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a b s t r a c t 

We propose an heuristic approach to the vehicle ferry revenue management problem, where the aim is 

to maximize the revenue obtained from the sale of vehicle tickets by varying the prices charged to dif- 

ferent vehicle types, each occupying a different amount of deck space. Customers arrive and purchase 

tickets according to their vehicle type and their willingness-to-pay, which typically increases over time 

because customers purchasing tickets closer to departure tend to accept higher prices. The optimization 

problem can be solved using dynamic programming but the possible states in the selling season are the 

set of all feasible vehicle mixes that fit onto the ferry. This makes the problem intractable as the num- 

ber of vehicle types and ferry size increases. We propose a state space reduction, which uses a vehicle 

ferry loading simulator to map each vehicle mix to a remaining-space state. This reduces the state space 

of the dynamic program. Our approach allows the value function to be approximated rapidly and accu- 

rately with a relatively coarse discretization of states. We present simulations of the selling season using 

this reduced state space to validate the method. The vehicle ferry loading simulator was developed in 

collaboration with a vehicle ferry company and addresses real-world constraints such as manoeuvrabil- 

ity, elevator access, strategic parking gaps, vehicle height constraints and ease of implementation of the 

packing solutions. 

© 2018 The Author(s). Published by Elsevier B.V. 
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1. Introduction 

Vehicle ferries are used to transport passengers and their vehi-

cles and, for many island populations, they can be the sole means

of transporting goods, as well as providing a service to commuters

and tourists. The global ferry market in 2012 was valued at over

$15 billion, carrying more than 2 billion passengers and 350 mil-

lion vehicles. Space on the vehicle deck is typically the binding

constraint and managing prices to ensure efficient use of the avail-

able space is an important problem. In this article we describe an

heuristic pricing algorithm that takes into account the efficiency of

the packing, and practical considerations such as vehicle manoeu-

vrability when setting prices for different vehicle types, ranging

from large freight vehicles to motorcycles. Customer arrivals into

the booking system are stochastic and a customer will purchase

a ticket with a probability dependent on the price, their vehicle
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ype and the time left until departure. This assumption allows us

o use price as a lever of demand to push towards more efficient

nd profitable vehicle mixes, where a vehicle mix is defined as the

umber of vehicles of each type. While this article is focused on

ehicle ferries, a similar problem is encountered in other indus-

ries, e.g., sale of advertising time on radio or television channels,

etting costs for bespoke manufacturing, and other freight trans-

ortation applications. 

We use dynamic programming to set prices, where the state of

he dynamic program gives an indication of the space remaining

n the ferry. To obtain an exact solution, the states of the dynamic

rogram should correspond to the mix of vehicles that have al-

eady purchased tickets for the ferry and in other work we de-

cribe how to obtain exact solutions using a combination of mixed

nteger linear programming and dynamic pricing (see Martinez-

ykora, Currie, So, Bayliss, & Bennell, 2017 ). As the size of the ferry

nd the number of vehicle types increase, the state space can be-

ome too large to be easily tractable and it becomes necessary to

se an approximation to the space remaining, which we estimate
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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rom the output of a simulation of the loading process and term a

ransition function ( Section 4.3 ). Transition functions are defined for

ach deck and return the amount of space taken up by a given ve-

icle type on that deck, including both the area of the vehicle and

he expected wasted space it generates; for example by blocking

ff areas of the deck due to staggered parking. 

The transition functions derived from the simulation are used in

he dynamic program. Our results show that this approach reduces

he state space sufficiently to allow a dynamic program to solve

eal ferry instances, which can accommodate hundreds of vehicles,

ithin a few minutes. The packing simulation model takes account

f vehicle ferry loading constraints such as manoeuvrability, eleva-

or access for disabled customers, priority boarding and other case-

pecific constraints when placing vehicles. Clearly, the capability

f the packing procedure to produce high quality configurations

f vehicles will have the greatest effect on the amount of wasted

pace. We have developed a sequential packing algorithm, which

hooses positions for each vehicle type remaining to be packed. It

hen selects which vehicle to load next by maximizing a weighted

um of a variety of efficiency based attributes ( Section 5.4 ). A sim-

lated annealing algorithm is used to tune the weights of the al-

orithm to achieve improved packing efficiency for a given vehicle

ix. 

Ferries can have flexible space in the form of temporary decks

hat can be raised and lowered as required between crossings. Typ-

cally, making use of these temporary decks will increase the space

vailable for smaller vehicles and reduce the space available for

igh vehicles. Hence, the decision over whether they should be

sed or not is dependent on the vehicle mix. We incorporate a

ethod for deciding on the most efficient deck configuration dy-

amically through the selling period and find that in most cases

his out-performs fixing the configuration in advance. 

This work builds on our previous work Bayliss, Bennell, Currie,

artinez-Sykora, and So (2016) and represents a significant devel-

pment in the scope of the problem definition as well as introduc-

ng new methodological tools. Bayliss et al. (2016) only considered

 fixed ferry configuration with no height restriction on the main

eck. The packing of vehicles was via a fixed loading heuristic and

he remaining area was found by a simple numerical approxima-

ion. In this work we solve a more realistic problem that incorpo-

ates height restrictions on different areas of the main deck arising

rom the ferry’s movable mezzanine decks. This increases the di-

ensionality of both the packing and dynamic pricing problems,

hich the new algorithm presented here is capable of handling.

oreover, the new algorithm is able to select the optimal ferry

onfiguration and optimize the prices. The approach described here

lso improves the optimization of packing decisions by introducing

 simulated annealing algorithm that improves the packing effi-

iency and is less sensitive to the amount of space remaining. Fur-

hermore, the area calculations that form the basis of the mapping

f the state space are now calculated exactly via a vehicle slid-

ng procedure ( Section 5.2 ). The improved approach also features a

radient-based value function interpolation scheme, which enables

s to approximate the value function accurately with a coarse dis-

retization. This is vital for tackling the higher dimensional prob-

em that arises when mezzanine decks are considered. Addition-

lly a variable interval size allows the new model to capture ferries

hat are close to capacity more accurately; for example allowing us

o capture states where motorcycles still fit onto the ferry when

ars will not. 

The proposed approach provides a complete pricing and pack-

ng solution to the vehicle ferry revenue management (RM)

roblem, which maximizes expected revenues by exploiting the

illingness-to-pay distributions, ensuring that customers pay a

are for their vehicle that better reflects the capacity that it uses.

he loading simulator is required at every stage of the implemen-
ation. It is used first when setting prices, to estimate the transi-

ion functions, which are required for calculating state transitions

n the dynamic program. During the selling season, the loading

imulator is used to monitor the current remaining-space state,

hich identifies the prices to offer to each vehicle type in each

ime step. Using the loading simulator also helps guard against

verbooking as it ensures that the accepted vehicle mix is a mix

hat can feasibly be loaded onto the ferry. At the end of the sell-

ng season the packing solution can be printed off and given to the

oading personnel as a guide. 

One of the advantages of the proposed approach is that the

omputation time is linear in the number of vehicle types and does

ot suffer from a combinatorial explosion as the number of vehicle

ypes increases. 

To summarize, our approach to solving the vehicle ferry RM

roblem is characterized by three main components, which are

lso illustrated in Fig. 1 : 

1. Pricing algorithm: used to find the optimal dynamic pricing

policy, which comprises a price for each vehicle type in each

time period at each remaining-space state. 

(a) Dynamic program: The vehicle ferry pricing problem is for-

mulated as a dynamic program. See Section 4.1 for details. 

(b) Transition functions: describe the space requirements of dif-

ferent vehicle types. These are approximated by the load

optimizer and are an input for the dynamic program. See

Section 4.3 for details. 

2. Load optimizer: consists of the loading simulator and the pack-

ing algorithm. The load optimizer finds the transition functions

and calculates the remaining space for any given vehicle mix

during the selling season. It can also be used to pack vehicles

efficiently. 

(a) Loading simulator: a simulation model of the vehicle load-

ing process. The simulation was developed after observing

the loading process first hand and discussing it with per-

sonnel from the ferry company, to ensure that it captures

the most important practical aspects of loading. For exam-

ple, unrestricted access to the elevators, parking gaps and

ease of implementation of the packing solution. This forms

part of the Initialization Process in Fig. 1 and is described in

more detail in Section 5 . 

(b) Packing algorithm: rules for vehicle selection and place-

ment used within the simulator. Simulated annealing is

used to tune the parameter values of the vehicle selection

and placement rules. This also forms part of the Initializa-

tion Process in Fig. 1 . See Section 5.4 for details. 

3. Selling season simulator (testing): a simulation of the selling

season is used to test the dynamic pricing policies. 

he remainder of the paper is organized as follows. We review

he relevant literature in Section 2 , before describing the practical

roblem we are solving in more detail in Section 3 . In Section 4 we

ormulate the pricing problem, in Section 5 we introduce the load

ptimizer. Results are presented in Section 6 and we draw some

onclusions and discuss future work in Section 7 . 

. Related literature 

.1. Dynamic pricing 

Dynamic pricing regulates sales via automatic price adjustments

n response to statistical fluctuations in demand. The earliest work

n the area was carried out by Kincaid and Darling (1963) but the

ast two decades have seen an increase in the number of appli-

ations of dynamic pricing and the complexity of the problems

eing solved. We focus on applications of dynamic pricing where
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Fig. 1. Overview of proposed vehicle pricing optimization framework. 
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capacity is limited and products are perishable. Previous applica-

tions include airline ticket pricing ( Anjos, Cheng, & Currie, 2005 );

fashion and retail ( Bitran & Mondschein, 1997 ); car rental ( Li &

Pang, 2017 ); railways ( Bharill & Rangaraj, 2008 ); delivery prices

for online groceries ( Yang & Strauss, 2017; Yang, Strauss, Cur-

rie, & Eglese, 2016 ); air cargo RM ( Amaruchkul, Cooper, & Gupta,

20 07; J.S.Billings, 20 03; Kasilingam, 1996 ) and cruises ( Maddah,

Moussawi-Haidar, El-Taha, & H.Rida, 2010 ). The final two applica-

tions have some relevance to the ferry problem as we discuss be-

low. A more comprehensive guide to the applications of dynamic

pricing can be found in Talluri and Ryzin (2004) . Yeoman and

McMahon-Beattie (2011) provides a more recent practical perspec-

tive of the applications of revenue management and pricing. 

We have found no other work related to RM in the vehicle ferry

industry but Maddah et al. (2010) apply RM to optimal pricing of

cabins on cruise ships. With a cruise ship, there are two competing

constraints: lifeboat capacity and cabin capacity. In this sense, the

cruise ship RM problem is similar to the vehicle ferry RM problem,

although in our example, the lifeboat constraint is rarely binding

and the capacity constraint for the vehicles is continuous and two

or three-dimensional (dependent upon the need for height con-

straints) rather than a discrete and one dimensional state defini-

tion, which is the case for cabins. Both problems have a large state

space, which Maddah et al. (2010) solve using heuristics, includ-

ing single dimension state space reduction schemes and dynamic

programming heuristics. The latter are based on decomposing the

problem into two separate dynamic programs where value func-

tions are derived separately for each dimension of the problem,

and then combined when the solutions are implemented. 

A key characteristic of the price optimization problem for ve-

hicle ferries is that each vehicle type uses different amounts of a

multi-dimensional capacity. A similar problem is described in Xiao

and Yang (2010) who cite examples including container shipping,

restaurant RM and air cargo. The authors consider a hypothetical

example with two fixed-price products and two capacity dimen-

sions and develop revenue-optimizing accept-reject look-up-table

policies. The solution method is a backwards recursion, where a

Hamilton-Jacobi equation provides the optimality conditions for

deriving the optimal control decision for each discrete remaining-

capacity state at each time period. We use a dynamic pricing policy

rather than an accept-reject strategy and determine this via heuris-

tics, allowing us to control demand for large, real-world problem

instances. 

Air freight providers face many of the same capacity constraints

as vehicle ferry operators, the main difference being that weight
ends to be a more important constraint for air freight and there is

reater uncertainty in the dimensions of an order. This uncertainty

esults in model solutions that need to be more simplified than

hose that we develop for vehicle ferries. More details can be found

n Kasilingam (1996) , J.S.Billings (2003) , and Amaruchkul et al.

2007) , where it can be seen that the objective of the optimiza-

ion in air cargo RM is often to minimize overbooking rather than

o optimize revenue. Solution methods used include Markov Deci-

ion processes ( Han, Tang, & Huang, 2010 ); dynamic and stochastic

napsack ( Kleywegt & Papastavrou, 1998b ); and newsvendor mod-

ls ( Wong, Zhang, Hui, & Leung, 2009; Zou, Yu, & Dresner, 2013 ). 

The formulation of the vehicle ferry RM problem shares some

f the characteristics of the dynamic and stochastic knapsack prob-

em of Kleywegt and Papastavrou (1998a, 2001) in that items arrive

ollowing a stochastic process. In the knapsack formulation, the ca-

acity requirements and reward of each item are random variables,

hich follow fully defined statistical distributions and are realized

n arrival into the system. Dynamic and stochastic knapsack algo-

ithms decide whether to accept or reject an item based on its re-

lized reward and capacity requirements and the capacity remain-

ng in the system. This could be a way of approaching the vehicle

erry RM problem but we have chosen to use pricing as a lever

or demand instead of making accept/reject decisions. The vehicle

erry problem also has the additional complication of including the

-dimensional packing problem of fitting vehicles onto the decks. 

The effect of price on demand is an important aspect of optimal

ricing models and Chapter 3 of Philips (2005) provides a useful

iscussion of the basic economic ideas, describing the most com-

only used demand models. We base our price dependence on the

ogistic model, in which small variations around the market price

an lead to large fluctuations in demand. Other factors can impact

n willingness-to-pay, with the time until the end of the selling

eason being the most common. We include the time-dependence

xplicitly in the price-response curve ( Eq. (1) ) and follow previous

uthors in assuming that willingness-to-pay increases over time

e.g. see Anjos et al., 2005; Gallego & van Ryzin G., 1994; Zhao

 Zheng, 20 0 0 ). Herbon and Khmelnitsky (2017) investigate dy-

amic pricing and inventory management in cases where demand

s an additive function of price and time; their work focuses on

he case where demand decreases with time, applicable to prod-

cts whose quality deteriorates. In related studies Feng (2010) in-

egrate dynamic pricing and replenishment decisions under uncer-

ainty in the supply capacity; and Hsieh and Dye (2017) consider

ynamic pricing where demand depends on price, stock level and

ustomer reference prices. We assume myopic customers and, as
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e consider one sailing at a time, ignore reference price effects

 Popescu & Wu, 2007 ). Other authors have considered strategic

ustomers (e.g. Dasu & Tong, 2009; Lazear, 1986; Levin, McGill, &

ediak, 2010; Su, 2007; Yin, Aviv, Pazgal, & Tang, 2009 ). For the

ase where willingness-to-pay increases over time, corresponding

o a situation where customers with higher valuations arrive later

n the selling season, strategic waiting is less likely to be beneficial

ecause, in general, prices are more likely to rise than fall. 

The optimization problem has a similar structure to that de-

cribed in Yang et al. (2016) , where vehicle routing is integrated

nto a dynamic pricing algorithm for the e-grocer delivery problem.

he solution to the vehicle routing problem is not found explicitly

n the paper and the authors assume that it is possible to estimate

n insertion cost for each accepted delivery. Here, we have no ad-

itional costs associated with allowing a vehicle onto the ferry but

e do have a second optimization routine, the packing algorithm,

hich must be solved alongside the dynamic program. 

.2. Bin packing 

Packing vehicles onto the ferry efficiently can be viewed as a 2-

imensional bin packing problem with additional problem specific

onstraints. In Martinez-Sykora et al. (2017) we consider an ex-

ct formulation for the packing problem that uses a mixed integer

inear program to optimize the packing of vehicles within lanes,

here lanes correspond to 1-d bins. In this work, we consider

arger ferries and account for more of the practical constraints that

erry companies face when placing vehicles. For that reason, we

se a simulation of the loading process, incorporating a packing

lgorithm that uses simulated annealing (e.g. see Aarts & Lenstra,

997 ) to set efficient parameter values. 

Heuristics have been used previously in the bin packing litera-

ure. Beisiegel, Kallrath, Kochetov, and Rudnev (2006) implement a

imulated annealing algorithm for a two-dimensional bin packing

roblem that arises in the steel industry and solutions are encoded

s oriented trees. A parameterized approach to an on-line one-

imensional bin-packing problem has also been considered before

y Asta, Ozcan, and Parkes (2016) , who use a genetic algorithm to

ptimize a policy matrix for loading items. Their algorithms are

hown to outperform human generated policy matrices. Our ap-

roach is similar but the parameters being optimized in this work

re weights that multiply attributes of the currently available park-

ng spaces. An alternative form of heuristic is used by Trivella and

isinger (2016) , who consider a multi-level local search algorithm

or packing, with the goal of minimizing the distance of the centre-

f-mass from a target point. 

Rectangle packing is of particular relevance here, given the

hape of the vehicles being packed. The current state of the art for

D and 3D rectangle packing is a genetic algorithm described in

oncalves and Resende (2013) . A parameterized approach is used

or encoding solutions where the chromosome segments represent

he position in the packing sequence and box orientation. The au-

hors note that one of the most time-consuming parts of pack-

ng algorithms is the maintenance of the list of available place-

ent positions, which they term Empty Maximal Spaces or EMSs.

ere, we deal with this in part using a vehicle sliding procedure

 Section 5.2 ) that regenerates the list of available positions after

ach placement decision. 

The packing problem considered in this paper is a constrained

ne-dimensional and two-dimensional bin packing problem 

1 . A ve-

icle ferry may have some decks which must strictly adhere to the
1 The pricing problem that is considered in this work has two state dimensions, 

ne for each deck, i.e. one for the one-dimensional bin packing problem on the 

ar deck and one for the two-dimensional problem on the main deck. The pricing 

roblem has an additional dimension for the case when mezzanine decks are in 

s  

f

o

a

ainted lanes (one-dimensional bin packing), and others catering

o a mix of vehicle types where parking is more flexible, making

wo-dimensional packing patterns permissible. The practical prob-

em we consider in the case study is constrained by the wide vari-

ty of hard and soft constraints that must be respected in the ve-

icle ferry loading process and also because some of the decks are

ptional and impose stricter height restrictions on some sections

f the main deck. 

For further details about packing problems see Lodi, Martello,

nd Monaci (2002) for a survey of two-dimensional bin-packing

roblems, Csirik and Woeginger (1998) for a tour of performance

esults for on-line packing heuristics and Wäscher, Haußner, and

chumann (2007) for an improved typology of cutting and packing

roblems. 

.3. Approximate dynamic programming 

While we make use of heuristics and simulation, the optimiza-

ion method we are proposing here is perhaps best classified as ap-

roximate dynamic programming (ADP) because we use a transfor-

ation to map from a discrete high-dimensional state to a contin-

ous low-dimensional state and finally to a low-dimensional dis-

rete state. The textbooks of Bertsekas and Tsitsiklis (1996) and

owell (2007) provide a comprehensive treatment of ADP, which

s concerned with finding approximate solutions to intractable

tochastic dynamic programs; for example, stochastic dynamic pro-

rams with a high-dimensional state space. 

Chapter 12 of Judd (1998) provides a thorough treatment of

olving continuous state problems using discretization in which

hey state conditions for discretization schemes that ensure the

ame solutions can be achieved with the discretized scheme as

ith the continuous state space. We use discretization of the state

pace here, approximating the values of intermediate states using

umerical methods where necessary. 

Simulation provides a useful tool for reducing the state space

n stochastic and dynamic problems. Bertsimas and de Boer

2005) use simulation as a method of state-space reduction in a

etwork RM problem, allowing them to solve practical-sized prob-

ems with stochastic and dynamic demand. The simulation is used

s part of the revenue approximation and a stochastic-gradient al-

orithm is implemented to obtain the optimal booking limits. 

The work of Farias and Saure (2012) introduces an approximate

ynamic programming approach for solving dynamic oligopoly

odels. The main point of interest for us in this article is that it

rovides another example of how approximate dynamic program-

ing can be used to address the curse of dimensionality of difficult

ptimization problems. They use a Mathematical programming for-

ulation for solving the Bellman equations and then approximate

he value function with a linear combination of basis functions.

 state sampling approach is used to reduce the number of con-

traints in their mathematical programming formulation. 

The use of simulation and heuristics also brings us closer to

ecent work in simheuristics (e.g. see the review by Juan, Faulin,

rasman, Rabe, & Goncalo, 2015 ). Much of the previous work in

his research area has applied simulation and metaheuristics to

olving combinatorial optimization problems but the range of ap-

lications is growing beyond the original vehicle-routing problems;

or example, renewable energy ( Mallor, Azcárate, & Mateo, 2015 )

nd social networks ( Pérez-Rosés & Sebé, 2015 ). Our approach is a

ittle different from the standard simheuristics algorithms, which

olve the deterministic problem via heuristics and then test the ef-

ect of stochasticity via simulation. 
peration on the main deck, which is because the main deck is then split into low 

nd high vehicle regions. 
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Fig. 2. Ferry lane layout diagram with an illustration of packing loss. 
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3. Case study 

While the methods described in this paper have wide appli-

cability, the development of the methodology draws on a specific

case study from the ferry operator, Red Funnel. Red Funnel operate

a vehicle ferry service between the mainland (Southampton) and

the Isle of Wight, UK. 

According to the characterization of RM problems given by

Britan and Caldentey (2003) , the vehicle ferry RM problem that

we consider here is a multiple product stochastic demand pro-

cess with flexible, perishable and continuous capacity and price-

sensitive customers. We assume that there are no substitution ef-

fects and that customers’ willingness-to-pay increases over time.

The assumption of increasing willingness-to-pay is common in

transportation applications (e.g. see Anjos et al., 2005 ) and repre-

sents situations in which customers with higher valuations arrive

later in the selling period. The proposed method does in fact apply

to other examples of price sensitivity, where willingness-to-pay is

stationary or decreases over time, and we include results for an

example with decreasing willingness-to-pay in Appendix D. 

Red Funnel have three identical vehicle ferries, each with two

permanent vehicle decks, approximately eighty meters long and

twelve and a half meters wide. The main deck has a high ceiling

(approximately five meters) and accommodates all vehicle types

from motorcycles to large freight vehicles and coaches. The up-

per deck has a relatively low ceiling (approximately two meters)

and accommodates cars and motorcycles only. The ferry has two

mezzanine decks that can be lowered from the ceiling of the main

deck, which accommodate cars only: see the central pane of Fig. 2

in which one of the mezzanine decks is in operation. When mez-

zanine decks are in operation only vehicles below 2.7 metres in

height can be parked underneath them on the main deck. 

As can be seen in Fig. 2 , the ferry is nearly symmetrical both

laterally and longitudinally, but with the elevators from the vehicle

deck only on one side of the ship. These are roll-on-roll-off ferries

in which vehicles enter at one end and exit at the other. 

We consider thirteen main types of vehicles: cars, motorcycles,

vans, minibuses, coaches, medium and large freight vehicles, drop

trailers, caravans, other towed vehicles, parcel cages, unaccompa-

nied cars and a miscellaneous category. The physical dimensions
 o  
nd the price acceptance probability model vary between vehicle

ypes,as customers with bigger vehicles will typically accept higher

rices. 

Vehicle ferry operators face a number of practical constraints

n placing vehicles, as listed below. 

• Vehicles with hazardous materials must be parked underneath

the sprinklers; for Red Funnel these are at the front or the back

of the main deck. 
• Large vehicles cannot manoeuvre into the corners next to the

exits. 
• Some customers may require unimpeded access to the lifts. 
• Drop trailers (freight vehicles without a towing vehicle) are

towed onto the ferry first with a tug and parked in predefined

positions. 
• Parking gaps are needed to allow vehicles to reverse out of cer-

tain positions and passengers to exit the vehicle deck for the

duration of the journey. 
• Some customers pay an additional charge for priority boarding.

The loading procedure is manually controlled by loaders and

ard personnel. Yard personnel sort vehicles into different lanes

n the dockside prior to boarding, according to their types and

ny special requirements, and notify the loaders of the number

f vehicles of each type that are to be loaded. Loading of the up-

er and main decks can take place simultaneously, and cars are

oaded onto the upper deck if possible. Loading of the upper deck

s straightforward due to the homogeneity of the vehicles, conse-

uently much of the work that follows concentrates on the loading

f the main deck. 

. Dynamic pricing 

This section describes the formulation of the pricing problem

s a dynamic program. We begin by describing the dynamic pro-

ram and the price acceptance model ( Section 4.1 ). The main dif-

culty in setting up the dynamic program comes in setting up the

tate space and we focus much of the description below on this is-

ue ( Section 4.2 ). In order to avoid the curse of dimensionality that

merges when states in the selling season are modeled as counts

f the number of tickets sold to each vehicle type, we propose
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apping these vehicle mix states to remaining-space vector states.

he loading simulator is used to perform this mapping of a discrete

ehicle mix state to a continuous remaining-space state by maxi-

izing packing efficiency before calculating the remaining space

n each component of the deck space. The approximated continu-

us states are discretized to facilitate a point-wise approximation

f the value function. Transition functions are used within the dy-

amic program to move from one state to another when a vehicle

ooking is accepted and we describe how these are calculated in

ection 4.3 . 

.1. The dynamic program 

The vehicle ferry RM problem can be formulated as a dynamic

rogram, where the decision variable is the pricing policy. Using

he dynamic program will account for the stochastic nature of the

rrival and purchase process. We assume a Poisson arrival pro-

ess where the arrival rates are denoted by λv ,t , for vehicle types

 = 1 , 2 , . . . , η in each time period t = 0 , 1 , . . . T − 1 , where η de-

otes the number of vehicle types and T denotes the number of

ime intervals in a selling season. We discretize time into inter-

als which are small enough such that it is reasonable to assume

hat at most one customer will arrive into the booking system

uring each time interval, i.e. a Bernoulli arrival process ( Talluri

 Ryzin, 2004 ). The rate λ0, t is the probability of no arrivals in

ime period t and equals 1 −∑ η
v =1 

λv ,t , with the constraint that
 η
v =1 

λv ,t ≤ 1 , ∀ t ∈ 0 . . . T − 1 . The arrival rates used in the experi-

ents are derived from historical demand data (see Section 6 ). 

Customers’ willingness-to-pay, or equivalently, the probability

hat they will purchase a ticket of price p v , αv (p v , t) , is assumed

o vary between vehicle types v and with the time remaining until

he end of the selling season t as shown in Eq. (1) . Customers are

ssumed to be myopic, which is justified for the case where there

re few competitors. 

αv (p, t) 

= 

{ (
σv 

1+ e ( k v ( 
p 

χv ) −ψ v ) 

)
×
(
γv + ( βv − γv ) 

(
t 
T 

)εv 
)

if p < χv 

0 if p ≥ χv 

. (1) 

This price acceptance model has two multiplicative compo-

ents, one for price and another for time. A logistic curve is used

o model the price component (e.g. see Philips, 2005 ). The vari-

ble χv is the maximum price that a customer is willing-to-pay

or that vehicle type; k v is inversely proportional to the variance of

he willingness-to-pay of customers booking vehicles of type v ; ψ v 
s the mode of the willingness-to-pay distribution relative to the

aximum price parameter χv ; and σv is a normalizing factor cal-

ulated on the basis that the function returns the maximum prob-

bility of price acceptance at the end of the selling season at zero

rice (assuming willingness-to-pay increases over time). We base

he model on the assumption that the probability of accepting the

inimum price is less than or equal to γv at the beginning and βv 
t the end of the selling season. The time component can capture

mooth monotonic effects that time may have on the probability of

rice acceptance through the parameter εv . In this work we model

illingness-to-pay as increasing over time by setting γv < βv but

e provide results for an example in which willingness-to-pay de-

reases over time in Appendix D. 

Our formulation of the vehicle ferry pricing problem as a dy-

amic program is made tractable by mapping vehicle mix states

 ∈ 

{
X ⊂ Z 

η
+ 
}

– defined as the number of vehicles of each type –

o a lower-dimension state vector r , which describes the remaining

pace per deck region after packing the vehicle mix x using the

oading simulator (see Section 5.1 ). We write r ∈ 

{
R ⊂ R 

D + 
}
, where

 is the number of deck regions, defined to be low space, high
pace and car deck for the problem we consider here. This vec-

or r is then mapped to the final discretized state space S , where

 ⊂ Z 

D + . Section 4.2 provides a formal description of the reduced

nd discretized state spaces. 

In the following we present the formulation of the vehicle ferry

evenue management problem as a dynamic program based on the

tate space s ∈ S , where s denotes the current state. 

Let s ′ be the new state of the dynamic program, given a pur-

hase is made by vehicle type v when the system is in state s .

e solve the dynamic program to find the optimal price to charge

p v ( s, t ) each vehicle type v ∈ { 1 . . . η} , at each time t ∈ { 0 . . . T − 1 } ,
n each state s ∈ S . The dynamic programming formulation of the

ehicle ferry revenue management problem is defined as: 

V t (s ) = λt, 0 V t+1 (s ) + 

η∑ 

v =1 

λt, v max 
p v ( s,t ) ≤χv ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

αv (p v ( s, t ) , t) 

[ 

I ( s, v ) 
(

p v ( s, t ) + V t+1 (s ′ ) 
)

+ 

( 1 − I ( s, v ) ) V t+1 (s ) 

] 

+ 

( 1 − αv (p v ( s, t ) , t) ) V t+1 (s ) 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

∀ s ∈ S, ∀ t ∈ 0 . . . T − 1 , 

V T (s ) = 0 

∀ s ∈ S. 

(2) 

The expected value of a state s at time t is denoted V t ( s ) and is

alculated from the values and probabilities of four possible out-

omes: 1) a customer arrives, sufficient capacity remains for their

ehicle (indicated by the binary indicator function I ( s, v ) = 1 ) and

he customer purchases a ticket, the value of which is the sum of

he ticket price and the future value of the remaining-space state

 t+1 (s ′ ) ; 2) a customer arrives but there is insufficient capacity

n the ferry (indicated by the binary indicator function I ( s, v ) = 0 )

nd therefore a sale cannot be made; 3) a customer arrives, there

s sufficient capacity on the ferry, but the customer decides not to

urchase a ticket (with probability ( 1 − αv (p v ( s, t ) , t) ) ); and 4) no

ustomers arrive. 

The boundary conditions state that all states s ∈ S have a value

f 0 at time T , the end of the selling season, as no more tickets can

e sold. 

The assumption of at most one arrival per time period allows

he price optimization to be carried out independently for each ve-

icle type in each state at each time. This is why the max term of

q. (2) is inside the summation. Therefore, for each vehicle type v ,
tate s and time t , we need to find the optimal price p ∗v (s, t) for

he following: 

max 
p v ( s,t ) ≤χv 

αv (p v ( s, t ) , t) p v ( s, t ) + αv (p v ( s, t ) , t) V t+1 (s ′ ) 

+ ( 1 − αv (p v ( s, t ) , t) ) V t+1 (s ) . (3) 

his is part of Eq. (2) for states where vehicles fit and can be of-

ered a price. The first term αv (p v ( s, t ) , t) p v ( s, t ) is unimodal, be-

ng a product of an increasing function (price) and a decreasing

unction (probability of a customer accepting the price). The fol-

owing two terms form a linear function of price; therefore the

ricing sub-problem consists of a unimodal and a linear function

f price, which results in a unimodal function. Hence, a Golden

earch optimization routine is guaranteed to converge to the opti-

al solution. Golden search is a numerical optimization technique

hat iteratively decreases the size of the interval that the opti-

al solution must lie within. The interval size decreases by a fac-

or equal to the inverse of the golden ratio in each iteration (see

urley, 1974 , for a good introduction to Golden Search). Our ap-

roach generates optimal continuous prices with a tolerance that
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Fig. 3. A value function surface at the beginning of the selling season. 
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depends on the number of golden search iterations performed. In

this case 50 iterations are used which decreases the size of the ini-

tial interval containing the optimal solution ( [0 , χv ] ) by a factor of

3 . 55 × 10 −11 . 

4.2. Discretization of the state space 

We define a mapping from a state with complete information

about the number of vehicles of each type who have purchased

tickets at any given time in the selling season (the vehicle mix x )

to a reduced state vector r = { r u , r l , r h } , where r measures the re-

maining area for vehicles on the upper deck ( r u ), for low vehicles

on the main deck ( r l ) and for high vehicles on the main deck ( r h ),

having packed the set of vehicles x . Then r is mapped to s the dis-

cretized state space. The nomenclature of the state reducing map-

pings is as follows: 

x ∈ 

{
X ⊂ Z 

η
+ 
}

→ r ∈ 

{
R ⊂ R 

D 
+ 
}

→ s ∈ 

{
S ⊂ Z 

D 
+ 
}
. 

This work uses the following state mapping to reduce the dimen-

sionality of the problem: 

φ( z ( x ) ) → φ( r ) → s. (4)

The mapping z ( X ) in Eq. (4) is performed by the loading sim-

ulator introduced in Section 5 . This mapping is a fundamental

part of our approach for reducing the computational complexity

of the dynamic program. State dimension reduction mappings are

a common technique in approximate dynamic programming, e.g.,

see Powell (2007) . 

To facilitate a look-up-table approach for solving the dynamic

program in the reduced state space, we discretize each deck space

component into a number of discrete levels. The choice of the uni-

formity and number of discrete states depends on two parameters,

ζ i and μi , which are set separately for each deck space component

i and corresponds to the mapping φ( r ) → s . We show later how ac-

curate estimates of the value function can be obtained using a rela-

tively coarse discretization of the remaining-space states. Denoting

the remaining deck space state dimension components r i , i ∈ { u , h ,

l }, suppose ζ i denotes the choice of the number of discrete states

for a component r i of the remaining-space state vector r , and μi 

is a parameter that determines how the discretized state interval

sizes increase or decrease between the minimum ( rMin i ) and max-

imum usable levels ( rMax i ). The relation between the discrete state

s i for a given component of remaining space r i is as follows: 

s i = φ( r i ) = 

{
0 if r i < rMin i 

1 + ( ζi − 1 ) 
(

r i −rMin i 
r Max i −r Min i 

)μi 
otherwise 

. (5)

The discrete state s i is zero for levels of remaining space that are

below the minimum usable amount as by definition no more ve-

hicles will fit onto the ferry in such a state. A μi value of 1 results

in a constant interval size, a μi value below 1 leads to an inter-

val size that decreases as the remaining space of deck component

i runs out. It is the latter that will be useful in the current context

as it allows for the modeling of states where small vehicle types

such as motorcycles still fit onto the ferry whilst cars may not. We

use μi = 0 . 5 ∀ i ∈ { u , h , l } for precisely this reason noting that the

approach still works for other values. 

Fig. 3 illustrates the value function obtained with μ = 0 . 5 , ζu =
20 and ζh = 20 and no l (low vehicle) remaining space compo-

nent. Where there are no mezzanine decks in operation, r h = r l at

all times and the number of state dimensions is reduced by one.

Fig. 3 illustrates the decreasing interval size as space runs out on

each deck space component. 

To solve the pricing problem we use dynamic programming to

compute a pointwise approximation of the value function for each
nteger state s ∈ S . In what follows we use the integer values of s i 
etween 0 and ζ i as the states of our dynamic program and omit

he deck space component index i for clarity. When solving the dy-

amic program for the discrete set of states, Eq. (5) is used to find

he new state ( s ′ ) when an additional vehicle is booked onto the

erry. One of the issues we address in this section is that transi-

ions from the discrete states will in general lead to the remaining

pace falling between two discrete states. The values of these inter-

ediate states ( s ′ ) are required in Eq. (2) and we interpolate them

rom the values of the neighboring discrete states, 
 s ′ � (largest in-

eger previous to s ′ ) and � s ′  (smallest integer following s ′ ). 
We now describe the numerical interpolation scheme that is

sed for calculating the values of intermediate states that are en-

ountered when solving the dynamic programming equations. The

nterpolation method uses a combination of a weighted-sum-of-

eighboring-states approach and a first-order-gradient approach,

xploiting the assumption that the value function is concave in the

emaining-space state for each time period, to achieve more ac-

urate interpolation than either approach alone. The concavity of

he value function in the state s is a logical consequence of known

esults on the asymptotic behavior of dynamic pricing policies in

elation to the available capacity and the duration of the selling

eason (see Gallego & van Ryzin G., 1994 ). For our problem this

ssumes that, given a fixed amount of time to sell a given amount

f capacity, the expected profit for each additional unit of capac-

ty is non-increasing. We demonstrate the concavity with a nu-

erical example, as shown in Fig. 3 . The first-order-gradient ap-

roach estimates the partial derivatives at each defined state of

he value function using the values of the neighboring states. The

tructure of the value function is such that the weighted sum ap-

roach is guaranteed to underestimate the values of intermediate

tates, whilst the gradient based approach is guaranteed to overes-

imate the value of intermediate states, and so taking a weighted

um of both estimates results in a more accurate estimate of the

alues of intermediate states than either approach alone. Note that

he benefits of the proposed numerical approach would also ap-

ly for a convex value function, or more generally for functions

ith either non-negative second derivatives or non-positive second

erivatives. 

Consider an example in which only one dimension of the state

pace is changing (as is the case when there are no mezzanine

ecks or a low vehicle can always be placed fully under a mez-

anine deck). The interpolated value of the intermediate state s ′ ,
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Fig. 4. The effect of the interpolation parameter c on the total expected revenue as 

the number state interval sizes is decreased. 
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hich is between the discrete interval states 
 s ′ � and � s ′  , is given

y 

 t 

(
s ′ 
)

= c 
(
d 2 V t+1 (
 s ′ � ) + d 1 V t+1 (� s ′  ) 

)
+ ( 1 − c ) 

⎡ 

⎣ 

d 2 
(
V t+1 (
 s ′ � ) + d 1 

∂ 
∂s 

V t+1 (
 s ′ � ) 
)

+ 

d 1 
(
V t+1 (� s ′  ) − d 2 

∂ 
∂s 

V t+1 (� s ′  ) 
)
⎤ 

⎦ , (6) 

here d 1 = s ′ − 
 s ′ � and d 2 = � s ′  − s ′ represent the distance of

he intermediate state s ′ from the neighboring discrete states 
 s ′ �
nd � s ′  respectively; c is a constant that weights the contribu-

ion of the weighted sum estimate relative to the gradient-based

stimate. Our experimentation suggests that for the problem we

onsider here, if c is set to 0.43, the number of states has a negli-

ible impact on the expected revenue, allowing us to use a coarser

iscretization without affecting the overall accuracy of the value

unction approximation. For c > 0.43 the estimate of the total ex-

ected revenue decreases, for c < 0.43 the estimate of the total ex-

ected revenue increases. The best value of c in general has to be

etermined from experimentation for each different problem the

pproach is applied to, but c = 0 . 5 is a reasonable starting point.

ig. 4 demonstrates the effect. The partial derivatives (with respect

o the state s ) are estimated numerically at the defined states using

id-point approximations 

∂ 

∂s 
V t (s ) ≈ V t (s + 1) − V t (s − 1) 

2 

. (7) 

or the case of state transitions involving the simultaneous use of

ow and high vehicle space the equivalent of Eq. (6) is given in

q. (8) . Such transitions occur when mezzanine decks are in oper-

tion and a vehicle is parked, on average, in a position that is not

ntirely under a mezzanine deck and consequently uses both high

ehicle space and low vehicle space. 

 t 

(
s u , s 

′ 
l , s 

′ 
h 

)
= c 

⎛ 

⎜ ⎜ ⎝ 

d l 2 d 
h 
2 V t+1 

(
s u , 
 s ′ l � , 
 s ′ h � 

)
+ d l 1 d 

h 
2 V t+1 

(
s u , � s ′ l  , 
 s ′ h � 

)
+ d l 2 d 

h 
1 V t+1 

(
s u , 
 s ′ l � , � s ′ h  

)
+ d l 1 d 

h 
1 V t+1 

(
s u , � s ′ l  , � s ′ h  

)
⎞ 

⎟ ⎟ ⎠ 

+ ( 1 − c ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

d l 2 d 
h 
2 

⎛ 

⎝ 

V t+1 

(
s u , 
 s ′ l � , 
 s ′ h � 

)
+ d l 1 

∂ 
∂s l 

V t+1 

(
s u , 
 s ′ l � , 
 s ′ h � 

)
+ d h 1 

∂ 
∂s h 

V t+1 

(
s u , 
 s ′ l � , 
 s ′ h � 

)
⎞ 

⎠ 

+ d l 1 d 
h 
2 

⎛ 

⎝ 

V t+1 

(
s u , � s ′ l  , 
 s ′ h � 

)
−d l 2 

∂ 
∂s l 

V t+1 

(
s u , � s ′ l  , 
 s ′ h � 

)
+ d h 1 

∂ 
∂s h 

V t+1 

(
s u , � s ′ l  , 
 s ′ h � 

)
⎞ 

⎠ 

+ d l 2 d 
h 
1 

⎛ 

⎝ 

V t+1 

(
s u , 
 s ′ l � , � s ′ h  

)
+ d l 1 

∂ 
∂s l 

V t+1 

(
s u , 
 s ′ l � , � s ′ h  

)
−d h 2 

∂ 
∂s h 

V t+1 

(
s u , 
 s ′ l � , � s ′ h  

)
⎞ 

⎠ 

+ d l 1 d 
h 
1 

⎛ 

⎝ 

V t+1 

(
s u , � s ′ l  , � s ′ h  

)
−d l 2 

∂ 
∂s l 

V t+1 

(
s u , � s ′ l  , � s ′ h  

)
−d h 2 

∂ 
∂s h 

V t+1 

(
s u , � s ′ l  , � s ′ h  

)
⎞ 

⎠ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (8) 

.3. Transition values 

In the dynamic program, state transitions occur every time a

ustomer purchases a vehicle ticket for the ferry. Each vehicle type

ill use an area in one or more of the upper deck, low space on

he main deck, or high space on the main deck. The set of area

equirements for each vehicle type in each part of the ferry are

eferred to as transition values, which will vary between vehicle

ype v and the area remaining. 

We define “packing loss” as the unusable spaces between ve-

icles. It includes parking gaps, which are required for passengers
o exit the vehicle deck, as well as larger gaps that occur when a

arking space is blocked off by another (usually larger) vehicle. The

ransition values include the area of the vehicle and the packing

oss. The possibility that some vehicle types can have high transi-

ion values in comparison to the area of the vehicle (due to pack-

ng loss) allows the pricing algorithm to exploit the opportunities

or encouraging demand of easy-to-pack vehicle types, which cause

ittle packing loss, whilst pricing the difficult-to-pack vehicle types

ccording to the space that they consume. As an aside, a quantita-

ive measure of how difficult a vehicle is to pack is the change in

he remaining space due to loading a vehicle, divided by the area

f that vehicle. 

Cars and motorcycles subtract from the remaining space of the

pper deck if a sufficient amount of space remains; otherwise ve-

icles subtract from the space of the main deck. When a high ve-

icle transition occurs it subtracts by equal amounts from both the

emaining low and high vehicle spaces because high vehicle space

s also available to low vehicles. When a low vehicle transition

ccurs the vehicle might not subtract at all from the high vehi-

le space component. Note that, as mentioned earlier, if there are

o mezzanine decks in operation the low and high vehicle space

ransitions are always equal and the dimensionality of the pricing

roblem is reduced by one. 
We now define the transition function Eq. (9) , which maps the

emaining-space vector r and a vehicle type v to a new remaining-
pace vector r ′ based on the transition values. We write the transi-
ion function as r ′ = G ( r, v ) , where r ′ denotes the new remaining-
pace vector, given that the current remaining-space vector is r and
ehicle type v purchases a ticket. The transition function can be
hought of as a method of conveniently packaging the transition
alues for the purpose of modeling remaining-space state transi-
ions. 

 

′ = G ( R, v ) 

= 

{ 

r u ← r u − g u ( v ) if vehicle fits on the upper deck 

r l ← r l − g l ( v ) 
r h ← r h − g h ( v ) 

otherwise and if vehicle fits on the main deck 
. (9) 

where g u (v ) , g l (v ) and g h (v ) denote the transition values for a ve-

icle of type v for space on the upper deck, and for low and high

ehicles on the main deck respectively. For the case where a vehi-

le does not fit onto the ferry we set the binary indicator function

 ( s, v ) = 0 , otherwise I ( s, v ) = 1 as required by Eq. (2) . The tran-

ition values g u , g l and g h were found not to depend on r which

s explained by consistent packing efficiency of the load optimizer.



296 C. Bayliss et al. / European Journal of Operational Research 273 (2019) 288–304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

p  

t  

s  

f  

b

 

A  

a

 

 

 

 

 

 

 

d  

a

 

q  

i  

t  

i  

d  

i  

i  

c  

p  

t  

t

 

s  

p  

l

5

 

t  

c  

i  

u  

B  

a  

r  

h  

i  
Therefore using the transition function given in Eq. (9) the new

state s ′ in (the Bellman) Eq. (2) is obtained via the sequence of

steps: 1) r ← φ−1 ( s ) ( Eq. (5) ); 2) r ′ ← G ( r, v ) ( Eqs. (9) ) and (3) )

s ′ ← φ( r ′ ) ( Eq. (5) ). 

To derive transition values, we generated fully loaded ferries

by simulating selling season arrivals ignoring the impact of prices

(equivalent to setting the probability of price acceptance to one),

and loading vehicles onto the ferry using our loading algorithm

( Section 5.3 ), where the loading algorithm parameters are re-

optimized using simulated annealing when a vehicle fails to fit. If

the simulated annealing is unable to find a solution in which the

vehicle fits then the vehicle type that arrived last is closed and this

process continues until all vehicle types have been closed. No more

vehicle arrivals are generated at this point and the loading proce-

dure is repeated with the current set of vehicles, this time measur-

ing transition values as each vehicle is loaded. We carry out 500

iterations of this procedure starting with a different random seed

each time to generate a set of transition values, where 500 was

judged to be sufficient because the space requirements of each ve-

hicle remain approximately constant as the number of iterations

increases beyond this point. The transition values for each vehicle

type are calculated as the average transition values observed in the

sample of 500 optimized ferry loads. 

5. Load optimizer 

As illustrated in Fig. 1 the load optimizer module is central to

the proposed approach to pricing vehicles. It is used to estimate

the transition function for the dynamic program, to map vehicle

mix states to lower dimensional remaining-space states and to pre-

vent overselling during the selling season. In each case the role of

the load optimizer module is to take as input a vehicle mix and

to then pack as many of those vehicles as possible. To achieve this

a packing algorithm is used to make placement decisions and a

simulated annealing algorithm is used to search the space of the

loading parameters for a set of parameters that maximize pack-

ing efficiency ( Section 5.4 ). The load optimizer module is used to

model ferry capacity during the selling season and therefore pack-

ing is re-optimized every time a new vehicle arrives and purchases

a ticket. At the end of the selling season the final packing solution

for the accepted mix of vehicles can be passed onto loading per-

sonnel as a possible packing arrangement. 

We categorize the remaining space on the ferry as on-line

remaining space or off-line remaining space. On-line remaining

space is the area that is reachable from the entrance. Off-line

remaining space is the sum of the on-line remaining space for

a (possibly hypothetical) minimum-width-minimum-length vehicle

plus the unreachable gaps that have been blocked off by other ve-

hicles. On-line remaining space is used in calculating the transi-

tion values and for calculating some of the efficiency attributes

in Section 5.3 , while off-line remaining space is used as a mea-

sure of the theoretical maximum remaining space that could be

achieved if vehicles were optimally repacked. Off-line remaining

space is used to track remaining-space states in actual and simu-

lated selling seasons because it allows for the possibility of repack-

ing vehicles more efficiently each time a sale is made. This is re-

quired because in the early stages of a selling season, when very

few vehicles have purchased tickets, the packing solution used to

approximate the state may be very inefficient as the packing re-

optimization routine is not carried out. 

5.1. Loading simulator 

The loading simulator models the real world constraints of the

ferry loading procedure as well as the priority ordering of different
ehicle types. Considerable effort was spent improving the com-

utational efficiency of the simulation model as this is run during

he implementation of pricing policies to determine the remaining-

pace. For reasons of space, the full details of optimizing the per-

ormance of the code will not be reported here but the model will

e made available online. 

Algorithm 1 outlines the prioritization of vehicle placement

lgorithm 1 Loading simulator vehicle prioritization ordering for

n input vehicle mix. 

1: Inputs : Vehicles to load 

2: while Vehicles fit and remain do 

3: if Drop trailers remain and predetermined positions remain

then 

4: Park these in the predetermined positions 

5: else if Lift access requiring vehicles remain then 

6: Park these next to the lift 

7: else if Cars or motorcycles remain and space remains on the

upper deck then 

8: Park these on the upper deck 

9: else 

10: Perform the vehicle sliding procedure for each remaining

vehicle type (Section 5.2) 

11: Calculate the highest scoring position for each vehicle

type and then based on these calculate the highest scor-

ing vehicle (Section 5.3) 

12: Park the recommended vehicle in its recommended posi-

tion 

13: end if 

14: end while 

15: Outputs : Remaining space in each deck region ( { r u , r l , r h } ),
number of vehicles of each type not loaded 

ecisions for the loading simulator when it is tasked with loading

 given vehicle mix. 

The loading simulator is designed to capture the real time se-

uential nature of the loading process in terms of the reachabil-

ty of parking positions from the entrance. The physical constraints

hat must be respected in this process include: minimum park-

ng gaps between vehicles, height restrictions in subregions of a

eck due to lowered mezzanine decks, manoeuvrability/large turn-

ng circles, which mean that large vehicles should not be parked

n either of the corners besides the exit and the fact that vehi-

les cannot drive through one another. To generate feasible parking

ositions we use a vehicle sliding procedure ( Section 5.2 ) which

races out an outline of the remaining space (inner-fit polygon)

hat is reachable from the entrance. 

The loading simulator also provides a visual output, as demon-

trated in Fig. 2 . While it is currently being used as part of the

ricing algorithm, it is also being developed as a training tool for

oading personnel. 

.2. Vehicle sliding procedure 

This section describes the vehicle sliding procedure that is used

o identify the set of reachable parking positions after each vehi-

le placement decision. The vehicle sliding procedure is a similar

dea to an inner-fit polygon, an important method used in irreg-

lar shape cutting and packing problems ( Bennell & Song, 2008;

urke, Hellier, Kendall, & Whitwell, 2007 ). The inner fit polygon is

lso used to calculate the remaining space on the main deck. This

emaining space calculation enables the proposed mapping of a ve-

icle mix state to a remaining-space state. In our sequential load-

ng algorithm the vehicle sliding procedure is run for each vehicle
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Fig. 5. The inner-fit polygon generated from the vehicle sliding procedure is used to identify open positions and to calculate the remaining space for a vehicle. 
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ype every time a vehicle is parked to provide candidate parking

ositions for the next vehicle placement decision. 

In the vehicle sliding procedure the sliding-vehicle is initially

laced adjacent to and within the ferry entrance and proceeds

o slide anti-clockwise around the inside of the ferry and around

he outside of vehicles that have already been parked. The sliding-

ehicle never travels through gaps narrower than the vehicle itself

plus minimum parking gaps), or underneath mezzanine decks if

he height of the sliding-vehicle exceeds the height of a lowered

ezzanine deck, or into corner positions besides the exit if the

liding-vehicle has a very large turning circle. The bottom corner

ositions of the inner-fit polygon are the candidate parking posi-

ions for vehicles of the same type as the sliding-vehicle. 

Inner-fit polygons are used to calculate the remaining-space

tate. Any polygon consisting of only right angle edges can be di-

ided into a set of non-overlapping rectangles. To do this the ex-

reme edges of the right angle polygon are iteratively cut off until a

ingle rectangle remains. Extreme edges that are targeted are iden-

ified as those where the cut leaves a longer edge parallel to the

dge just cut off. The remaining space is simply the sum of the ar-

as of all of the cut off rectangles plus that of the final remaining

ectangle. Fig. 5 illustrates the uses of the inner-fit polygon and the

emaining area calculation for a simple example. 

.3. Placing the next vehicle 

For vehicles that are not parked in predefined positions on the

ain deck a two phase approach is used to select and place each

ehicle. First a single preferred open position is determined for

ach vehicle type. The preferred position for each vehicle type

s selected by scoring the available positions using a weighted

um of a number of efficiency based attribute measurements

 Section 5.3.1 ), and the position with the highest efficiency score

s selected. Second, the decision of which vehicle to load next is

ade in a similar way. This time a number of efficiency based at-

ribute measurements ( Section 5.3.2 ) are derived from the effect

hat parking each vehicle type in its preferred position will have

n the amount of space that will remain available for the vehicles

till waiting to be loaded. The vehicle with the highest weighted

um of attributes is then loaded into its preferred position and the

rocess repeats until all vehicles are loaded or no more vehicles

an be loaded. This approach is formalized in Eq. (10) . 

The position and vehicle selection attributes are listed and ex-

lained below. The list is designed to be exhaustive and several

f the attributes are likely to be correlated. For example the posi-

ion selection attributes Width inefficiency and Tightness are mea-

urements that both depend upon the width of the given vehicle

ype but capture different considerations. Width inefficiency consid-

rs the effect that the width of a vehicle will have on the number

f vehicles that can fit next to it after it has been parked, whereas

ightness is a measure of how snugly a vehicle fits into a given

arking position. 

The value for each attribute is normalized. 
.3.1. Position selection attributes 

1. Width inefficiency . Open positions are generated for each vehicle

type, and have a maximum width associated with them corre-

sponding to the widest vehicle that can fit within them. Width

inefficiency is equal to the total area of vehicles that will fit ad-

jacent to the given vehicle type in the given position (i.e. within

the maximum width of the same open position) relative to the

total area of vehicles that will then remain to be loaded. 

2. Tightness . The ratio of the width of the vehicle type plus a stan-

dard lateral parking gap divided by the width of the open posi-

tion. It is interesting to note the contrast between this and the

previous attribute. 

3. Entrance overlap ratio . If a vehicle is parked in the entrance, the

entrance overlap ratio is the area of the vehicle type that would

overlap the entrance zone, relative to the area of the entrance

zone. The entrance zone is defined as the rectangle that begins

at the entrance ramp, is as wide as the entrance ramp and is as

long as the longest vehicle type. 

4. Uniqueness . 1 minus the ratio of the number of remaining vehi-

cle types that fit into the open position to the total number of

vehicle types that remain to be packed. 

5. Mezzanine deck overlap ratio . The area of the vehicle type

parked directly underneath a lowered Mezzanine deck relative

to the area of that vehicle type. 

6. Distance from the bottom . Longitudinal distance from the exit

ramp of the ferry relative to the maximum longitudinal dis-

tance of any available position from the exit ramp. 

7. Distance from the right . Distance from the right hand wall of the

ferry relative to the width of the ferry. This is included specif-

ically for the 1 mezzanine deck configuration, where it may

be beneficial to park low vehicles under the single mezzanine

deck–which is on the right hand side of the ferry–whenever

possible, so as to reserve space for high vehicles. 

8. Distance from the nearest side . Distance from the nearest side

relative to the width of the ferry. This measure is included to

reflect actual loading practices where some loaders tend to park

vehicles close to the sides first before filling in the gaps in the

middle. 

9. Adjacent to the side . 1 if the open position is adjacent to a side

wall, 0 otherwise. 

0. Distance from middle . Distance from the centre of the ferry rel-

ative to the width of the ferry. 

1. Width to lowest open position . Lateral distance to the open posi-

tion nearest the exit ramp relative to the width of the ferry.

This attribute was designed to penalize open positions that

block off other open positions that are closer to the bottom

(exit). 

2. Bottom adjacency ratio . In some cases not all of the width of

an open position is adjacent to a vehicle parked in front of it,

which may lead to staggered parking and the blocking off of

other open positions. This attribute is measured relative to the

width of the vehicle type the open position is generated for and

takes a maximum value of 1. See Fig. 6 for more details. 
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Fig. 6. Illustration of the bottom adjacency ratio attribute. 
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A parking position is selected for each vehicle type based on max-

imizing a weighted sum of the above attributes. A further set of

efficiency attributes are calculated for each vehicle parked in its

highest scoring position in preparation for selecting which vehicle

to load next. 

5.3.2. Vehicle selection attributes 

1. Remaining vehicle space . This attribute provides a single value

score for the total floor area of the remaining vehicles that

can still fit onto the ferry. It can prevent vehicles from being

placed in positions where they obstruct other vehicles from be-

ing loaded onto the ferry. Let a ′ v denote the “remaining vehicle

space” attribute value for vehicle type v and ξv , v ′ denote the re-

maining space for vehicle type v ′ after parking vehicle type v in
its selected position then 

a ′ v = 

η∑ 

j=1 

ξv , j 

(
n j area j ∑ η

k =1 
n k area k 

)
. 

where n v is the number of vehicles of type v that remain to

be parked and area v is the area of a vehicle of type v . The cal-

culation of the ξ values is the most computationally expensive

part of the loading simulator. As a result, the computational ef-

ficiency of the area calculation has a significant impact on the

total computation time. 
2. Parking loss . Measured as the drop in remaining space, after

parking a vehicle, relative to the minimum area required for
parking that vehicle. 

parking loss 

= 

remaining area before parking − remaining area after parking − area v 

area v 
.

3. Open position selection score . The weighted sum of the normal-

ized position attributes for the position selected for the given

vehicle type, which we reuse for the purpose of selecting which

vehicle to park next. 

4. Remaining space for the same vehicle type . The amount of space

remaining for the vehicle type, once parked in its preferred po-

sition, relative to the space remaining for a minimum dimen-

sioned vehicle. 

The weighted sum procedure that is used to determine the next

vehicle type to load is given in Eq. (10) . The inputs are the sets of

available parking positions for each vehicle type and the loading

parameter weights. The output is which vehicle to load next (ve-

hicle type l ) and where (position index b l ). In Eq. (10) B is the set

of attribute score indices that are included in the weighted sum;

and a v ,i,q is attribute score i of vehicle type v when such a vehicle

is parked in position q , where the set of positions available for ve-

hicle type v is defined as the set Q v . Note that it is only necessary

to consider vehicle types that remain to be loaded in Eq. (10) . 
The loading parameters for each attribute (attribute index i )

ome as a pair of parameters 
{

w i, 1 , w i, 2 

}
. The single weight for an

ttribute is calculated as a weighted sum of this pair, where the

eight given to w i, 1 is 1 − H and the weight given to w i, 2 is H ,

here H summarizes the remaining space on the main deck as the

atio of the remaining space for low vehicles r l to the size of the

ain deck. This approach allows the loading algorithm behavior to

hange (linearly) over the course of the loading process. Such an

pproach vastly improves the quality of the packing solutions that

an be derived from the packing algorithm. 

( v ∗, q ∗) = arg max 

{ ∑ 

i ∈ B 
[ w i, 1 ( 1 − H ) + w i, 2 H ] a v ,i,q | v ∈ V, q ∈ Q v 

} 

. 

(10)

.4. Optimizing the parameters of the loading algorithm 

We use simulated annealing to search for sets of loading pa-

ameters that maximize the total area of vehicles that can be

oaded and which minimize wasted space. This means that the

imulated annealing algorithm influences packing decisions indi-

ectly through the rules that are used to select and place vehicles.

imulated annealing was selected because it is not as evaluation-

ntensive per iteration as most other metaheuristic algorithms such

s genetic algorithms ( Aarts & Lenstra, 1997 ). It is also a popular

ethod for tackling packing problems, e.g. see Dowsland (1993) ,

ho used a method that penalized object overlaps and Martins

nd Tsuzuki (2008) , who also use no-fit polygons to address the

acking feasibility issue. Evaluating candidate solutions with the

oading simulator is the main computational bottle neck, with

valuations taking between 0.01 and 0.1 seconds, dependent on

ow many mezzanine decks are used, when implemented as a

ingle-threaded Java application, in a i7-4790, with 3.60 gigahertz

nd 16 gigabytes of RAM. 

Simulated annealing is used in two stages of the approach out-

ine in Fig. 1 : firstly, for deriving initial loading parameter solu-

ions, which are stored and used as initial solutions later on, and

econdly for optimizing those initial solutions for individual vehicle

ixes, which is done when calculating transition values and during

elling season simulation testing. The initial solutions are designed

o work well for a wide variety of vehicle mixes so as to avoid

verfitting; however when setting the transition values and using

he algorithm during the selling season, solutions can be specific

o the vehicle mix and so the neighborhood structures used differ,

s described in Section 5.4.1 . 

The objective function for the simulated annealing algorithm is

o maximize the on-line remaining space ( O ), minimize the num-

er of blocked off gaps that are big enough to accommodate at

east one vehicle type ( Q ), and minimize the area of the vehicle(s)

hat could not be loaded ( F ). The O term maximizes the on-line

emaining space to ensure that vehicles are loaded efficiently even

f the set of vehicles easily fit onto the ferry. The logic of the Q

erm is that reducing the number of wasted gaps will help to cre-

te larger usable gaps. The F term ensures that in cases where all

f the vehicles do not fit onto the ferry, the area of the vehicles

ot loaded is minimized. These objectives are non-conflicting and

ach helps to guide a local search algorithm to tightly packed so-

utions where all of the vehicles are loaded. The objective function

an be written as 

b jV al = 

v Mixes ∑ 

m =1 

( O − ( M 1 × Q ) − ( M 2 × F ) ) 
2 
. 

here M 1 = 10 0 0 and M 2 = 10 . Although other values can be used,

hese were chosen because Q is generally a small number and so

 is set larger than M for it to have any effect on the search,
1 2 
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hilst F is considered a more important aspect of the objective

han O and therefore M 1 is set to be greater than 1. Furthermore,

ince the separate objective terms are not conflicting the exact

hoice of M 1 and M 2 is non-critical. The summation allows for

he case where the interest is in finding a set of loading param-

ters that work well in each of a set of vehicle mix scenarios. Such

n approach avoids overfitting and leads to robust parameters. The

quaring of the objective value contributions from each vehicle mix

nsures that the parameters work uniformly well for each vehicle

ix rather than being extremely good in some situations but very

ad in others. This is useful when deriving the initial solutions.

owever, for the cases of estimating the transition values and mea-

uring the remaining-space state during a simulated selling season,

he focus is on one particular vehicle mix. In each case the simu-

ated annealing algorithm that is used to optimize the loading pa-

ameters is that given below in Algorithm 2 . 

lgorithm 2 Simulated annealing algorithm for the optimization

f the attribute weights. 

1: input : current attribute weights w , vehicle mix that current

weights cannot load 

2: Set simulated annealing parameters: maximum _ iteration ,

c (temperature parameter < 1 ), al l _ v ehicl es _ f it = fal se ,

current _ ob jecti v e = best _ ob jecti v e = e v aluat e (w 0 ) , it eration = 0

(iteration count), n = 0 (neighborhood structure), w = w 0 ,

best _ w = w 

3: while iteration < max _ iterations do 

4: temperature = c 
(
1 − iteration 

maximum _ iterations 

)| best _ ob jecti v e | 
5: neighbor selection: repeat previous improving neighbor

type; otherwise generate a new random attribute i , random

neighbor type k , random direction d 

6: generate candidate solution w 

′ = w followed by w 

′ 
i 
= N n,i,k,d 

7: ob jecti v e = e v aluate (w 

′ 
) 

8: if al l _ v ehicl es _ f it then 

9: return w 

′ 
and terminate 

10: else 

11: δ = best _ ob jecti v e − ob jecti v e 
12: if δ ≤ 0 then 

13: w = w 

′ 

14: current _ ob jecti v e = ob jecti v e 
15: best _ ob jecti v e = ob jecti v e 
16: best _ w = w 

′ 

17: reset neighboring solutions N 

18: else 

19: if rand(0 , 1) < e 

(
− δ

temperature 

)
or ob jecti v e <

current _ ob jecti v e then 

0: w = w 

′ 

21: current _ ob jecti v e = ob jecti v e 
2: reset neighboring solutions N 

3: end if 

4: end if 

5: end if 

6: iteration = iteration + 1 

27: alternate neighborhood structure: n = 1 − n 

8: end while 

9: output : new attribute weights best _ w 

For the case of deriving initial seed loading parameters we op-

imize the loading parameters w i, 1 , w i, 2 , i = 1 , . . . , numPars using

0 0 0 iterations of the simulation model, using Algorithm 2 and

ecording the parameters. This process is repeated 10 times and

he best set of loading parameters are stored. For the case where

he loading parameters are optimized dynamically during a (real

r simulated) selling season for a single vehicle mix, we always
tart with the stored initial loading parameters derived earlier. This

peeds up the overall computation time, while allowing us to use

oading parameters that are suited to the realized demand. 

The temperature/annealing scheme (line 5) is based on a lin-

arly decreasing fraction of the absolute value of the current best

bjective value. This approach allows the temperature scheme to

espond to the progress that has been made during the algo-

ithm. A similar approach is considered by Hatami, Ruiz, and An-

re ́s-Romano (2015) as this approach is self-calibrating and thus

educes the parameter-setting burden of simulated annealing. In

ach iteration a random neighboring candidate solution is gener-

ted and evaluated. If all of the vehicles fit onto the ferry the new

olution is returned and the algorithm terminates (line 10). If the

ew solution has an equal or better objective (line 13) than the

urrent best solution it is accepted as the current solution and

he best solution, since it is beneficial to accept different solutions

ith the same objective value to encourage exploration. Otherwise

line 20) the solution is accepted as the current solution with a

robability that depends on the temperature and how much worse

he solution is compared to the current best solution. 

.4.1. Neighborhood structure 

The simulated annealing algorithm uses two different local

eighborhood structures depending on whether the optimization

s being carried out for a set of vehicle scenarios simultane-

usly (in the case of deriving initial seed solutions) or for the

ase of optimizing the loading parameters for a single vehicle

ix (transition function estimation and state measurements dur-

ng the selling season). For the former, a step-length based lo-

al neighborhood is used, for the latter a minimum parameter

hange neighborhood is used. The step-length based approach is

seful for aggressively searching the loading parameter space (ex-

loration), whereas the a minimum parameter change neighbor-

ood is focused on small refinements (intensification). For the case

f deriving initial seed solutions we consider two varieties of a

tep-length based local neighborhood: a linearly decreasing step-

ength and random step-length. The simulated annealing scheme

ill choose the linearly decreasing step-length with probability

 . 5 

(
1 + 

(
iteration 

maxIterations 

)0 . 5 
)
, where iteration is the current iteration

nd maxIterations is the maximum number of iterations; otherwise

he random step-length will be used. This is designed to increase

iversification in the early stages and intensification in the later

tages. The linearly decreasing step-lengths are calculated using

L = 0 . 5 ∗
(
1 − iteration 

maxIterations 

)
. The step-length can be added or sub-

racted, for this sign is set to −1 or 1 with equal probability. 

For the random case SL is multiplied by randInput to gener-

te a random step-length, where randInput is sampled from a Uni-

orm(0,1) distribution. A neighboring solution w 

′ is then generated

y randomly selecting a loading parameter index i and an endpoint

 to apply the step length. 

 

′ 
i, j = w i, j + sign ∗ SL ∗ randInput. 

A different neighborhood is used for the optimization of the

oading parameters for a single vehicle mix, which we term The

inimum Parameter Change Neighborhood . This approach is de-

igned for identifying minimal changes to any of the loading pa-

ameters which improve loading efficiency whilst retaining desir-

ble features of an incumbent solution. The neighborhood consists

f sets of replacement values for each pair of loading parameters

 

c 
i, 1 

and w 

c 
i, 2 

for each efficiency attribute i , in comparison to the

ncumbent solution. The replacement values are calculated as the

earest values to the current values that make a difference to at

east one decision made during the loading of a particular vehi-

le mix ( Eq. (10) ). A change in the value of a loading parame-

er changes a decision if it causes a different position to be se-

ected for any vehicles or changes which vehicle is loaded next.
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We consider four alternative minimum change calculations. The

first (indexed k = 0 ) considers the nearest parameter value to end-

point 1 of each parameter, w i, 1 , that makes a difference. The sec-

ond (indexed k = 1 ) considers the nearest parameter value to end-

point 2 of each parameter, w i, 2 , that makes a difference. The third

(indexed k = 2 ) considers the minimum common additive change

to both endpoints of each parameter w i that makes a difference.

The fourth (indexed k = 3 ) considers the minimum common mul-

tiplicative change to both endpoints of each parameter w i that

makes a difference. The equations used for calculating the nearest

parameter values are provided in Appendix J. 

Furthermore, for each case k = { 0 , 1 , 2 , 3 } there is either the ab-

solute minimum parameter changes that are required to change

one decision (option n = 0 ), or the average of the minimum pa-

rameter changes from the minimum changes required to change

the decision that was made to each other possible decision (op-

tion n = 1 ). In Algorithm 2 , we alternate between n = 0 and n = 1 .

The reasoning being that using both diversifies the search: n = 0

is more conservative and n = 1 is more aggressive. If we also store

negative and positive minimum parameter changes separately and

index the negative case d = 0 and the positive case d = 1 , we can

define the neighborhood structure ( N n , i , k , d ) where i is a specific

loading parameter index. This means that a random neighboring

loading solution can be generated (line 6 of Algorithm 2 ) by gen-

erating a random tuple n , i , k , d . 

This minimum parameter change neighborhood allows for the

fine tuning of the loading parameter for a particular vehicle mix.

In such cases over fitting is not a problem because there is an exact

problem that needs a solution. 

6. Numerical experiments 

We present results for three different demand scenarios corre-

sponding to: 1. Low proportion of large freight vehicles, high pro-

portion of cars; 2. Average demand rate; 3. High proportion of

large freight vehicles, low proportion of cars. Scenarios 1 and 3

correspond to typical sailings in the middle of the day and early in

the morning respectively. Each scenario is solved using our method

and the pricing approaches described in Section 6.1 . The experi-

ments assume homogeneous arrival rates, which we derive from

historical demand data. Assuming homogeneity simplifies the anal-

ysis of other variables, but note that the same formulation applies

for non-homogeneous arrival rates. The lengths of time intervals

used in the dynamic program were chosen separately for each ar-

rival scenario to ensure that the probability of no arrivals occur-

ring in each time interval was equal to 0.5. The arrival rates were

increased proportionally such that the total expected area required

by arriving vehicles was 1.5 times the total area of the ferry with

both mezzanine decks in operation. The number of time intervals

for demand scenarios 1, 2 and 3 were 732, 637 and 486, respec-

tively. While a little artificial, it allows us to maintain the typical

ratio of arrival rates observed in practice and ensures that com-

parisons are on examples where demand exceeds supply and ef-

ficient packing is important. If the net demand cannot exceed the

available capacity then there is effectively no capacity constraint

and the optimal pricing policy is the infinite-capacity or revenue-

rate-maximizing price for each vehicle. The vehicle dimensions, ar-

rival rates, price acceptance model parameters, ferry dimensions

and parking gap requirements have been included in Appendix J. 

6.1. Benchmark pricing policies 

We compare our proposed approach with a number of alter-

native pricing approaches, including an approximation of current

pricing practice. For clarity, these alternatives are listed below. 
Optimal fixed price ( FP ). We find the price that optimizes

he revenue equation 

∑ | V | 
v =1 

∑ T 
t=1 αv ,p v ,t λv p v with the constraint

 | V | 
v =1 

∑ T 
t=1 αv ,p v ,t λv ar ea v ≤ �, where ar ea v is a point estimate of

he space required to park a vehicle of type v and � is the total

pace available on the ferry. We find the optimal price to charge

sing a local search method. 

Approximation of current practice ( AP ). The current approach of

he ferry company is constrained by a number of confidential busi-

ess rules. This prevents us from providing full details of the pol-

cy in which a limited number of price changes are permitted dur-

ng the selling season between a discrete set of price points. Price

hanges are typically triggered at pre-determined thresholds of re-

aining capacity, although manual intervention is also used. 

To simulate the current approach we implement a dynamic

rogram for the pricing problem identical to that presented in

ection 4.1 , but with the business rules added as extra con-

traints. In our implementation, the discrete set of price points

or each vehicle type are taken to be equally spaced between the

evenue-rate-maximizing or infinite-capacity price (the solution of
d ( pd ( p ) ) 

dp 
= 0 , where d ( p ) is the demand as a function of price) and

he maximum price χv . 

Capacity based pricing ( CP ). In this approach, each remaining-

pace state has a set of prices p associated with it, where the

rices are set by observing simulations of the full dynamic pric-

ng policy of Section 4.1 . The prices for each remaining-space state

re those on offer at the expected time that state is visited. The

xpected times at which each of the states are visited is calculated

y evaluating the full dynamic pricing policy in a forwards time di-

ection starting from a probability of 1 that all capacity is initially

vailable. 

The ferry has three possible deck configurations: no mezzanine

ecks, two mezzanine decks and one mezzanine deck. We first test

ach of the pricing policies on each combination of demand sce-

ario and deck configuration before going on to consider the case

here the ferry deck configuration is not decided at the begin-

ing of the selling season. When the deck configuration is non-

xed ( NF ) the number of mezzanine decks to use is a free variable

nd the pricing policies for all three possible deck configurations

re calculated. During the selling season the NF approach mea-

ures the remaining-space states for each ferry configuration and

hooses the pricing policy for the deck configuration estimated to

ave the highest expected future revenue. This allows the choice

f ferry configuration to be sensitive to the realized demand dur-

ng the selling season. 

.2. Results 

In the scenarios we consider here, we assume that a customer’s

aximum willingness-to-pay for a particular vehicle type is pro-

ortional to its footprint area, which we measure in Car Equivalent

nits (CEUs). This assumption does not change the characteristics

f the resultant pricing policy but helps to highlight the effect of

acking considerations on pricing. Each demand scenario and pric-

ng policy is solved for 0, 1 and 2 mezzanine decks and results

f 500 simulations are presented in Table 1 . This section focuses

n the average revenues achieved by each pricing approach in re-

eat simulations where the packing problem is solved on-line dur-

ng the simulations of the selling season. For the interested reader

ig. 1 of Appendix B illustrates the strong correlation between the

xpected revenues from the DP look up tables (start of the sell-

ng season with all of the space remaining) and the simulated rev-

nues achieved by the pricing policies derived from those value

unctions tested in 500 repeat simulations. Since the approach of

ommon random numbers was used for each of the 500 repeat

imulations, Table 1 in Appendix C provides confidence intervals



C. Bayliss et al. / European Journal of Operational Research 273 (2019) 288–304 301 

Table 1 

Average revenues and proportion of winning cases achieved by our approach (DP) and the bench- 

mark pricing policies (CP, AP and FP). Here, ∗ indicates significantly higher revenues at the 95% 

confidence interval level compared to the alternative approaches. 

Demand Mezzanine Average revenue (Proportion of winning cases) 

scenario decks DP CP AP FP 

1 0 68.80 (0.644) ∗ 67.89 (0.28) 65.33 (0.07) 64.62 (0.006) 

1 70.95 (0.552) ∗ 70.38 (0.324) 69.23 (0.086) 66.76 (0.038) 

2 71.13 (0.28) 71.38 (0.350) 71.48 (0.350) 68.76 (0.02) 

2 0 68.36 (0.526) ∗ 67.91 (0.348) 65.14 (0.094) 66.24 (0.032) 

1 69.24 (0.432) ∗ 68.56 (0.318) 67.66 (0.148) 66.04 (0.102) 

2 66.10 (0.392) 65.70 (0.364) 62.00 (0.184) 62.69 (0.060) 

3 0 66.56 (0.484) ∗ 66.04 (0.356) 61.47 (0.072) 64.47 (0.088) 

1 60.77 (0.416) 61.28 (0.524) ∗ 54.91 (0.032) 51.10 (0.028) 

2 46.73 (0.592) ∗ 45.89 (0.344) 41.18 (0.064) 14.36 (0.0) 
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total revenue. 
or the differences between each pricing method and the method

ith the highest average revenue, which support the significance

evels reported in Table 1 of the main paper. 

The computation times for our proposed method with fixed

eck configurations range from 12 seconds for the 0 mezzanine

eck case with high freight demand to 230 seconds for the 1 Mez-

anine deck case with high car demand. The most computationally

ntensive part of the proposed approach is the derivation of the

ransition functions, with optimal ferry loading requiring up to 90

econds for the 1 mezzanine deck configuration and average de-

and scenario. 

Table 1 shows that with two exceptions (D1C2 and D3C1), our

roposed DP pricing approach attains the highest average rev-

nues. It also shows that the 2 mezzanine deck configuration is the

ost profitable for the high car demand scenario; the 1 mezzanine

eck is the most profitable configuration for the average demand

cenario; and the 0 mezzanine decks is the most profitable config-

ration for the high freight demand scenario. These results make

ense as these configurations maximize the space available for the

ehicle types with the highest expected demand. 

Table 1 also shows that with a few exceptions the average rev-

nues for each method of pricing are ordered from highest to

owest average revenue as DP, CP, AP and FP, as introduced in

ection 6.1 . The notable exception to this is the result that the

P method attains the highest average revenue for the high car

emand scenario in the most profitable configuration (2 mezza-

ine decks). We believe this to be due to more efficient packing

ather than improved pricing because this policy reaches capacity

ore quickly than other pricing policies. Reaching capacity triggers

 re-optimization of the packing, improving its efficiency; therefore

acking is likely to be more efficient with the AP policy (although

omputation times will be longer). Using this observation, it may

e possible to improve the revenues of the other pricing policies

y re-optimizing regularly rather than waiting until one of the ve-

icle types no longer fits onto the ferry. Appendix H contains a de-

ailed comparison of DP and AP for this scenario. The FP method

erforms very badly in the high freight two-mezzanine deck case

ecause is accepts too many freight vehicles, which have a habit

f blocking the entrance prematurely. It is worth noting that the

 mezzanine deck configuration in the high car demand scenario

s the simplest pricing problem as the capacity for low vehicles is

ery high and so a generally good policy is to stimulate a high de-

and for low vehicles. In the other cases the ideal mix of low and

igh vehicles is more balanced. Table 1 also lists the proportion of

ins for each method. 

The appendix contains experimental results that support those

iven in Table 1 including confidence intervals and revenue results

or the cases where willingness-to-pay decreases over time and
here a customer’s maximum willingness-to-pay is proportional to

he square root of vehicle length as opposed to being proportional

o vehicle footprint area. The DP method is also highly effective in

hese cases. 

Table 2 shows the effect of the NF (non-fixed ferry configura-

ion) pricing strategy. The NF pricing strategy improves average

evenues for the extremal demand scenarios 1 and 3, but leads

o reduced revenues for the average demand scenario. Statistical

uctuations in demand in the average demand scenario are such

hat it is possible that either a 0 mezzanine deck configuration

r a 2 mezzanine deck configuration can be the most profitable

nd therefore form the basis on which pricing decisions are made.

owever, once a configuration transition occurs, the new config-

ration will become an attractor as it will encourage a demand

attern for which the configuration is best suited. The downside

f changing configurations it that the final mix of vehicles may

ot suit the final ferry configuration as well as it could have if the

erry configuration decision was fixed at the beginning of the sell-

ng season. 

As Table 2 shows, the NF pricing strategy leads to small aver-

ge revenue improvements for the high car demand scenario and

he high freight demand scenario. For the high car demand sce-

ario the configuration with the highest expected future revenue

ppears to systematically vary between the 1 and 2 mezzanine

eck configurations. At around time step 600 the probability that

he 1 and 2 mezzanine deck configurations have the highest fu-

ure expected revenue momentarily swap in favour of the 1 mezza-

ine deck configuration. This observation can be explained as cor-

esponding to the critical point whereby the natural demand for

ow vehicle types is low or high. If the car demand for low vehi-

les is below average it will remain profitable to accept bookings

rom high vehicle types which will typically only be possible in

he 1 mezzanine deck configuration. Alternatively if the low vehi-

le demand is high enough then the 2 mezzanine deck configu-

ation will be the most profitable as this configuration maximizes

he space for low vehicle types. In the high freight demand sce-

ario it is rarely the case that the 1 mezzanine deck configuration

as the highest expected future revenue, a fact that is reflected in

he minor increase in average revenue due to the NF pricing strat-

gy. Appendix I provides plots that show the proportion of time

he NF approach uses each of the ferry configurations during the

ooking period, for each demand scenario. 

Table 2 also shows in brackets the relative average revenues

hat were achieved when the simulated annealing algorithm is not

sed to re-optimize the loading algorithm parameters every time

 vehicle type is found not to fit onto the ferry. The impact of the

imulated annealing re-optimization is an average 2.2% increase in
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Table 2 

Average revenue from 500 simulation iterations with the optimal revenue policies for each demand scenario 

written in bold. In brackets are the relative revenues found without re-optimization of the packing. 

Demand scenario Ferry configuration 

0 M decks 1 M decks 2 M decks Non-fixed configuration 

1 68.80 (0.98) 70.95 (1.00) 71.13 (1.00) 71.61 (0.99) 

2 68.36 (0.99) 69.24 (0.96) 66.10 (0.99) 67.73 (0.88) 

3 66.56 (0.98) 60.77 (0.98) 46.73 (0.92) 66.58 (0.98) 

Average solution time (seconds) 16.05 189.87 129.66 335.58 

Fig. 7. Total average revenue comparison between the proposed simulation-based approach and an optimal formulation for a small problem instance. 
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6.3. Comparison to exact optimal solutions 

In this section we show that the proposed approach provides

pricing policies which are close to optimal by comparing the re-

sults of previous work Martinez-Sykora et al. (2017) , where we de-

veloped a method that solves the optimization problem exactly for

problem instances with up to 5 vehicle types for a moderate-sized

ferry. To enable the comparison we replace the loading simulator

with a 1-d bin packing formulation which simulates optimal lane

parking (no 2-d/staggered parking arrangements) as this mimics

the packing method used in the exact approach. 

One of the approaches for addressing the tractability of the

optimal formulation is to discretize vehicle types into a smaller

number of categories, so a 5 vehicle type problem can serve as

an approximation to a 20 vehicle problem. The discretization re-

quires that the vehicles within each category are modeled as hav-

ing the maximal dimensions of all vehicles with that category. The

following graph shows that for a range of discretizations on the

5 vehicle type problem the proposed simulation based approach

stays close to the optimal solution in terms of the average rev-

enue achieved in simulation testing of the pricing policies derived

from each approach. Furthermore, Fig. 7 shows that allowing 2-

d/staggered parking significantly increases revenues. It should be

noted that if the optimal formulation utilized a 2-d packing solu-

tion the revenue would again be higher than those achieved by

the simulation based approach; however the simulation based ap-

proach is the only one that remains tractable and close to opti-

mal for large problem instances. The proposed approach took a

total of 10 minutes for each discretization, whereas the optimal
ormulation took over a day to solve. For the 1-d bin packing case

he proposed approach achieved on average 97.48% of the revenue

f the optimal formulation. 

. Discussion 

We have described a practical method for finding the optimal

rice to charge on vehicle ferries with stochastic demand and vari-

ble configurations. This compares well with the exact solution on

mall problem instances (97.48% of the optimal revenue and 0.7%

f the computation time) and remains tractable for larger prob-

ems. 

Experimental results from a range of demand scenarios showed

hat our method led to higher average revenues than alternative

ricing strategies in most cases. In particular, it attained aver-

ge revenues that were 6% higher than those attained by the ap-

roximation of current practice. We believe this to be due to the

ethod incorporating more flexibility in its pricing, allowing it to

eact to realized demand and improve the efficiency of the pack-

ng. This is underlined by the observation that improving the ef-

ciency of the packing by re-optimizing during the selling season

as shown to result in a 2.2% average increase in revenue. 

Being flexible with the ferry configuration and allowing it to

ary during the selling period was shown to increase average rev-

nue in some cases whilst being susceptible to pitfalls in certain

ituations. In particular the average demand scenario appeared to

ave the 0 and 2 mezzanine deck configurations as non-profitable

ttractors due to the effect that different pricing policies have on

he final vehicle mix. Results remain inconclusive about whether

he increased computation time associated with this algorithm is
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arranted given the small increases in revenue that it produces,

lthough the mixed results may be a result of the demand scenar-

os that we considered. 

The work makes several contributions to the academic litera-

ure. First, we introduce a dynamic pricing algorithm that takes

nto account the efficiency of the packing when setting fares for

ifferent products. Combinatorial dependencies between products

re not often considered in RM problems and this work has the

otential to be applied in other areas where accepting a purchase

as a complex effect on the capacity remaining for future sales.

otential examples include the pricing of online grocery deliver-

es, bespoke 3-d printing, advertising space, and air freight. These

hare the characteristics that the capacity is continuous and dif-

erent item types use up different amounts of the available re-

ource. Second, despite its importance globally, we have found no

eferences to pricing of vehicle ferry tickets in the literature and

his work provides a practical methodology for solving the vehi-

le ferry RM problem. Third, we describe a state space reduction,

hich enables us to move from a high-dimensional state space to

 low-dimensional state space that still retains the most impor-

ant information for the pricing problem. This speeds up the com-

utation significantly and allows practical problem instances to be

olved rapidly. Previous work, although determining optimal solu-

ions, becomes intractable for large problem instances. 

The heuristic approach that we present here is built around a

oading simulator, making it easy to allow for practical constraints

n the loading process, such as manoeuvrability and elevator ac-

ess. We deliberately include a wide variety of complex features in

he case study example, making it more straightforward to adapt

he proposed approach to other ferry designs, which may have

nly a subset of these features. The aim of incorporating the load-

ng simulator was to estimate the remaining space on the vehi-

le decks of the ferry and to deduce how the remaining space de-

reases as an extra vehicle is added. Other structures and optimiza-

ion routines could be used for the loading algorithm, which may

mprove computation times and/or its results but this is the sub-

ect of future work. The flexibility to real-world constraints means

hat the work can be used in practice, where it goes beyond the

urrent state-of-the-art by explicitly accounting for the loading

rocess when setting prices. 

In addition to improving the price optimization, the packing al-

orithm introduced in Section 5 obtains good solutions and has

omputation times that are low enough to make it useful for gen-

rating packing solutions for a set of vehicles waiting to be loaded

nto the ferry. Combined with the simulator, it also has the poten-

ial to be useful as a training tool for loading staff. One aspect of

he loading process that is not considered here is the impact of lin-

ng vehicles up on the dockside waiting to drive onto the ferry. As

ehicles can only be taken from the front of a line, this can render

acking solutions infeasible, particularly if the waiting area on the

ock only has space for a small number of lines. In future work,

e envisage developing an optimization routine that takes into ac-

ount the restricted choice of vehicles when setting up packing so-

utions. 

The current model is based on the assumption that there is

 single market price for each vehicle type at each time. A fu-

ure study might consider the implications of multiple third party

ellers all offering slightly different prices. The benefits of third

arty sellers are that they increase the market size through their

wn advertising, which may also target new customer groups.

hilst such considerations are beyond the scope of the current

tudy their inclusion could build upon the efficient dynamic pric-

ng methodology presented here. 
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