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Abstract: This study evaluates the potential correlation between natural aging and hydrothermal curing 

(accelerated aging), related to the crystallisation of zeolites in potassium-based metakaolin geopolymer binders. 

5-year old sealed-cured specimens, formulated with varying silicate contents, were evaluated. The effect of 

different accelerated aging durations on the mineralogy of these potassium-based geopolymers was also 

assessed. The results show that although zeolite formation is favoured under both natural and accelerated aging 

in potassium-based geopolymers, different types of zeolites are formed depending on the silicate content added 

to the mix, and the curing conditions of the specimens.  

 

1. Introduction  
Geopolymer materials, produced from the chemical reaction between a poorly crystalline 

aluminosilicate source and a highly alkaline solution, have been the object of study for over half a 

century [1]. Metakaolin-ďĂƐĞĚ ŐĞŽƉŽůǇŵĞƌƐ ǁĞƌĞ ĚĞǀĞůŽƉĞĚ ĂƐ ͚ŝŶŽƌŐĂŶŝĐ ƉŽůǇŵĞƌƐ͛ ǁŝƚŚ ŚŝŐŚ ĨŝƌĞ 
resistance properties, but they have been gaining acceptance for a wide range of applications including 

as innovative matrices for radioactive waste cementation [2]. Particularly, geopolymer materials based 

on calcined clays provide highly desirable performance in the immobilisation of heavy metals, and key 

radionuclides including 137Cs and 90Sr.  

 

In the context of nuclear waste disposal, cementitious grouts need to withstand hundreds of years of 

in-service conditions, with high stability under moderate temperature and/or pressure changes, 

depending on the final method adopted for their disposal. In metakaolin-based geopolymers, it is well 

known that the main binding phase (an alkali aluminosilicate gel), develops short range ordering with 

a pseudo-zeolitic structure [3]. Formation of crystalline phases has been identified in these materials 

over time, and this is accelerated by changes in temperature and/or pressure [4]. The bulk chemical 

composition of the mix design, and the type and dose of activator, also appear to have a significant 

influence on the crystalline phase formed.  The mechanism of zeolite growth in metakaolin-based 

geopolymers is likely to resemble a gel-solid transformation via rearrangement of the precursor 

structure. Therefore, the rates of dissolution and polycondensation within these materials are 

expected to have a significant impact on the zeolite species present and the degree of crystallisation 

[5].  

 

In this study, the mineralogy of two K-based metakaolin geopolymers cured for 7 years, under 

controlled laboratory conditions, is examined, and compared with that of geopolymers produced with 

similar formulations but cured under hydrothermal conditions, with the aim to simulate accelerated 

aging of the specimens, and determine potential structural changes in the long-term.  

 

2. Experimental methods:  
 

A commercial grade metakaolin (Metastar 402, Imerys UK) was used in this study, which contains 

44.87 wt.% Al2O3 and 53.16 wt.% SiO2. Potassium hydroxide and silicate solutions (i.e. SiO2/K2O=0.0 

and 0.25 respectively), with H2O/K2O=11 were prepared by dissolving potassium hydroxide flake and 
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amorphous silica in Milli-Q water until clear. Solutions were stored for a minimum of 24 hours before 

use. Geopolymer samples were prepared by mixing stoichiometric amounts of metakaolin and 

activator solution to give a product with bulk Al2O3/K2O=1. For all mix designs, the reagents were 

mechanically mixed for between 5 to 15 minutes until a homogeneous paste was achieved.  

 

For geopolymers cured under ambient conditions, the freshly prepared geopolymer pastes were cured 

in a laboratory oven at 40°C first for 20 h, and then transferred into sealed containers for storage at 

ambient temperature (20-25°C) for 5 years until testing. For hydrothermal curing, a standard pressure 

cooker was used to achieve an internal temperature of 120°C and an internal pressure of  2 atm, in a 

saturated steam environment. The freshly prepared geopolymer samples were firstly sealed in plastic 

containers containing 100 mL of water (no direct contact with the samples), and then put into the 

pressure cooker for hydrothermal curing. After 24, 48, 72, 120 and 168 hours of curing, the geopolymer 

samples were assessed.  

 

Prior to testing, geopolymer samples were crushed and sieved (<67 ʅm). A Philips PW 1800 

diffractometer with Cu Kɲ radiation generated at 20mA and 40kV was used to evaluate the 

hydrothermallǇ ĐƵƌĞĚ ƐƉĞĐŝŵĞŶƐ͕ ǁŚŝůĞ Ă BƌƵŬĞƌ Dϴ AĚǀĂŶĐĞ ĚŝĨĨƌĂĐƚŽŵĞƚĞƌ ǁŝƚŚ CƵ Kɲ ƌĂĚŝĂƚŝŽŶ ĂŶĚ 
a nickel filter was used was used to evaluate the naturally aged samples. All data were collected with 

a step size of 0.020°͕ ŽǀĞƌ Ă Ϯɽ ƌĂŶŐĞ ŽĨ ϱ° to 70°. 

 

3. Results and discussion: 

 

Figure 1 shows the diffractograms of two K-based metakaolin geopolymers cured under hydrothermal 

conditions for different durations. Between the potassium hydroxide (SiO2/K2O=0) activated 

geopolymer and potassium silicate (SiO2/K2O=0.25) activated geopolymer, the structural evolution 

over the curing time is comparable, where the K-feldspar was formed after 24 hours of curing in both 

specimens, along with a transition zeolite phase, K-exchanged zeolite F (K-EDI), with a less ordered 

structure in the samples containing silicate after 48 h of curing. Traces of potassium chabazite (K-CHA) 

(powder diffraction file (PDF) #00-044-0250 and/or PDF#00-012-0194) are also observed in both 

specimens.  
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Figure 1 X-ray diffraction patterns of hydrothermally cured potassium-based metakaolin geopolymer 

with a SiO2/K2O of (A) 0, and (B) 0.25; where K-CHA refers to potassium chabazite (similar to PDF#00-

044-0250), K-EDI refers to K-exchanged zeolite F (PDF# 00-038-0216), and K-Feldspars refer to either 

sanidine (PDF# 00-025-0618) or orthoclase (PDF# 00-031-0966), both of which are monoclinic 

 

These results elucidate the important role of silicate in crystallisation kinetics of the geopolymers 

assessed, where ordered K-EDI and K-Feldspar are observed in the potassium hydroxide activated 

geopolymer (Figure 1A) after 24 h, while the potassium silicate activated geopolymer remained mostly 

amorphous at this curing duration, with a small amount of K-Feldspar formed. However, at advanced 

times of hydrothermal curing, both samples present similar mineralogy. In the silicate-containing 

samples, the additional amorphous Si dissolved in the activator increases the viscosity of the solution, 

slowing down the mobility of dissolved ionic species [1]. This might be responsible for the delayed 

formation of crystalline phases. However at later times in the gel nucleation/growth reaction under 

hydrothermal curing conditions, the additional monomeric silica together with continuously dissolved 

ionic species favours the further polycondensation process of the geopolymer gel [5]. The formation 

of K-EDI (zeolite K-F, Si/Al=1) as a transient zeolite phase is likely related to the sufficient presence of 

alkali in the pore solution prior to the fully reaction of metakaolin [7]. Also, the potassium chabazite 

(zeolite K-G) formed in the two geopolymer specimens is likely to have different Si/Al ratios (Si/Al 

between 1 and 2) in the aluminosilicate framework of the chabazite phase formed, as a result of the 

differences in bulk chemical compositions [8]. 

 

Under ambient curing conditions for up to 7 years, as shown in Figure 2, zeolite EDI was also identified; 

however neither K-feldspar nor chabazite was observed.  Instead, other zeolite group minerals are 

formed. Notable differences in crystallinity are observed between the potassium hydroxide and the 

potassium silicate activated geopolymer; the specimens containing silicate are notably less crystalline.  

A zeolite-type silica polymorph [9] and K-exchanged zeolite A are identified in the potassium hydroxide 

activated geopolymer, while leucite is forming in the potassium silicate activated geopolymer. The 

potassium silicate activated geopolymer also maintained a significant amount of poorly crystalline 

alkali aluminosilicate type gel ;͚ŐĞŽƉŽůǇŵĞƌ ŐĞů͛Ϳ after 5 years, observed as a diffuse hump at ϯϬΣ ;ϮɽͿ͘ 
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Figure 2 X-ray patterns of potassium geopolymer cured under ambient condition for 7 years, where 

K-EDI refers to K-exchanged zeolite F (PDF# 00-038-0216), and other phases are K-illite (PDF# 00-026-

0911), leucite (PDF# 00-049-0619), K-exchanged zeolite A (PDF# 01-082-2070), and zeolite-type silica 

polymorph (PDF# 01-085-0462) 

 

 

4. Conclusion 

Formation of zeolite type phases is favoured in potassium-based metakaolin geopolymers, particularly 

those produced using a hydroxide type activator. Using silicate-containing activators favours formation 

of a less ordered structure, which remains almost unchanged after 5-years of curing.  Under 

hydrothermal curing conditions, using a silicate activator delays the formation of zeolite type phases. 

The fact that different types of zeolites were identified in naturally aged and hydrothermal cured 

samples, indicates the marked influence of differences in time, temperature, and potentially also 

pressure during curing influencing the nucleation stage of the crystallisation process of these materials, 

which is of great importance within the context of nuclear waste disposal.    
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