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Abstract—Autonomous vehicles (AVs) must interact with other
road users including pedestrians. Unlike passive environments,
pedestrians are active agents having their own utilities and
decisions, which must be inferred and predicted by AVs in order
to control interactions with them and navigation around them.
In particular, when a pedestrian wishes to cross the road in
front of the vehicle at an unmarked crossing, the pedestrian
and AV must compete for the space, which may be considered
as a game-theoretic interaction in which one agent must yield
to the other. To inform AV controllers in this setting, this study
collects and analyses data from real-world human road crossings
to determine what features of crossing behaviours are predictive
about the level of assertiveness of pedestrians and of the eventual
winner of the interactions. It presents the largest and most
detailed data set of its kind known to us, and new methods to
analyze and predict pedestrian-vehicle interactions based upon
it. Pedestrian-vehicle interactions are decomposed into sequences
of independent discrete events. We use probabilistic methods —
logistic regression and decision tree regression — and sequence
analysis to analyze sets and sub-sequences of actions used by both
pedestrians and human drivers while crossing at an intersection,
to find common patterns of behaviour and to predict the winner
of each interaction. We report on the particular features found
to be predictive and which can thus be integrated into game-
theoretic AV controllers to inform real-time interactions.

Index Terms—Human Factors, Agent-Human Interactions,
Autonomous Vehicles

I. INTRODUCTION

While localisation, mapping, route planning, and control are
now largely solved problems for autonomous vehicles in static
environments [10], the major outstanding challenge for real-world
autonomous vehicles is to operate in environments containing people.
Unlike static (and ballistic) environments, people are complex inter-
active agents having their own goals, utilities, and decision making
systems, and interactions with them must take these into account
in order to predict their actions and plan accordingly. Interaction
is recursive and complex: the AVs own actions will affect the
persons actions and vice versa over time. This is most critical in
environments where traffic rules do not clearly define priority for any
of the participants, such as at unmarked intersections, where AVs and
pedestrians have to negotiate with one another for priority. Conflict
rates at unsignalized intersections are much higher than in other types
of intersections [12] because the priority is not defined, and each
agent acts based on their own interpretation. A mathematical model
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of such interactions based on game theory was recently presented [7]
which proves that (under several assumptions including discretisable
space and time, no lateral motion and communication, only via
agent positioning on the road, the optimal strategy for both agents is
probabilistic and recursive. Under this strategy, as the two agents get
closer over time, both should gradually increase the probability that
they will yield at each time, then draw their yield or non-yield action
from this probability. These probabilities tend to unity as the agents
positions get closer to a collision occurring. But importantly, the
model proves that there must remain some small but strictly non-zero
probability of the crash actually occurring, in both agents strategies,
in order for the interaction to proceed optimally. A second study
[3], then empirically measured human behaviours in a laboratory
version of a road crossing scenario, and showed that it is possible
to assign a single parameter to each agent which summarizes their
entire behavioral preferences during such interactions. This parameter
measures “assertiveness” as 6 = Uime/Ucrash, the ratio of the
agents value of time (i.e. the dollar value of losing 1 second of
arriving at their destination, for example by yielding to the other agent
for road priority), and the agents (negative) value of the collision
actually occurring (which will be worse for an unarmoured pedestrian
than for the driver of a heavy protective car, especially of a larger
car such as an SUV).

Controllers based on this game theoretic model would thus benefit
from any additional information about §. The previous study rec-
ommended future study to search for externally observable variables
which may be predictors of 6. For example, it is a priori possible
that fixed demographic factors such as age and gender will predict 6,
and/or that interactions-specific events such as the presence or non
presence of eye-contact or signals will correlate with 6.

The present study proposes a new method of analyzing pedestrian-
vehicle interactions to this end. We cannot observe 6 directly for
human pedestrians but we can, as a proxy, observe the final outcome
of interactions between them and (human driver) vehicles in the
field, along with factors which may have predictive value to both
the winner and thus to 6. We designed the most detailed and largest
data collection exercise known to us to collect accurate manual
annotated observations of 204 road-crossing interactions including
the presence or absence of 62 individual temporal event types and
12 environmental descriptors within each interaction. We perform
sequence analysis to discover and report common short n-gram
motifs from these sequences, and use these as additional features
for outcome prediction. Lastly, we apply two regression models —
logistic and decision tree regressions — to discover which events and
motifs are informative to predict the winner for each interaction, and
which thus may also provide useful information about assertiveness
0.



A. Related work

To our knowledge, there is no previous work related to pedestrian-
vehicle crossing behaviour dealing with motifs extraction and re-
gression models to potentially determine the relevant sequences of
actions useful for winning the interaction. A review on different
approaches for pedestrian crossing behavior modelling and analysis is
provided in [13]. Methods of analysis are often performed via video
recording, semi-structured interviews and VR recording. Previous
work on pedestrian crossing behavior analysis can be found in
[18] [8] [12] [15] [25]. Rasouli et al. introduced [18] [19] a novel
dataset composed of 650 video-clips for driver-pedestrian interactions
in several locations and different weather conditions. The analysis
of their data show that attention plays an important role, as in
90% of the time, pedestrians reveal their intention of crossing by
looking at the approaching vehicles. Rasouli et al. also presented
some behavioral patterns that have been observed in their data,
that show some frequent sequences of actions that are used by
pedestrians in their crossing behavior. Similar to our approach,
[17] used task analysis to divide pedestrian-vehicle interaction as a
sequence of actions giving two outcomes, either the vehicle passes
first or the pedestrian crosses, and performed some experiments with
participants on their crossing behavior using virtual reality. In [8],
Gorrini et al. analyzed video data of interaction between pedestrians
and vehicles at an unsignalized intersection using semi-automatic
tracking. Their study shows that pedestrian crossing behaviour can
be divided into 3 phases: approaching (stable speed), appraising
(deceleration due to evaluation of speed and distance of oncoming
vehicles) and crossing (acceleration). Papadimitriou et al. [15] made
a comparison of observed and declared behaviour of pedestrians at
different crossing areas, as a method to assess pedestrian risk taking
while crossing. They found that pedestrians’ observed behaviour is
in accordance with their declared behaviours from a questionnaire
survey and they report that female and male participants have similar
crossing behaviour. In [12], drivers’ crossing behaviour model in
China at unsignaled intersections is presented using game theory
and their risk perception is inferred via an adaptative neuro-fuzzy
inference system. Previous works [23] [12] [14] have focused on the
evaluation of speed, TTC (Time To Collision), gap acceptance and
communication means (e.g eye contact and motion pattern) of the
road users but not really into how the interaction can be modelled as
a sequence of actions, more meaningful for autonomous systems.

Motif analysis, widely used in bioinformatics, consists in finding
some biological patterns in the genomic sequence [6]. The DNA
being composed of the four nucleotides A, T, C, G, a motif can be
seen as a “short sequence”. Motif prediction may be performed via
supervised or unsupervised learning. The MEME algorithm (Multiple
EM for Motif Elicitation) has been applied to genetic sequence
analysis but also to various other domains such as musical audio
analysis [1].

Previous studies have suggested that for autonomous vehicles,
some apparently intuitive human communication styles might not be
necessary for interactions with pedestrians. [5] showed that facial
communication cues such as eye contact do not play a major role in
pedestrian crossing behaviors, and that the motion pattern and behav-
ior of vehicles are more important. Human drivers and pedestrians
check for eye contact when the vehicle moves in an unexpectedingly
manner [5]. The field study in [21] showed similar results with an
“unmanned” vehicle simulating an autonomous vehicle. This study
suggests that similar results could be found with autonomous vehi-
cles. However, [9] showed that pedestrians can use gaze to influence
drivers behaviour and make them stop more often at crossings, which
has the advantage of increasing the pedestrians’ confidence while
crossing. Similar results from [20] shows that vehicle movement is
sufficient for indicating the intention of drivers and present some
motion patterns of road users such as advancing, slowing early and
stopping short.

II. METHODS

A. Data collection

An ethnographic observation study on pedestrian-vehicle interac-
tions was conducted at an unsignalized intersection near the Univer-
sity of Leeds, UK. After a six-weeks exploration phase, including the
observation of 70 pedestrian-vehicle interactions constituting the ba-
sis for 15 iterations to design a digital observation protocol, 204 road-
crossing interactions were observed in a unified manner including the
presence or absence of temporal event features and static descriptor
features within each interaction. 62 temporal event types and 12
environmental descriptors were defined, as experimenter hypotheses
about what features may be predictive of the interaction winner, as
listed and described in Table I. An environmental descriptor is a
feature of an interaction which does not occur at a single point in
time but is present throughout all or most of the interaction, such as
agent gender, the weather, and the geometry of the road. An event
is something which occurs at a single instant in time, such as the
pedestrian placing a foot in the road, or the driver giving a signal.

Fig. 1: Intersection where pedestrian-vehicle road-crossing
interactions were observed, by observers at locations X and
Y. (WGS84: 53.8073, -1.5518)
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(c) Pedestrian initiating crossing but finally
decides to walk further on the left after the
vehicle passes

(d) Vehicle stopped due to traffic while the
Pedestrian is approaching but the vehicle
passed first

Fig. 2: Examples of observed pedestrian-vehicle interactions
at the unsignalized intersection

The observers positioned themselves near the intersection, some
times in location X and some other times in location Y, as shown
in figure 1, and worked together to identify and agree on when a
vehicle-pedestrian pair took place in an interaction, one observing the
vehicle and driver behaviour and the other observing the pedestrian
behaviour. From the very start of the observation, each observer talked
out loud about how the observed subject moved, communicated and
reacted to the other observer’s subject, which allowed the collabo-
rative explication of timely correct behaviour sequences. Once the
interaction had ended, both observers filled in the digital observation
protocol from start till end, one typing and the other controlling.



Features

Features

0: Approaching Phase: Driver/Vehicle Stopped due to traffic

1: Approaching Phase: Vehicle Used signals Turn Indicator

2: Approaching Phase:Driver/Vehicle approached From left

3: Approaching Phase: Pedestrian Movements Slowed down

4: Approaching Phase: Driver/Vehicle Accelerated

5: Approaching Phase: Driver/Vehicle Turned right

6: Approaching Phase: Pedestrian Head Movements Turned left

7. Approaching Phase: Pedestrian Looked at approaching vehicle

8: Approaching Phase: Pedestrian Stepped on road and stopped

9: Approaching Phase: Driver/Vehicle Passed the pedestrian

10: Crossing Phase: Pedestrian Initiated crossing movement

11: Approaching Phase: Driver/Vehicle Decelerated due to traffic

12: Approaching Phase: Driver/Vehicle Kept pace

13: Approaching Phase: Pedestrian Stopped at the edge of the pavement

14: Crossing Phase: Pedestrian Head Movements Turned right

15: Crossing Phase: Pedestrian Looking at Looked at vehicle

16: Crossing Phase: Pedestrian Movements Other (elaborate in notes)

17: Approaching Phase: Pedestrian Movements Kept pace

18: Approaching Phase: Pedestrian Head Movements Turned right

19: Approaching Phase: Driver/Vehicle Interacting vehicle Van

20: Approaching Phase: Driver/Vehicle Turned left

21: Crossing Phase: Pedestrian Stepped back on pavement

22: Crossing Phase: Pedestrian Head Movements Turned left

23: Approaching Phase: Driver/Vehicle Head Turned in the direction of pedestrian

24: Approaching Phase: Pedestrian Movements Did not Stop

25: Crossing Phase: Pedestrian Slowed down / stopped

26: Approaching Phase: Driver/Vehicle Decelerated for observed pedestrian

27: Crossing Phase: Pedestrian Speeded up

28: Approaching Phase: Driver/Vehicle Interacting vehicle Other (elaborate in Notes)

29: Crossing Phase: Pedestrian Looking at other RUs (elaborate in comments)

30: Approaching Phase: Driver/Vehicle Interacting vehicle Bus / Truck

31: Approaching Phase: Driver/Vehicle Stopped due to other pedestrian

32: Approaching Phase: Driver/Vehicle approached from Multiple

33: Approaching Phase: Driver/Vehicle Used signals Flashed Lights

34: Crossing Phase: Pedestrian Raised hand sidewards

35: Approaching Phase: Driver/Vehicle Decelerated due to other pedestrians

36: Approaching Phase: Pedestrian Looking at other RUs Others (elaborate in notes)

37: Approaching Phase: Pedestrian Looking at other pedestrians entering the road

38: Crossing Phase: Driver/Vehicle Passed the pedestrian’

39: Crossing Phase: Pedestrian Looked at driver

40: Crossing Phase: Driver/Vehicle Stopped for observed pedestrian

41: Crossing Phase: Driver/Vehicle Head Turned in the direction of pedestrian

42: Crossing Phase: Driver/Vehicle Raised hand in front

43: Crossing Phase: Pedestrian Raised hand in front

44: Crossing Phase: Driver/Vehicle Turned right

45: Approaching Phase: Vehicle Stopped for observed pedestrian

46: Crossing Phase: Driver/Vehicle Accelerated

47: Approaching Phase: Pedestrian Speeded up

48: Crossing Phase: Driver/Vehicle Decelerated for observed pedestrian

49: Crossing Phase: Vehicle Waved hand

50: Crossing Phase: Driver/Vehicle Movement Other (elaborate in notes)

51: Crossing Phase: Driver/Vehicle Turned left

52: Approaching Phase: Pedestria Hand Movements Other (elaborate in notes)

53: Approaching Phase: Driver Head Turned right

54: Approaching Phase: Driver/Vehicle Movement Other (elaborate in notes)

55: Approaching Phase: Driver/Vehicle Head Movements Other (elaborate in notes)

56: Approaching Phase: Driver/Vehicle Head Turned left

57: Crossing Phase: Pedestrian Waved Hand

58: Crossing Phase: Pedestrian Hand Movements Other (elaborate in notes)

59: Approaching Phase: Driver/Vehicle Waved hand

60: Crossing Phase: Driver/Vehicle Used signals Turn Indicator

61: Crossing Phase: Pedestrian Looking at other pedestrians entering the road

Driver/Vehicle Interacting Vehicle is Single

Driver/Vehicle Interacting Vehicle Coming From right

‘Weather: Overcast

‘Weather: Sunny

Weather: Rainy

Group of Pedestrians

Pedestrian: teenager (13-18y)

Pedestrian: young adult (18-30y)

Pedestrian: midage adult (30-60y)

Pedestrian: older person (60+ years)

Pedestrian’s Distraction

Pedestrian: Gender

TABLE I: Selected features for the observation of Pedestrian-Vehicle Interaction

Observation and data collection were conducted in accordance with
University of Leeds Ethics and Data Protection regulations.

B. Data Preparation

The winner for each interaction was determined and annotated
according to the presence of certain events which are indicative of
the outcome, such as Vehicle passed the Pedestrian or Vehicle stopped
for observed Pedestrian. Figure 3 shows an overview of the analysis
process.
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Fig. 3: Diagram for Data Analysis Process

C. Motif Selection

The sequences analysis started by seeking for most common
subsequences, some patterns that were occuring more often during
interactions. Previous works in bioinformatics such as [6] suggested
motif analysis. The top ten n-grams (motifs) were extracted from the

event sequences for n € {2,3,4} as shown in 4, 5 and 6, using
BioPython software [4].

Fig. 4: Best 2-gram of P-V interaction (the pedestrian’s actions
are in red and vehicle’s actions are in green)

D. Logistic Regression

First, Recursive Feature Elimination (RFE) was used to extract
the best ten features from the table I. RFE recursively removes less
relevant features by building a model on the remaining attributes,
leaving only the most relevant features for prediction. The accuracy
of this model allows to select the best features that contribute the most
to predict the target class. Logistic Regression was then performed
on these selected ten features. Logistic regression predicts a binary
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Fig. 5: Best 3-gram of P-V interaction (the pedestrian’s actions
are in red and vehicle’s actions are in green)

Fig. 6: Best 4-gram of P-V interaction (the pedestrian’s actions
are in red and vehicle’s actions are in green)

dependent (target) variable y € 0, 1 from a vector binary inputs z; €
0, 1 by optimising parameters of real-valued weights w;. Weights are
set by minimization of the mean squared error between the target y
and the sigmoidal model,

1

—_— 1)
1+ exp™ 25 Wi

g =
The inputs x; comprised: (1) the presence of absence of each of
the 62 actions (a bag-of-words model, ignoring their ordering); (2) the
12 environment descriptors including weather, group size / number
of people involved, age and gender of the pedestrian; (3) the presence
or absence of the top ten n-grams motifs found previously. In total
this gives 104 features. Data were split into a training set composed
of 67% of the data and a test set with the remaining 33%. Python
scikit-learn library was used for the analysis.

E. Manual Regression

RFE is an automated process which gives no consideration to
subjective belief about which features are relevant. This behaviour
is desired in cases where it is known that all features are causal of
the outcome, but as our model only has a weak concept of time (via
the motif subsequencing) the possibility remains that some features

may effectively measure effects rather than causes of the target. If
this was the case then such features may dominate in RFE and
thus remove otherwise interesting causal features. To examine this
possibility, we also apply a hypothesize-and-test procedure in which
the human experimenters define a set of features X;, {Distraction,
Age, Gender} — which they considered to be both causal and
potentially informative, and measure the mutual information about
the target distribution Y provided by these individually,

H[P(Y); P(Y | Xi)] = HIP(Y)] - H[P(Y | X3)], ()

F. Decision Tree Regression

Decision Trees are a greedy relevant feature selection method,
alternative to RFE+logit regression above, and which provides some
visualisation helpful for human interpretation, and a fast method for
real-time systems such as AVs to make decisions based on a few
variables. We apply a particular Decision Tree method consisting of
finding the best single feature at each step, based on information gain
with MSE (Mean Square Error) score for y; the true target class and
y; the predicted value,

MSB(y) = + 3 (s — 41)? 3)

=1
III. RESULTS

A. Prior outcomes

In the absence of any other information, 62% (127 of 204)
interactions resulted in the vehicle winning, i.e. passing through the
conflict area before the pedestrian. There were no observed collisions
between vehicles and pedestrians.

B. Motif selection

Motif selection provides an interesting view of pedestrian-vehicle
interactions, by identifying common short sequences of events which
tend to occur together. The most common n-grams are shown in figs.
4, 5 and 6, colouring the nodes to denote pedestrian and vehicle
events. The most occuring 2-gram motif is (Pedestrian Head Turned
Right, Pedestrian Looks At The Vehicle), the most common 3-gram
motif is (Pedestrian Initiated crossing movement, Pedestrian Head
Turned right, Pedestrian Looked at vehicle) and the best 4-gram motif
is (Driver/Vehicle Used signals Turn Indicator, Pedestrian Initiated
crossing movement, Pedestrian Head Turned right, Pedestrian Looked
at vehicle).

C. Logit regression: automated

The logistic regression results tell us that the ten features extracted
from RFE are statistically significant for the model. This is shown in
Table II by the absolute z-values higher than 2 and the p-values less
than 0.05, which means that the model fits within 95% confidence
and that with each feature we are able to predict the winner for each
interaction. Especially, the model predicts well on the test set with
an accuracy of up to 92%.

Winner
Vehicle
Vehicle
Pedestrian
Vehicle
Vehicle
Pedestrian
Pedestrian
Pedestrian
Vehicle
Vehicle

Features Coef z P
T: Approaching Phase: Vehicle Used signals Turn Indicator 12806 | 4672 | 0.000
7. g Phase: Pedestrian Looked at vehicle -2.5647 [ -3.842 | 0.000
17: Approaching Phase: Pedestrian Movements Kept pace 28948 | 2490 | 0.013
21: Crossing Phase: Pedestrian Stepped back on pavement -3.9545 | -2.323 [ 0.020
75: Crossing Phase: Pedestrian Slowed down / stopped 23499 | 3395 | 0.001
26: Approaching Phase: Driver/Vehicle Decelerated for observed pedestrian 2.6585 3.660 0.000
27: Crossing Phase: Pedestrian Speeded up 8.1592 | 4.118 | 0000
29: Crossing Phase: Pedestrian Looking at other RUs (elaborate in comments) | -3.5777 [ -2.253 [ 0.024
41: Crossing Phase: Driver/Vehicle Head Turned in the direction of pedestrian 4.7938 2.034 0.042
Veh. Turn Indicator + Veh. stopped duc (o traffic 50094 | 4446 | 0000

TABLE II: Logistic Regression Results for the 10 best features



D. Hypothesis testing

Table III shows the informativeness of each of the hypothesised
features about the interaction outcome, and the direction of the
predictive effect (ie. whether the presence of the feature favours
the Pedestrian or the Vehicle to win). The entropy of our outcome
classes in the absence of any feature information is 0.956 bits, as the
prior probabilities are (62% vehicle wins vs. 38% pedestrian wins).
We assume without proof that 1 millibit (0.001 bit) is a significant
information gain (as it corresponds roughly, for example, to a change
from a 50:50 belief to a 48:52 belief. One full bit of information
would correspond to a perfect prediction of the binary class.).

X H[Y[X;](bits) | I[Y; X;](millibits) Winner
None 0.956 n/a Vehicle
Age 60+ years 0.9353 20.8 Pedestrian
Age = 18-30years 0.9496 6.6 Pedestrian
Age = 13-18years 0.9525 3.6 Pedestrian
Distraction 0.9537 2.5 Vehicle
Age = 30-60years 0.9556 0.5 Not significant
Gender 0.9557 0.4 Not significant

TABLE III: Manual Regression Results

The strongest single feature from the set is the presence or
absence of elderliness of the pedestrian. (ie. whether they appear to
be over 60 years old), which yields 20.8 millibits of information
about the outcome (in the present data set, every elderly person
wins, though there remains uncertainty about outcome for non-
elderly people). Other age classes are also significant, with teenagers
(13-18) tending to win, and young working-age adults tending to
lose. Distraction then appears as a significant (2.5 millibits) factor
(including by their mobile phones, headphones or chatting) in favour
of the vehicle winning. Gender appears to be not significant, which
was an unexpected finding.

E. Decision trees

We obtain the decision tree shown in figure 7 with the training
set. This tree performs on the test set with 58% accuracy.

IV. DISCUSSION

In the absence of other information, the vehicles are more likely
(62%) to win an interaction than a pedestrian. This is roughly
consistent with the game theory model of [7], which shows how the
physically stronger agent is more likely to win, as the asymmetric
negative utilities in the (unlikely) event of a collision recurse through
the game theory equations to affect yielding in (more likely) non-
crash scenarios.

The motif results suggest the way the vehicle and the pedestrian
signal their intention of crossing, the former using the turn indicator
and the latter looking for clues in the vehicle movement before
crossing. Figure 6 is particularly interesting as it shows that the 4-
grams are connected to each other, and it highlights these two features
Vehicle using the Turn Indicator - Pedestrian looking at the vehicle
which seems to be the important features for the communication
occuring during the interaction. Pedestrian looks for some visual cues
and the vehicle needs to understand that the pedestrian has noticed its
presence before eventually crosing. Our evidence contributes to the
debate over the relevance of human eye-contact vs vehicle position
signalling, consistent with [18], [19] in that our pedestrians display
their own intention to cross to the vehicle by turning their head and
looking at it, as seen in the n-grams. A head-turn is easier for the
vehicle to see than eye contact from a fixed head position, which
suggests this event may have a dual function both to passively observe
the vehicle and to actively signal intent to it. As suggested by the
ten automatic extracted features in our data and in accordance with
[5] [20], we found that pedestrians then seek for cues in the vehicles
motion — not in eye contact with or gestures by the driver — then
in the surrounding environment such as looking at other road users.

Indeed, the data collection observers themselves did not record much
information about the driver gestures because they were difficult to
see. So eye gaze by the pedestrian is important, but eye contact with
the driver or AV is not, as found in [11]. These findings are important
for AV design as they suggest that AVs should also be designed to
communicate simply via their position on the road (and maybe use of
indicator lamps) but maybe not needing artificial face, eye, or gesture
substitutes; and that they do need to detect and process pedestrian
faces and eyes in order to inform their interactions.

Significant hypothesised features which predict the winners in-
clude: age of pedestrian, with elderly people (perhaps more likely to
be treated well by drivers for social utility) and teenagers (perhaps
more likely to be assertive for their own utility). Equally there are
two interesting findings. First, a surveyed “Driver flashes headlights”
property does not appear in any significant results, which was
hypothesised wrongly by the experimenters to be a common form
of communication (meaning “go ahead, I will yield”) in the UK.
Also gender of pedestrian appears to be not significant, suggesting
that both drivers and pedestrians do not discriminate on gender in
their behaviours which supports the finding of [15].

The present study considers the predictors almost as a pure bag
of words, without regard to the temporal order in which they occur.
We added simple motif analysis to allow for a limited notion of
temporality in the input, but this was (against our expectation)
found to have only a minor predictive effect over the bag-of-words.
To extend the model more towards real-world use, more detailed
temporal structure could be considered. Suppose that the environment
features e; are all observable at the start of the interaction, and that the
temporal event features f; are revealed to us over time, at times t(f;).
To construct a game-theoretic AV controller to run in real time, it is
necessary to make decisions based on partial observations of these
features as they are revealed. We must make an action a: at time ¢
(to yield or not yield to the pedestrian) based on our assessment of
P(6peal{ei}ts, {fj : t(fj) < t}). For example, some event features
which tend to occur near the end of an interaction may have high
predictive value but are of little practical use because the game is
almost over at this point. Deciding when to act based on the revealed
subsequences will then form an optimal stopping problem and make
use of such problems classic solution methods [24]. An early work
on the temporality of observed features can be found in [2].

Related to the temporal issue, the reason why the manual hy-
pothesised features of interest have less predictive power than the
automatically extracted ones is of interest. Why were humans so
poor at guessing the most predictive features? The reason possible is
due to a lack of cause and effect separation between the variables.
Humans prefer to think of clearly causal variables such as age and
gender as predictors of the interaction result, while the automatic
methods finds features such as Pedestrian kept pace or Vehicle used
turn indicator which correlate strongly but perhaps as an effect of
the more underlying causal variables. Future work could apply causal
Bayesian Network modelling [16], to clarify this, and the explicit
temporal sub-sequencing above would be likely to result in higher
precedence of the human-hypothesis factors in real-time prediction.

The present study only considers the prediction of the interaction
outcome — who wins — rather than the inference of the underlying
latent assertiveness variabile 6 involved in causing the outcome.
This is an important first step towards inferring 6, and the winner
can to a first approximation be used as a proxy for pedestrian
0. Future work should consider how to make the inference more
precisely and also how to infer and separate the effect of the
drivers own assertiveness 04,iver from the pedestrians. This could be
performed, for example, using causal Bayesian network models with
EM algorithm to infer the latent variables [22]. As such, the present
model does form a complete real-time pedestrian system but it does
represent an important research step towards this goal. It has designed
and collected a data set of the highest road crossing detail known to
us, and shown how predictors can be found. Future work should study
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the best predictors found here and move them into temporal latent
variable models along with the game theory model of [7] as the next
step towards a real-time AV controller.
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