the background concentrations measured upwind of the facility. The 

measurements were carried out using a six-stage Andersen sampler to obtain particle size 

distributions for each of the four bioaerosol groups. This paper also comments on the variability 

in the data and the benefits and limitations of using pilot scale approaches. 

2. Material and Methods 

2.1 Description of Pilot Study Site 

The pilot study was conducted at an enclosed MRF located in Leeds, UK. The building 

dimensions were 100m x 40 m x 15 m to the apex, giving a total volume of 60,000 m3. The 

facility handles approximately 200,000 tonnes of household waste per year from around 

250,000 households across Leeds, Bradford and Calderdale (Holland, 2011). This site was 

chosen because of the potential for significant odour and bioaerosol emissions. Stagg et al. 

(2013), in their study, stated that exposure to microorganisms (bacteria and fungi) in MRFs 
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were considered medium level (between 104 – 105 cfu m-3) and occasionally showed higher 

levels similar to those of animal houses at >105 cfu m-3, and with identified species including 

A. fumigatus which is a known allergen. Hence, this site meets the requirement of providing 

air contaminated with significant levels of bioaerosols required to test the control of bioaerosol 

emissions in this study. 

The plant is enclosed with a large waste reception area, three hand-picking stations, a baling 

area and various bays for collection of woods, electrical materials, plastics, metals, paper and 

bricks.  It combines mechanized and hand-sorting techniques which agitate the waste, 

potentially releasing high concentrations of bioaerosols and odorous volatiles. Various vehicle 

types are operated during the working hours (07:30 and 18:30 daily from Mondays to Fridays, 

and 08:00 to 13:00 on Saturdays) including, forklift trucks, dinosaurus shredders, front loaders 

and waste trucks.  

At the time of this study, the plant had 11 Modular air filtration units containing pre-filters and 

impregnated activated carbon cartridges for dust and odour removal, respectively, which 

recirculate air within the building. Together, the units delivered 2.64 air changes per hour 

(surpassing the recommended industry average of 1.5 air changes per hour), treating a total air 

volume of 158,400 m3 per hour (Varley, 2013). This was done following expert 

recommendation to allow for an increased factor of safety and increased negative pressure to 

contain any fugitive emissions. 

2.2 Description of Pilot-scale Biofilter System  

The pilot-scale biofilter (BF) system (Figure 1 a) was designed to meet odour treatment 

specifications as recommended by Fletcher et al. (2014). This pilot system was adopted from 

the design of Chen and Hoff (2012), and shows some of the key features of a full-scale system 

as described by Janni et al. (2011)and Fletcher et al. (2014). The system is composed of four 
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vertical up-flow plastic reactors filled with wood chips as media (each reactor with length: 66 

cm, breath: 55 cm, depth: 99 cm) connected to a common plenum. Each reactor (Figure 1 b) 

had a 20 cm air-space at the bottom, with a 50 cm biofilter media depth (giving a total biofilter 

media volume of 181.5 L) located above the air-space (for air distribution) separated by a metal 

mesh which supports the media. All four reactors were connected to a common plenum by 

means of 50 mm flexible polyvinyl chloride (PVC) pipes. A high velocity centrifugal fan was 

used to pump contaminated air from the waste hall into the plenum, from where each biofilter 

was air-fed. Lee and Lin (2007) noted that this type of fan had the capacity to handle dirtier air 

streams with higher system resistance. Airflow into each biofilter was measured using the  a 

balometer capture hood (EBT731), and regulated by means of 50 mm ball valves to the average 

of three levels of empty bed residence time tested in this study - 11 s, 16 s and 70 s 

corresponding to flowrates of 16.5 L s-1, 11.3 L s-1 and 2.6 L s-1, respectively. Water was 

supplied to the top of each biofilter with a combination of manual watering and an automatic 

irrigation system connected to a peristaltic pump and socket timer. Irrigation was controlled by 

the look and feel method suggested by Janni et al. (2011) whereby moisture levels were 

monitored to ensure dampness across ½ to ¾ way through the media depth. Leachate from each 

biofilter was collected once a week for the study period; leachate pH was measured using a 

digital calibrated pH-meter. 
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Figure 1: Pilot-scale biofiltration system (a) schematic of four pilot-scale bioreactors and (b) schematic of each reactor with media depth of 0.5m.  
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2.3 Biofilter Operation 

The biofilter system was operated for 11 months from May 2016 to March 2017. A total of 16 

sampling visits were completed; visits 1-6 (summer 2016) and 13-16 (winter 2017) where 

conducted inside the building while visits 7-12 (winter 2016) were conducted outside the 

building. Before sampling commenced, the media in each reactor was allowed to stabilise for 

four weeks following recommendations in literature (Cabrol et al., 2012; Ralebitso-Senior et 

al., 2012). To assess the impact of EBRT on bioaerosol removal, the system was set up inside 

the facility just behind the back-push wall in the waste reception area (Figure 2 a & b). This 

location was selected to place the biofiltration system as close as possible to waste reception 

hall (thereby ensuring constant supply of air contaminated with bioaersols generated from 

agitation of the waste heap) without exposing the researcher to the hazards and risks associated 

with tipping and loading operations as well as moving vehicles within the waste hall. The 

indoor location was also chosen to contain any possible emissions from the biofilters especially 

as negative air pressure was maintained within the waste hall. 

One major concern with biofilters is their potential to act as net emitters of bioaerosols at low 

inlet concentrations due to extra contamination by the filtration process (Ottengraf and 

Konings, 1991). To investigate this, the biofilters were relocated outside the waste hall to an 

external bay (previously used to collect fines – soils, glass, small wood, small stones, ferrous 

and non-ferrous materials – 0 < 10mm) during visits 7 – 12. This location simulated ambient 

conditions as the biofilters were fed with air that had relatively lower concentrations of 

bioaerosols. The understanding was that biofilters would be considered net emitters if outlet 

concentrations were higher than inlet concentrations. 
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Figure 2: (a) Location of the pilot-scale biofiltration system in the waste hall, and (b) the 
arrangement of the reactors behind the back-push wall.  
 
The biofilters were randomly selected to operate at the tested EBRT during which average 

moisture content of  64.7% (40.2 to 70.3%), 62.4 (38.8 to 70.3%), 55.2% (43.3 to 68.9%) and 

59.2% (41.2 to 70.5%) were maintained in BF1, BF2, BF3 and BF4, respectively, all within 

the range recommended by Janni et al. (2011). In order to avoid media compaction and 

clogging, which could lead to the formation of preferential flow paths for air, the media was 
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mixed with a shovel once every three weeks on days other than the sampling days (Sanchez-

Monedero et al., 2003). For each sampling visit, inlet concentrations corresponded to 

bioaerosol samples taken from the common plenum; this was considered representative of the 

concentrations delivered directly to each biofilter. The outlet concentrations from each biofilter 

was taken from the top of each biofilter. In order to ensure the integrity of samples taken, all 

outlet measurements were conducted using methods which isolated treated air exiting the 

biofilters from the effects of ambient contamination within the waste hall. This was done by 

completely covering the outlet (open) end of the biofilters using plastic sheets (Fletcher et al., 

2014).  The biofilters were covered between sampling days to prevent surface contamination, 

during which treated air was released through 20 mm exhaust provided at the top of each 

biofilter cover. On sampling days, it was assumed that the headspace air was the treated air, 

isolated from ambient contamination and so sampling was done immediately after sheeting the 

biofilters. To assess whether outlet bioaerosol concentrations were comparable to the 

background levels, bioaerosol concentrations were measured upwind (i.e. outdoors just at the 

boundary of the site) at a height of 1.8 m above the ground (Environment  Agency, 2017). 

Stagg et al. (2013) reported that the concentration of bacteria and fungi within MRFs were ten 

times the upper levels measured in ambient air. Thus, upwind (background) sampling was 

necessary to give information on the concentration of bioaerosols in the air blowing onto to the 

site (Environment  Agency, 2017) which would then form the basis to assess biofilter 

performance in terms of achieving background (ambient) concentrations. 

2.4 Biofilter Media Selection and characterisation 

Based on the study by Fletcher et al. (2014), it was decided that woodchip be used as biofilter 

media for this study because it is easily available and can be sourced locally; relatively cost 

effective; and has inherent content of nutrients (Devinny et al., 1999) and  naturally harbours 

microbial population (Hellenbrand and Reade, 1992; Tymczyna et al., 2011); thus, eliminating 
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the need for nutrient supply and microbial inoculation, respectively. The woodchips were 

purchased from a local market (Garforth Log Supplies, Peckfield House Farm, Garforth, Leeds, 

UK). Preliminary laboratory tests were conducted to determine the woodchip characteristics 

including appropriate sizing, moisture content (MC), water holding capacity (WHC), porosity 

and bulk density (Table 1).  

Table 1: Characteristics of wood chips used for this study 
Characteristics Units Values for 

this study 
Values for Kafle et al. (2015) 

MWB SWB 
Density kg/m3 225 244.3 200.8 
Porosity % 61.4 59.9 68.4 
Water holding capacity g/g dry weight 1.16 0.84 1.58 
Moisture content % (wet basis) 30 11 14 

MWB – Medium wood bark; SWB – Shredded wood bark 

 

 
Figure 3: Woodchips oversize fractions used for this study. 

The woodchip (as-received) was sized by sieving using the Retsch AS200 Analytical Sieve 

Shaker operated at an amplitude of 60 and a vibration height of 1.8 mm for three minutes. Sieve 

mesh size of 4.75 mm was used to obtain oversize fractions (Figure 3) used in this study. The 

media MC was determined using the oven drying method which entails computing the weight 
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loss following oven drying overnight at 105°C while WHC was determined by soaking the 

woodchips in water for 24 hours followed by oven-drying the woodchip samples for 48 hours 

at a temperature of 105°C (Kafle et al., 2015). Media porosity (voids) was determined by the 

Bucket Method (Nicolai and Janni, 2001b) and bulk density was determined following the 

method of Valter Francescato et al. (2008). 

2.5 Air Sampling and Microbiological Analysis 

In this study, a six-stage Andersen sampler was used to collect air samples at the various 

sampling points.  The choice of this sampler was informed by the need to obtain both 

concentration and particle size data as with the study by Stagg et al. (2010). Bioaerosols 

detection and quantification were achieved by selective agar and visual identification. The 

microorganism category, specific agar type, supplements added, incubation temperatures and 

times for the bioaerosols are shown in Table 2. 

Table 2: Incubating conditions for specific bioaerosols tested 
Bioaerosol 
Group 

Agar Supplements Incubation 
Temperature 

Incubation 
Time 

Aspergillus 
fumigatus 

20 g L-1 each of malt 
extract agar and 
bacteriological agar 

Streptomycin, 50 mg L-1; 
Novobiocin, 10 mg L-1 

40°C 48 hours 

Total fungi 20 g L-1 each of malt 
extract agar and 
bacteriological agar 

Streptomycin, 50 mg L-1; 
Novobiocin, 10 mg L-1 

40°C 48 hours 

Total 
mesophilic 
bacteria 

14 g L-1 nutrient agar 
and 10 g L-1 
bacteriological agar 

Cycloheximide, 100 mg 
L-1 

37°C 48 hours 

Gram 
negative 
bacteria 

52 g L-1 Mac Conkey 
agar No 1 

Cycloheximide, 200 mg 
L-1 

37°C in the 
dark 

3 – 7 days 

 
A total of 16 sampling visits were completed, during which the six-stage Andersen sampler 

was used to collect air samples at the inlet (common plenum) and outlet of each biofilter for 

each of the microorganism categories of interest. Two replicate samples were collected at each 

point for each of the bioaerosol groups studied. Air was pumped through the sampler at a rate 

of 28.3 L min-1 with a sampling time of 1 min to avoid overloading the Petri dishes containing 
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the selective media for the bioaerosols. The Environment  Agency (2017) recommended that 

sampling time should reflect the likelihood of overloading plates (>300 colonies). Preliminary 

sampling on this site indicated plate overload even with sampling times of 3 to 5 mins; hence, 

the decision for further reduction to 1 min. Bioaerosol concentrations are known to fluctuate 

dramatically within a short time (Searl, 2008), and also depending on the activities within the 

waste hall (Stagg et al., 2013). Thus, the results of this study should be interpreted with caution 

as there may be uncertainties in the representativeness of the measured concentrations relative 

to actual exposure conditions due to periodic differences in activities. Moreover, it is estimated 

that < 10% of bioaerosols are viable (Blomquist, 1994; Swan et al., 2003); thus, there may be 

an underestimation of actual concentrations. After the incubation period, the number of 

colonies were counted. A positive-hole correction was done to adjust colony counts in 

accordance with the recommendations of Macher (1989). The results were expressed as means 

of duplicate samples taken in colony forming units per cubic metre of air (cfu m-3). The limit 

of detection of the sampler was less than 102 cfu m-3. 

2.6 Biofilter Performance Evaluation 

The performance of the biofilters was evaluated on the basis of removal efficiency (RE in %) 

calculated using the following equation: 

RE = ቀ࢚࢛ି ቁ × 100 

where, Cin: inlet bioaerosol concentration; Cout: outlet bioaerosol concentration. The air 

sampler design also allowed for size distribution of the collected bioaerosols according to their 

aerodynamic behaviour. This was obtained by summing up the corrected colony counts on each 

stage of the sampler and grouping according to the manufacturer’s aerodynamic information 

for stages 1 (sampler inlet) to 6 (sampler outlet) as 7.0, 4.7, 3.3, 2.1, 1.1 and 0.65 µm, 

respectively. 
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2.7 Data Analysis 

All statistical analysis were carried out in the IBM SPSS Statistics for Windows (Released 

2015. Version 23.0. Armonk, NY: IBM Corp., USA) and graphs generated using Origin 

(OriginLab, Northampton, MA, USA). Table 3 presents a summary of mean counts and 

standard deviations of measured concentrations of bioaersols. Normality of bioaerosol 

concentrations was assessed using the Shapiro-Wilk test. All statistics were carried out on 

original bioaerosol concentrations rather than the calculated RE. Differences in mean 

bioaerosol concentration for the background, BF inlet and all BF outlets were assessed using 

the one-ANOVA/Welch ANOVA, regardless of whether or not the assumption of normality 

was met. In all cases, the assumption of homogeneity of variances was violated, as assessed by 

Levene’s test for equality of variances (p < 0.05) for all groups of bioaerosols. 

For visits 1-6, Welch ANOVA followed by Games-Howell post hoc analysis indicated 

statistically significant differences (p < 0.05) between the inlet samples and all outlet samples 

as well as background concentration of A. fumigatus, total fungi and total mesophilic bacteria. 

There was no statistically significant difference between the inlet and outlet concentration of 

Gram negative bacteria (p = .178). For visits 7-12, there was no statistically significant 

difference between the mean concentrations of background, inlet and all outlets samples of A. 

fumigatus (p = 0.054) and Gram negative bacteria (p = 0.776) as assessed by Welch ANOVA. 

However, Games-Howell post hoc analysis showed statistically significant differences between 

the inlet concentration and outlet concentrations of BF2 (p = 0.05) and BF4 (p = 0.047) for 

total fungi as well as between inlet and outlet samples of BF1 (p = 0.01) and BF3 (p = 0.021) 

for total mesophilic bacteria. For visits 13-16, there were significant differences only between 

inlet and background concentrations of total fungi (p = 0.048) and total mesophilic bacteria (p 

= 0.028). 
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Table 3: Mean bioaerosols counts and standard deviations (SD) in cfu m-3 

V
is

it
 Aspergillus Fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Background* Inlet* Outlet** Background* Inlet* Outlet** Background* Inlet* Outlet** Background* Inlet* Outlet** 
Count SD Count SD Count SD Count SD Count SD Count SD Count SD Count SD Count SD Count SD Count SD Count SD 

1 3.3 × 
102 

26 9.7 × 
103 

79 1.4 × 
103 

532 4.5 × 
102  

32 1.2 × 
104 

380 1.8 × 
103 

584 8.8 × 
102 

75 1.1 × 
104 

1284 3.8 × 
103 

1317 7.0 × 
102 

46 6.9 × 
103 

1050 1.3 × 
103 

602 

2 1.2 × 
102 

12 1.2 × 
104 

1045 2.7 × 
103 

1032 2.2 × 
102 

10 1.5 × 
104 

1466 3.2 × 
103 

1251 6.0 × 
102 

65 5.3 × 
103 

4089 8.2 × 
103 

3260 3.6 × 
102 

55 2.4 × 
103 

188 2.5 × 
103 

620 

3 1.5 × 
102 

80 1.0 × 
104 

1412 4.2 × 
103 

6661 1.9 × 
102 

99 1.3 × 
104 

663 4.8 × 
103 

7464 6.2 × 
102 

18 5.9 × 
103 

76 2.9 × 
103 

1937 3.9 × 
103 

323 2.5 × 
104 

438 3.6 × 
103 

1543 

4 1.8 × 
102 

71 7.4 × 
103 

1981 1.7 × 
103 

1675 1.9 × 
102 

18 9.3 × 
103 

2159 2.2 × 
103 

1764 7.4 × 
102 

141 2.3 × 
104 

896 4.6 × 
103 

3467 2.1 × 
103 

281 6.4 × 
103 

131 3.4 × 
103 

945 

5 9.8 × 
102 

231 8.1 × 
103 

383 1.0 × 
103 

237 1.1 × 
103 

214 1.0 × 
104 

935 1.6 × 
103 

224 2.6 × 
103 

113 1.3 × 
104 

6627 1.9 × 
103 

940 2.4 × 
103 

44 1.9 × 
104 

9698 6.1 × 
103 

1912 

6 3.0 × 
102 

18 3.8 × 
103 

1094 1.1 × 
103 

317 3.5 × 
102 

35 4.8 × 
103 

1544 1.3 × 
103 

326 1.8 × 
104 

10226 1.3 × 
104 

832 3.2 × 
103 

1681 1.5 × 
104 

12633 5.6 × 
103 

765 4.4 × 
103 

2564 

7 1.1 × 
103 

398 1.1 × 
103 

286 1.9 × 
102 

116 1.5 × 
103 

800 1.5 × 
103 

413 4.1 × 
102 

306 2.6 × 
103 

396 5.0 × 
103 

2399 1.8 × 
103 

917 4.8 × 
103 

1406 3.6 × 
103 

822 1.7 × 
103 

565 

8 6.2 × 
102 

548 1.4 × 
103 

288 93 53 6.2 × 
102 

548 1.8 × 
103 

382 1.1 × 
102 

62 1.2 × 
103 

253 9.3 × 
103 

719 1.6 × 
103 

478 3.6 × 
103 

1979 2.2 × 
103 

565 1.7 × 
103 

732 

9 7.1 × 
102 

35 9.6 × 
102 

106 57 35 1.1 × 
102 

71 1.2 × 
103 

198 66 37 4.0 × 
103 

2670 2.6 × 
103 

330 1.6 × 
103 

818 1.4 × 
103 

737 5.0 × 
102 

359 1.1 × 
103 

598 

10 7.1 × 
102 

35 6.8 × 
102 

216 6.8 × 
102 

139 7.8 × 
102 

35 9.1 × 
102 

201 7.1 × 
102 

138 1.4 × 
103 

120 6.5 × 
102 

159 1.5 × 
103 

513 1.5 × 
103 

910 1.7 × 
103 

636 1.3 × 
103 

374 

11 1.4 × 
102 

35 1.1 × 
102 

106 44 66 1.9 × 
102 

18 1.6 × 
102 

124 80 82 2.9 × 
103 

443 1.6 × 
103 

30 1.6 × 
103 

735 5.7 × 
102 

143 1.0 × 
103 

323 2.3 × 
103 

1155 

12 1.6 × 
102 

53 53 18 97 66 1.9 × 
102 

88 1.8 × 
102 

71 97 66 1.3 × 
103 

35 1.6 × 
103 

472 9.8 × 
102 

404 1.5 × 
103 

201 1.2 × 
103 

198 7.8 × 
102 

394 

13 9.1 × 
102 

164 1.1 × 
104 

4488 3.8 × 
102 

481 1.3 × 
103 

147 1.5 × 
104 

6115 6.5 × 
102 

983 3.7 × 
103 

1076 1.4 × 
104 

2949 2.4 × 
103 

1120 2.0 × 
103 

528 5.9 × 
103 

1756 2.1 × 
103 

632 

14 2.1 × 
102 

35 2.1 × 
104 

479 1.1 × 
104 

8454 7.3 × 
102 

194 4.1 × 
104 

3827 1.6 × 
104 

12982 8.2 × 
102 

216 6.0 × 
104 

3767 3.0 × 
104 

12969 1.7 × 
103 

230 1.0 × 
104 

7943 2.9 × 
104 

17064 

15 8.9 × 
102 

37 1.0 × 
104 

1988 4.2 × 
103 

1090 1.1 × 
103 

94 1.2 × 
104 

2072 5.7 × 
103 

1408 6.9 × 
102 

53 4.7 × 
104 

1276 2.2 × 
104 

10116 1.2 × 
103 

104 2.6 × 
104 

14846 2.1 × 
104 

13616 

16 6.0 × 
102 

35 5.3 × 
104 

9154 3.4 × 
104 

4122 8.9 × 
102 

111 6.3 × 
104 

11843 4.0 × 
104 

5448 5.2 × 
103 

300 9.6 × 
104 

25016 5.1 × 
104 

22975 2.3 × 
103 

945 2.8 × 
104 

4620 1.3 × 
104 

5011 

SD: Standard Deviation; * n = 2; ** n = 8   
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3. Results and Discussion 

3.1 Operating Conditions 

The operating conditions of each biofilter for the period have been summarised in table 4 . The 

impact of empty bed residence time was assessed during the first six sampling visits by 

comparing the outlet bioaoerosol concentration for the four biofilters. During the first three 

sampling visits the biofilters were all adjusted to run at an average empty bed residence time 

of 16 s. An assessment of the outlet bioaerosol concentrations showed that there were no 

outliers and the data was normally distributed for each group as assessed by Shapiro-Wilk test 

(p < .05). However, there was heterogeneity of variances for A. fumigatus (p = .003) and total 

fungi (p = .004) as assessed by Levene’s test of homogeneity of variance; there was no 

statistically significant differences in the outlet concentrations of A. fumigatus (p = .433) and 

total fungi (p = .482) from all four biofilters as assessed with Welch ANOVA. One way 

ANOVA also indicated that there was no statistically significant difference in the outlet 

concentrations for total bacteria (p = .670) and Gram negative bacteria (p = .594).  

For visits 4-6, BF1 and BF4 were randomly selected to operate at an average EBRT of 70 s 

while BF2 and BF3 had an average EBRT of 11 s. This was done to assess whether there were 

contact time dependent significant differences in the measured outlet bioaerosol concentrations 

between the two groups of biofilters. Welch ANOVA indicated that there was no statistically 

significant difference between all outlet concentrations for A. fumigatus (p = .407), total fungi 

(p = .425) and total bacteria (p = .243). For Gram negative bacteria, one way ANOVA also 

showed no statistically significant difference (p = .148) in the outlets from the four biofilters. 

In summary, there was no significant difference in the performance of the biofilters when 

operated under varying conditions of EBRT. Limited statistical power due to the modest 

sample size in this study (n = 64) may have played a role in limiting the significance of some 

of the statistical comparisons carried out (Cornish, 2006). Post hoc power analysis, with power 
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(1 – ȕ) set at 0.90 and Į = 0.05, indicated that sample size would have to increase up to 95 

samples for group differences to reach statistical significance at the 0.05 level. 

Table 4: Operating conditions of the biofilters (BF) when operated within (visits 1-6, 13-16) 
and outside (visits 7-12) the building 

Parameter Visits 
1-6 7-12 13-16 

     Mean inlet air temperature (ºC) 23.8 15.8 15.2 
BF1 Leachate pH range 5.19 - 6.52 6.52 - 7.0 6.83 - 7.04 

Mean EBRT (s) 16, 70 16 16 
Mean Airflow rate (L min-1) 681, 156 681 681 
Mean media temperature (ºC) 19.5 15.1 13.8 
Mean outlet air temperature (ºC) 21.8 13.1 14.5 

BF2 Leachate pH range 5.12 - 6.64 6.62 - 7.52 6.56 - 7.38 
Mean EBRT (s) 16, 11 16 16 
Mean Airflow rate (L min-1) 681, 990 681 681 
Mean media temperature (ºC) 20.3 13.9 13.6 
Mean outlet air temperature (ºC) 21.4 13.8 14.5 

BF3 Leachate pH range 6.17 - 7.04 6.98 - 7.34 6.77 - 7.37 
Mean EBRT (s) 16, 11 16 16 
Mean Airflow rate (L min-1) 681, 990 681 681 
Mean media temperature (ºC) 21.2 14.5 15.3 
Mean outlet air temperature (ºC) 21.4 13.0 14.6 

BF4 Leachate pH range 5.55 - 6.53 6.43 - 7.44 6.95 - 7.21 
Mean EBRT (s) 16, 70 16 16 
Mean Airflow rate (L min-1) 681, 156 681 681 
Mean media temperature (ºC) 21.2 14.6 16.1 
Mean outlet air temperature (ºC) 21.1 13.5 14.3 

 

Odour control function of biofilters is dependent on the activity of microbial population within 

the media. These microorganisms thrive at pH range of 6.5-8 which must be maintained within 

the internal environment of the biofilter (Wani et al., 1997; Schnelle and Brown, 2002). 

However, to evaluate the performance for bioaerosol control, the biofilters were operated 

without any supplementary attempts to alter the pH which was in the range of 5.12 – 7.52 for 

all four biofilters. Also, no adjustments were made to alter the media temperature especially as 

these were within the optimal levels (10 – 40 ºC) recommended for biological treatment 

systems (Schnelle and Brown, 2002).  
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3.2 Removal Efficiency 

The first set of results considers the removal efficiency of the biofilters under conditions of 

high inlet bioaerosol concentrations under summer (visits 1-6) and winter (visits 13-16) 

conditions. Figure 4 shows the RE and concentrations of each group of bioaerosols sampled at 

the different sampling points (background, biofilter inlet and outlets) plotted against the site 

visits conducted for this study. There was no significant difference between the performances 

of the four pilot-scale biofilters (Section 3.1), hence the REs were computed using the mean 

outlet concentrations from the four reactors for each visit.  

 
Figure 4: Removal efficiency and corresponding background, inlet and outlet concentrations 
of (a) A. fumigatus, (b) total fungi, (c) total mesophilic bacteria and (d) Gram negative bacteria 
in cfu m-3 when biofilters were operated within the building. (Error bars = standard deviation). 
 
During visits 1 – 6, inlet A. fumigatus concentration ranged from 3.8 × 103 to 1.2 × 104 cfu m-

3 for which the biofilters achieved RE of 60 – 88%, giving outlet concentrations between 1.0 × 

103 to 4.2× 103 cfu m-3. Similarly, the biofilters achieved RE of 65 – 85% for total fungi with 
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inlet concentration in the range of 4.8 × 103 to 1.5 × 104 cfu m-3 and delivering outlet 

concentrations between 1.3 × 103 to 4.8 × 104 cfu m-3. A. fumigatus particles constituted 

approximately 80% of the total fungi particles, comparable to the study of Millner et al. (1977) 

who reported that A. fumigatus made up 75% of the total viable mycoflora captured on the 

compost site studied. For this same period, slightly lower RE of 52 – 86% was recorded for the 

total mesophilic bacteria with outlet concentration of 1.9 × 103 to 8.2 × 103 cfu m-3 from inlet 

concentration 5.9 × 103 to 5.3 × 104 cfu m-3 while the biofilter achieved a much lower RE of -

4.1 to 86% for Gram negative bacteria, treating inlet concentration between 2.4 × 103 to 2.5 × 

104 cfu m-3. The data suggest that variation of empty bed residence time (between 11 s, 16 s 

and 70 s for this study) did not influence RE for the four groups of bioaerosols measured. This 

observation is supported by data presented by Sanchez-Monedero et al. (2003) which showed 

that RE for A. fumigatus did not appear to be related to the gas phase residence times of 

biofilters which operated in the range of 29 - 97s, and achieved RE > 90%. Similarly, no 

relationship was found between gas phase residence time and the RE for mesophilic bacteria 

(highest: 89.6% at 36s, and lowest: 39.1% at 37s), suggesting that gas phase residence time 

may not play a significant role in the capture of aerosolised bacteria and fungi.  

Leson and Winer (1991) recommended typical residence times of 25 - 60s for commercial or 

industrial biofilter applications for odour and low volatile organic compound (VOC) 

abatement, and gas phase residence times less than 23s have been shown to cause resistance of 

the transfer of hydrogen sulphide from the gas phase into the biofilm layer of the media (Yang 

and Allen, 1994). It therefore suggests that significant bioaerosol RE is achievable across a 

range of EBRTs that can deliver both poor and optimum odour control. Martens et al. (2001) 

in their research suggested that bioflters which were excellent odour abatement systems emitted 

slightly more bioaerosols particles. However, they could not establish any relationships 

between the removal efficiencies of the odour/ammonia and bioaerosols for the five filter 
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materials (i.e. biochips, coconut-peat, wood-bark, pellets & bark, and compost) tested. 

Bioaerosol capture mechanisms include inertial deposition, diffusional or Brownian deposition 

and flow line interception (Ottengraf and Konings, 1991); and these combine to effect 

bioaerosol impingement on the solid media material such that as bioaerosol-laden air sweeps 

through the media bed, the particles get deposited within the media, a function which may not 

be dependent on gas contact time. This further suggests that a low EBRT biofilter which may 

not favour odour control may actually achieve significant bioaerosol control. However, this 

observation may have been influenced by the small sample size and the variability in the 

dataset, and so valid conclusions would require an extensive study with a larger sample size. 

Nonetheless, Fletcher et al. (2014) argued that it may not be possible to achieve simultaneous 

significant control of odour and bioaerosols within a single biofilter as the mechanisms 

involved in the removal of these two pollutants are different. They also noted that bioaerosol 

removal may be enhanced by increasing airflow which decreases the EBRT. 

In winter conditions (visits 13 – 16), the sampling yielded REs of 60% (35 – 97%), 61% (35 – 

96%), 58% (47 – 83%) and 51% (18 – 71%) for A. fumigatus, total fungi, total mesophilic 

bacteria and Gram negative bacteria, respectively. It was observed that the inlet concentrations 

during visits 13 – 16 (winter) were significantly higher (p < .05) than during visits 1 – 6 

(summer), up to 5.3× 104 cfu m-3, 6.3 × 104 cfu m-3, 9.6 × 104 cfu m-3 and 1.0 × 105 cfu m-3 for 

A. fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria, respectively. It 

is unclear why this was so, especially as bioaerosols concentrations tend to be higher in summer 

for most waste management facilities (Stagg et al., 2010). However, it was observed that the 

volume of waste heap in the waste reception area were greater in the winter than in summer, 

thus, there were increased activity of the front loaders and dinosaurus machine to feed the 

conveyors while clearing the area for incoming loads. Searl (2008) noted that bioaerosol 

concentrations can fluctuate over short periods, and increased activity levels within the waste 
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facility may be associated with higher bioaerosol exposure. Thus, the higher winter 

concentrations in this study could be a function of the increased activities due to huge volume 

of waste being processed. Furthermore, Nasir and Tyrrel (2017) concluded that bioaerosol 

emissions from waste treatment facilities can be highly variable and characterisation based on 

snapshot and infrequent sampling may not give a true reflection of the magnitude of emissions. 

Most waste management facilities have as part of their permit condition the need to 

demonstrate that they can meet required emissions limit values. In this study, in spite of the 

high REs achieved during summer and winter (> 80%), the measured outlet concentrations still 

exceed background (upward) concentration, and are often in excess of the guideline provided 

in the EA position statement and so might be of concern to site workers and members of public 

living in the vicinity of site if these were operated at full scale.  

3.3 Potential for emissions from biofilters 

As earlier noted, one of the key concerns with biofilters has been their potential to act as net 

emitters of bioaerosols – this being one of the major concerns for regulators and operators 

(Fletcher et al., 2014). During sampling visits 7 - 12, the biofiltration system treated relatively 

less polluted air with inlet concentrations in the range of 53 to 1.4 × 103 cfu m-3, 1.6 × 102 to 

1.8 × 103 cfu m-3, 6.5 × 102 to 9.3 × 103 cfu m-3 and 5.0 × 102 to 3.6 × 103 cfu m-3 for A. 

fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria, respectively. The 

results in Figure 5 show that REs drop significantly and in some cases become negative with 

values as low as -83% (A. fumigatus), -122% (total mesophilic bacteria) and -128% (Gram 

negative bacteria). The negative removal efficiencies are indicative of a greater concentration 

leaving the biofilter than entering and are thought to result from microorganisms (a) passing 

through the media, and/or (b) growing within the media and released from it (Sanchez-

Monedero et al., 2003). Fletcher stated that approximately 107 microorganisms/g colonise 

media surfaces; and some of these could become mobilised as air passes through the biofilter 
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and so may result in higher concentration of bioaersols in treated air than in untreated air (Rabe 

and Becker, 2000). Martens et al. (2001) also added that this may still occur even if the packing 

material can somewhat contain the bioaerosol in contaminated; thus, suggesting some 

contribution to the emitted bioaerosol concentration from the media microorganisms. 

Laboratory scale studies by Frederickson et al. (2013) also suggested that woodchips and peat 

based biofilters  could be net emitters of total mesophilic bacteria and gram-negative bacteria. 

 
Figure 5: Removal efficiency and corresponding background, inlet and outlet concentrations 
of (a) A. fumigatus, (b) total fungi, (c) total mesophilic bacteria and (d) Gram negative bacteria 
in cfu m-3 when biofilters were operated outside the building. (Error bars = standard deviation). 
 
3.4 Relationship between RE and inlet concentration 

The relationship between the log10 of inlet bioaerosol concentration and the removal efficiency 

was investigated through a linear regression analysis using data from all visits (Figure 6). A 

statistically significant relationship was found for total mesophilic bacteria and Gram negative 

bacteria where, p <.0005 was found for both intercept and slope coefficient; log10 of inlet 
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concentration accounted for 35.5% and 37.0% of the explained variability in the RE for total 

mesophilic bacteria and Gram negative bacteria, respectively. On the other hand, a statistical 

relationship could not be obtained for A. fumigatus (intercept [p = .213]; slope coefficient [p 

<.0005]) and total fungi (intercept [p <.0005]; slope coefficient [p = .290]) where log 10 of 

inlet concentration accounted for only 15.6% and 1.8% of the explained variability for A. 

fumigatus and total fungi, respectively. This indicates a much better reliability of the regression 

model for total mesophilic bacteria and Gram negative bacteria removal when compared to A. 

fumigatus and total fungi. This also suggests that differences exist between the ability of the 

biofiltration system to deal with fungi and bacteria, and these may be related to particle size 

(Sanchez-Monedero et al., 2003; Frederickson et al., 2013). Figure 6 also shows a higher 

variability in performance at low inlet concentration than at high inlet concentration especially 

for A. fumigatus, total mesophilic and Gram negative bacteria. This may be that biofilters 

receiving low inlet concentrations perform more poorly than when they receive waste gas with 

high inlet concentrations. However, it may be that there is always a small emission rate from a 

biofilter, but this only becomes apparent when the inlet concentration is low; when inlet 

concentrations are high the removal may be the dominant process, with any emissions masked 

by this high removal rate. Martens et al. (2001), in their study on biofiltration of a pig facility, 

explained that microbial loads emitted from biofilters are a summation of non-impacted 

microorganisms retained in the treated process air and those blown off from the surface of the 

media particles by the passing airstream, thus, suggesting the possibility of that the species 

composition of the outlet air may be different from those of the inlet even for this study. 

Nonetheless, this is a promising result since the reality for most facilities would be high inlet 

concentrations, unless they have an upstream scrubber which reduces the concentration in the 

air before entering the biofilter bed (Fletcher et al., 2014). 
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Figure 6: Linear regression between log of inlet bioaerosol concentration and removal 
efficiency.  
 
3.5 Size distribution of bioaerosols 

To further evaluate the potential impact of the outlet air in a real life scenario, it was imperative 

to assess size distribution of bioaerosols in biofilter exhausted air and to relate these to the tidal 

volume inhaled by humans. Particles collected on the various stages of the Andersen sampler 

represent a profile of their lung penetration, and so is indicative of the location of their 

deposition in the human respiratory tract (Andersen Instruments, 1984).  Stages 1 and 2 of the 

sampler collect particles with aerodynamic diameter > 4.7 µm, which equates to nasal 

deposition, stages 3 and 4 collects particles with aerodynamic diameter 2.1 to 4.7 µm, which 

equates to bronchial deposition, and stages 5 and 6 collects particles < 2.1 µm, which equates 

to alveolar deposition. These correspond to the inhalable, thoracic and respirable fractions, 

respectively, described in TSI Incorporated (2013).  
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Figure 7: Background, inlet and outlet percentage particle size distribution for (a) A. fumigatus, 
(b) total fungi, (c) total mesophilic bacteria and (d) Gram negative bacteria. Data based on the 
ten indoor sampling visits 1-6, 13-16. Outlet composition represented by BF1, BF2, BF3, BF4. 

 

Figure 7 shows the variation in size distribution of bioaerosol particles collected at the different 

stages of the six-stage Andersen sampler. The size distribution was computed by taking into 

account all the samples taken during sampling visits 1 - 6 and 13 - 16 (when the biofilters were 

located indoors) from the background, inlet and all four biofilters’ outlets. More than 60% of 

background A. fumigatus and total fungi particles were sized > 2.1 µm in aerodynamic 

diameter. On the other hand, background Gram negative bacteria had ~ 50% of particles in this 

range, but when considering total mesophilic bacteria, the proportion of particles in this range 

was slightly < 50% of a concentration of 6.2 × 102 to 1.8 × 104 cfu m-3. All four biofilter outlets 

had ~ 40% of A. fumigatus (outlet concentration: 3.8 × 102 to 3.4 × 104 cfu m-3) and total fungi 

(outlet concentration: 6.5 × 102 to 4.0 × 104 cfu m-3) particles with aerodynamic diameter < 2.1 
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µm, similar to their background composition. This is in contrast to the inlet samples that had ~ 

20% of A. fumigatus particles (inlet concentration range: 3.8 × 103 to 5.3 × 104 cfu m-3) and 

total fungi (inlet concentration range: 4.8 × 103 to 6.3 × 104 cfu m-3) particles < 2.1 µm, 

respectively. For total mesophilic bacteria (with inlet concentration range of 5.9 × 103 to 9.6 × 

104 cfu m-3), the inlet samples had ~ 50% particles < 2.1 µm while the outlet samples were 

composed of ~ 70% of particles in this range (outlet concentration 1.9 × 103 to 5.1 × 104 cfu 

m-3). Inlet and outlets particle size distributions for Gram negative bacteria were comparable 

with ~ 60% of particles < 2.1 µm, except for biofilter 4 that was slightly less than 60%. 

Overall, the exhausted (outlet) air appears to have smaller particles than the air entering the 

system even with significantly high REs recorded when the biofiltration system was operated 

indoors. This could possibly result from the filter bed preferentially trapping the larger sized 

particles from the gas flow, and/or these may just be the size range emitted from the biofilters 

(Sanchez-Monedero et al., 2003). However, as these pilot-scale biofilters achieved outlet 

concentrations predominantly in the range of 102 – 103 cfu m-3, these concentrations would 

further be reduced (by wind dilution) downwind in full-scale applications. Williams et al. 

(2013), in a study to provide evidence on bioaerosol production, dispersion and potential 

exposures from four different composting facilities within England, reported peak total bacteria 

concentrations of > 106 cfu m-3 immediately downwind of the sites in comparisons to the < 103 

cfu m-3 recorded upwind. However, the concentrations were noticed to decline at locations 

further downwind of the sites which is in agreement with the view that bioaerosol 

concentrations levels tend to reach background levels within 250m of their point of origin 

(Pankhurst et al., 2011). Nonetheless, it may also not be possible to make this generalisation 

especially as these concentrations were measured at pilot scale within the waste hall, and so 

impact of fugitive emissions and other outdoor sources (Taha et al., 2004; Parry, 2018) were 

not assessed downwind of site and/or close to sensitive receptors.  
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For all sampling points, both A. fumigatus and total fungi showed a maximum particle size 

distribution at stage 4 corresponding to an average aerodynamic diameter between 2.1 and 

3.3µm, according the specification of the sampler. Total mesophilic bacteria and Gram 

negative bacteria size distribution both showed a maximum at stage 5 corresponding to an 

average aerodynamic diameter between 1.1 and 2.1 µm. These observations are in comparison 

to those of Sanchez-Monedero et al. (2003) who stated that this would imply a much better RE 

for the fungal spores; however, that size difference alone would not be sufficient to explain the 

observed difference in REs of fungi and bacteria measured in their study as well as in this 

study. Particle shape has also been suggested as having a key influence on particle retention 

(Willeke et al., 1996); and for particles with aerodynamic diameter < 1 µm, Sanchez-Monedero 

et al. (2003) suggested that electrostatic charge on the particles may also influence particle 

deposition on the biofilter media.  

Bioaerosol particle size plays a key role in their dispersion in air and subsequent potential risk 

upon exposure via inhalation (Ferguson et al., 2017). Kell et al. (1998) argued that the potential 

for harmful effects by bioaerosols, upon deposition, is dependent on the number of culturable 

organisms, and not the culturable particles. Ferguson et al. (2017) reported that bacterial 

community structure and abundance were size related. They argued that since viable bacterial 

bioaerosols could exist either as single cells, small aggregates of cells or conglomerates of 

cells, then bacterial bioaerosols in stages < 3.3 µm were single cells while those in stages > 3.3 

µm were either conglomerates of bacterial cells or cells attached to larger particles e.g. water 

droplets or dust. This latter group also showed more abundance and diversity with the highest 

levels found in the largest (>7 µm) size class. Thus, with predominantly lower size class in the 

outlet air, the potential to cause ill health from exposure would be determined by a knowledge 

of the species composition of the samples which was beyond the scope of this study. 
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Comparison of maximum outlet to inlet respirable fractions of bioaerosols shows a ratio of 

1:0.8 for both A. fumigatus and total fungi. This implies that more fungi particles in this size 

class were released from the biofilters than received with outlet concentrations of 1.4 × 104 cfu 

m-3 and 1.6 × 104 cfu m-3 for A. fumigatus and total fungi, respectively. On the contrary, total 

mesophilic bacteria showed a 1:1.3 ratio of outlet to inlet respirable particles while Gram 

negative bacteria had a 1:3.4 outlet to inlet respirable faction ratio. This indicates that the 

biofilters were better at controlling this fraction of bacterial particles which represent a greater 

human health risk as they can penetrate the respiratory system more deeply and even to the 

lung alveoli where gaseous exchange occurs.  

Currently, there are no occupational exposure limits for bioaerosols in the UK; comparisons 

are usually made with other studies and publications on typical concentrations for similar 

facilities (Stagg et al., 2013). Malmros et al. (1992) suggested that waste workers should not 

be exposed to concentrations of total bacteria exceeding 5000 to 10000 cfu m-3 for an 8 hour 

working period; thus, the concentrations reported for this facility present potential health risks 

to the workers on this site. The study by Stagg et al. (2013) on seven materials recycling facility 

within the UK indicated similar concentrations observed in this study, and at those 

concentrations several health problems were triggered including skin symptoms, respiratory 

symptoms, and gastrointestinal symptoms. However, workers’ health impact assessment was 

outside the scope of this study. Nonetheless, the respiratory-related symptoms observed in the 

study by Stagg et al. (2013) can be a function of the lung penetrability of the bioaerosol particles 

generated at the various operational activities within the waste hall. This study indicates that 

approximately 20%, 20%, 50% and 60% of indoor concentrations of A. fumigatus, total fungi, 

total mesophilic bacteria and Gram negative bacteria, respectively, were respirable fractions 

(with aerodynamic diameter < 2.1µm), and so could penetrate deep into the lungs. 
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Tidal volume, which is the volume of air inspired or expired during a respiratory cycle (Quanjer 

et al., 1993), is  approximately 500ml and at rest a normal human being has 12 breaths per 

minute (Meka and Van Oostrom, 2004). For an 8-hour working period a normal person 

working continuously in the vicinity of the biofilters may beinhaling 2.88 m3 of air containing 

approximately 3.9 × 104 cfu of A. fumigatus, 4.6× 104 cfu of total fungi, 1.0 × 105 cfu of total 

mesophilic bacteria and 5.0 × 104 cfu of Gram negative bacteria respirable fractions. However, 

these values represent the maximum concentrations recorded during this study, and do not 

typify the outlet concentration ranges. Nonetheless, it is estimated that < 10% of all bioaerosols 

may be culturable (Blomquist, 1994; Swan et al., 2003), the remainder possibly being 

composed of either viable non-culturable cells or dead but intact cells which may still pose 

health concerns (Pearson et al., 2015). Thus, the reality might be that the actual bioaerosol 

concentration emitted by the biofilters may be higher than measured, and may contain species 

or cell components that are not detected, which still require consideration in health impact 

assessment (Eduard et al., 2012). Even with the measured outlet concentrations, it is expected 

that further reduction by microbial inactivation due to environmental stresses (such as 

desiccation, temperature and oxygen) (Hurst et al., 2007), and wind dilution and dispersion (as 

they are blown off the site) would be achieved in full-scale applications. 

3.6 Applicability of Results  

The application of a pilot scale biofilter in this study has provided new insights into bioaerosols 

removal including relationships between operating parameters, removal efficiency, size 

distribution of microorganism in air and potential for emissions. The application of the pilot 

scale biofilter within an MRF facility provided an opportunity to collect data that is closer to 

real-world biofilter operation than a highly controlled laboratory study. However it should be 

noted that this brings with it some uncertainties and limitations and hence the results of this 

study may not allow for generalisation of conclusions for various reasons.  
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Although biofilters have been applied to MBT plants (Stagg et al., 2013), they are less common 

in MRF plants. These facilities are generally fairly clean and do not have the levels of organic 

dust and odour found in facilities such as in-vessel composting (IVC) (Surrey County Council, 

2017) where biofilters are likely to be better suited. The location of the pilot system (away from 

the waste heap behind the back-push wall) is another factor which could have impacted on the 

results especially as this area was relatively cleaner than other areas within the waste hall. For 

these reasons, the measured bioaerosol concentrations have to be considered relative to those 

levels typical in facilities that generate much higher concentrations, and it is not clear whether 

the same findings would be apparent under much higher bioaerosols loads. Nonetheless, this 

study was based in this MRF to enable the evaluation of the system with the real source of 

bioaerosols associated with this type of waste being processed, and hence the findings are likely 

to be applicable to other comparable MRF facilities.  

Secondly, the sampling methods employed in this study were targeted at assessing total 

bioaerosol loads removal by biofilters, and bioaerosols size distributions, rather than 

specifically identified pathogenic species which would have been more relevant for 

occupational exposure risk assessment. Literature suggests that some of the species released at 

the outlet may in fact have originated from within the biofilter (Martens et al., 2001; 

Frederickson et al., 2013) and so techniques such as this that focus more on the general 

microbial concentrations may miss out important trends that should be studied 

complementarily. It was also technically infeasible to collect inlet and outlet samples 

concurrently; this would have given a better prediction of bioaerosol removal. Although the 

time difference between inlet and outlet sample collection was minimised as far as practical, 

some of the bioaerosol concentration variations may be due to fluctuating levels of activities 

within the waste hall on a short timescale. 
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All pilot-scale biofilters in this study were carefully and regularly monitored to ensure they 

were operating optimally during the investigations, especially regarding water content and 

prevention of media compaction. As such the results may not allow conclusions to be drawn 

regarding poorly maintained systems. Although the biofilters were fed with air containing 

significantly high concentrations of bioaerosols, there were occasional operational 

interruptions (e.g. waste hall cleaning, conveyor shut down, decreased machine/vehicle 

activities) during sampling which could have varied the measured inlet concentrations (Stagg 

et al., 2013). Thus, the data presented in table 3 as well as figures 4 and 5 are indicative of a 

high degree of variability between the replicate samples taken for each bioaerosol group at each 

point as shown by the error bars. This suggests that there is a high degree of measurement 

uncertainty, which may have led to the variable results recorded in this study. As such, the data 

presented here gives an insight into the likely influence of operating parameters, however 

further research is required to make more specific conclusions on the performance of biofilters, 

and particularly the mechanisms for bioaerosols removal. 

4. Conclusions 

This study shows that biofilters designed and operated for odour degradation can also achieve 

significant bioaerosols reduction in waste gas - 70% (35 to 97%) for A. fumigatus, 71% (35 to 

94%) for total fungi, 68% (47 to 86%) for total mesophilic bacteria and 50 (-4 to 85%) for 

Gram negative bacteria - provided that the inlet concentration is high which is the case for most 

waste treatment facilities. Thus, they can be effective for the control of potentially pathogenic 

species in the emissions from these treatment facilities. Despite the high REs achieved, the 

emitted concentrations from pilot biofilters exceeded background concentrations and the EA 

guideline. However, from the analysis differences may exist between the ability of the 

biofiltration system to deal with fungi and bacteria, as there is much more confidence with the 

performance for bacteria than fungi; these may be related to size differences. Furthermore, RE 
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may deteriorate at low inlet concentration resulting in a net bioaerosol emitting potential of 

biofilters, and a proportion of the emitted biofilter may be originating from microbial 

population colonising the media surfaces, resulting in differences in species composition 

between contaminated process (inlet) and treated (outlet) air samples. The results also suggest 

that gas contact time may not play significant role in bioaerosol removal as there was no 

established statistical relationship over the range of EBRTs tested; however, this requires a 

more extensive investigation.  Particle size distribution vary between the inlet and outlet air, 

with the outlet having predominantly greater proportion of smaller size particles that represent 

greater human health risk as they can penetrate the respiratory system more deeply and even to 

the lung alveoli where gaseous exchange occurs. However, the outlet concentrations were low, 

and further reduction would be achieved by the combined effect of wind dilution and dispersal 

as well as exposure to environmental stress from temperature, desiccation and oxygen in full 

scale applications. Further research with quantitative polymerase chain reaction (qPCR) and 

next-generation sequencing (NGS) is required to compare the species composition of both inlet 

and outlet air to determine whether or not new microbial populations were being emitted. 

Research is also required to assess the simultaneous control of odour and bioaerosols by 

biofilters. 

Research Data 

The data underpinning the research presented in this paper is available at 

https://doi.org/10.5518/307.  
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