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Abstract

A critical issue for structural health monitoring (SHM) strategies based on pat-

tern recognition models is a lack of diagnostic labels to explain the measured

data. In an engineering context, these descriptive labels are costly to obtain,

and as a result, conventional supervised learning is not feasible. Active learning

tools look to solve this issue by selecting a limited number of the most infor-

mative observations to query for labels. This work presents the application of

cluster-adaptive active learning to measured data from aircraft experiments.

These tests successfully illustrate the advantages of utilising active learning

tools for SHM, and they present the first application/adaptation of active learn-

ing methods to engineering data — a MATLAB package is available via GitHub:

https://github.com/labull/cluster_based_active_learning.

1 Introduction

Structural health monitoring involves the observation of a structure or mechanical

system over time using periodically spaced measurements [1]. These data are usually
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dynamic response, but many alternative measures such as temperature, image or

sound data may be used. Damage-sensitive features are extracted from these data,

and the analysis of these features can be used to determine the current state of

system health [1].

As digital storage gets cheaper, and sensing devices develop, it has become much

easier to collect large datasets that may be indicative of system health. Using this

resource enables the data-based approach to SHM, which focuses on machine learn-

ing and pattern recognition algorithms for black/grey-box modelling as a means

of diagnosis and prognosis. While these datasets may be large, comprehensive la-

belling is rare; furthermore, investigating diagnostic labels in an engineering context

is often impractical and expensive, as it is infeasible to damage structures (such as

bridges or wind turbines) to obtain labelled data for the damaged states of health.

This forces a dependence on partially-supervised machine learning techniques [2],

which utilise both labelled and unlabelled data. This work concerns the application

of active learning as a form of partially-supervised pattern recognition for SHM.

For demonstration, Dasgupta and Hsu’s (DH) cluster-adaptive active learner [3] is

applied to experimental engineering data, used to build a damage-locator model for

the wing of a Gnat aircraft. Dataset information and implementation details for

the algorithm are provided; additionally, a MATLAB package is available through

GitHub: https://github.com/labull/cluster_based_active_learning.

2 Background

2.1 Data-based SHM & machine learning

The data-based approach to SHM generates a diagnostic model that is not based

on physical laws. Instead, pattern recognition methods are applied to the available

training data to learn a model for classification to the relevant diagnostic label [1].

This process is typical of machine learning — generally defined as a set of methods

that can learn and detect patterns in data, and then use these uncovered patterns

to predict future data, or perform other kinds of decision making [4].

Supervised learning describes the situation where diagnostic labels, Y = {yi}
N
i=1 ∈

2
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Y, are available for all input observations, X = {xi}
N
i=1 ∈ X . Classification tech-

niques can be applied here to learn a mapping h from the observations in the training

set Xtrain to their respective output labels Ytrain, where h : X 7→ Y. The end goal

is to use the patterns learnt from the training data to predict the class label y∗ of

a previously unseen observation x
∗. Note: X ∈ R

d, where d is the dimensionality

of input observations, and Y ∈ {1, 2, ..., C}, where C is the number of classes that

represent different states of structural health.

Unsupervised learning methods are used when diagnostic labels are not avail-

able for the input observations X. This problem is less well-defined than supervised

learning, as the algorithm must learn a relationship from the properties of the input

data alone [4]. Clustering techniques are a family of algorithms that work with

unlabelled data by finding K groups/clusters of similar observations within the fea-

ture space. These are usually defined by calculating the dissimilarity, d, between

observations in X, through the use of a distance metric. Outlier analysis and nov-

elty detection are another group of methods that utilise unlabelled data, regularly

applied in engineering industry [1]. These techniques look to highlight observations

in X that are significantly different; therefore, these data are assumed to be gen-

erated by some alternative mechanism [1, 5] — such as damage, noise effects or

environmental changes.

Semi-supervised learning is a partially-supervised learning framework; that is,

a family of pattern recognition algorithms lying somewhere between the definitions

of unsupervised and supervised learning [2, 6]. Partially-supervised methods are

required when input observations are available with limited supervision information

— a common occurrence with engineering data. Generally, the input data X can

be divided into two parts, the points for which the labels are provided Xl, and the

points for which labels are unknown Xu [2, 6]. More specifically, a semi-supervised

framework uses the information in the labelled data, while utilising any unlabelled

instances to further constrain a classification algorithm [2]. This work focusses on

active learning as another variation of partially-supervised pattern recognition [2].

3
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2.2 Active Learning

Active learning, or query learning, is motivated by scenarios where it is relatively

easy to amass large quantities of data but costly/impractical to obtain their labels

[7]. The key philosophy is that a pattern recognition algorithm can achieve greater

performance, using fewer training labels, if it is allowed to select the data from which

it learns [7]. Like supervised learning, the goal is to ultimately learn a mapping

from observations to labels; however, here the data are initially unlabelled — more

precisely, the algorithm systematically builds an informative training set Xl, limited

to a budget of n observations [2].

Consider the data (arriving as a stream or pool) X = {xi}
N
i=1 ∈ X , each of which

has a hidden label that can be queried, Y = {yi}
N
i=1 ∈ Y. An active learner looks

to find a classifier h that provides an accurate mapping of the observations in X

to the labels in Y, while keeping queries to a minimum [8]. In summary, an active

learner tries to get the most out of a limited budget, by choosing n query points

(Xl = {x̂i}
n
i=1) in an intelligent and adaptive manner [8]. The generalised steps

behind active learning are summarised below and illustrated in Figure 1.

1. Start with a pool of unlabelled data, these may arrive as a stream, X ∈ X .

2. By some querying regime, establish which n data carry the most information,

Xl = {x̂i}
n
i=1 ⊂ X.

3. Provide labels for these data, {ŷi}
n
i=1 ⊂ Y | {x̂i}

n
i=1.

4. Train a classifier h on this informative subset, h : X 7→ Y | {x̂i}, {ŷi}
n
i=1.

In the context of SHM, each observation x̂i would represent a vector of damage

sensitive features. Respective diagnostic labels in Y describe the operating condition

for all observations. To obtain a label ŷi, the structure in question will have to be

investigated, often at a cost. For example, this might involve the manual assessment

of a wind turbine blade, 80 miles from land, at an offshore wind-farm.

4
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Figure 1: Visualisation of active learning steps.

2.3 Query Frameworks for Active learning

The fundamental issue in active learning is determining how to select the most

critical instances to be labelled [2,9]. In the machine learning literature [3,8,9], there

are two generalised frameworks used to describe various active learning regimes;

these approaches are summarised (and compared) below.

Classification-based

Several query regimes have been based on supervised classification algorithms [9,

10]. Typical examples include query by committee and uncertainty sampling [7,11].

Query by committee (QBC) approaches build an ensemble/committee of classifiers

using a small initial sample of labelled data, leading to multiple predictions for

unlabelled instances. Observations with the most conflicted label predictions are

viewed as informative, thus, they are queried [9]. Alternatively, uncertainty sampling

methods build a single classifier, and observations with the least confident predicted

label are generally deemed the most informative [10].

Uncertainty sampling approaches can be conceptualised as a search through hy-

pothesis space [8, 10]. The hypothesis space H is used to describe all the possible

boundaries that a classifier can take. The version space is a subset of these hy-

5
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potheses (Ht ⊂ H, where Ht = {h}) consistent with the labelled data seen so

far [4], shown in Figure 2. As more labels are observed by the learner, the set of

plausible hypotheses will shrink, restricting the current version space Ht [4]. Using

active learning, observations who’s labels explicitly shrink the version space as fast

as possible can be selected [3,10] — in other words, data that lie in/near the shaded

region of Figure 2.

Figure 2: Left: version space for a binary linear classifier (shaded).

Right: some of the plausible hypotheses/classifiers (h) in the current version space. Image

credit: [8].

Cluster-based

The second active learning regime exploits cluster structure in data [7,12,13]. A key

advantage of cluster-based heuristics is that the framework can naturally utilise the

unlabelled data Xu, as well as optimising the selection of the training data Xl [9,13].

Roughly speaking, various cluster-based methods follow a similar framework, intro-

duced by Dasgupta and Hsu [8]. In an ideal scenario, defined, separable clusters will

exist that are pure in terms of labels. Following definition by unsupervised learn-

ing, a few informative points Xl can be selected from each cluster; any remaining

unlabelled points Xu can then be assumed to have their most confident (majority)

label [3,9,13] — as in Figure 3. (Throughout this work, this process is referred to as

label propagation.) A supervised classifier can then be trained on the labelled dataset

XL, including queried and propagated labels YL, such that XL = (Xl ∪Xu, YL).

The active/guided sampling element of cluster-based techniques is defined by the

sampling procedure. Various methods have been proposed. Dasgupta and Hsu sug-

gest a heuristic that favours instances from clusters that appear mixed as querying

progresses [3]. Alternatively, the density clustering algorithm, by Wang et al. [9],

6
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以m伊 以n伊

Figure 3: Ideal clusters (separable and pure): (a) clustering of query points [+/−] and

unlabelled instances [◦]; (b) query points and propagated labels (XL).

favours queries in regions populated by (relatively) dense groups of data. In this

work, queries are directed to areas of the feature space that appear to be mixed

in terms of labels, as these clusters are assumed the most informative to both the

cluster structure and final classification.

In reality, the ideal case shown in Figure 3 is extremely rare. The relationship be-

tween labels and clusters could be insignificant, or there might be viable (near pure)

clusters but at many different resolutions [3] — as in Figure 4. For this reason,

the performance of cluster-based methods heavily depends on the quality of the

clustering results [9, 14]; thus, data clustering must be adaptive — actively chang-

ing as more information becomes available. Provided that there is some relation-

ship between clustered groups of data and diagnostic labels, at whatever resolution,

cluster-based active learning can exploit these patterns [8, 9].

Label propagation steps are typical of semi-supervised learning [2], as unlabelled

instances Xu are used to constrain the classifier by assuming their labels. In the

semi-supervised literature, label prorogation is also referred to as self-labelling or

self-training [6, 7]. Intuitively, the ability to naturally incorporate unlabelled data

brings further benefits to cluster-based active learning, normally associated with

semi-supervised algorithms [6].

7
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以m伊 以n伊 以o伊

Figure 4: (a),(b) Identification of viable clusterings at different resolutions; (c) label

propagation.

Sampling bias

For classification-based active learning, exclusively selecting uncertain observations

can focus too much on specific regions of the feature space (i.e. areas close to the

decision boundary). This can neglect alternative regions that might be more repre-

sentative of the underlying data distribution [10].

To demonstrate this problem, consider the one-dimensional example in Figure 5,

originally presented by Dasgupta and Hsu [3]. In this problem, the data lie in four

groups, and the classifier used to separate them is defined by some threshold value,

ω ∈ R. The proportion of the dataset in each group is given by a percentage. Grey

blocks have a (1) label, and white blocks have a (0) label. Most of the data lie

in the two most external groups; therefore, a small, initial random sample has a

high likelihood of coming from these. In this case, the initial hypothesis or classifier

(hω ∈ H, Equation 1) would lie somewhere between the two external groups shown

in Figure 5.

hω(x) =







0 x < ω

1 x > ω
. (1)

8
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Figure 5: One-dimensional classification problem to demonstrate sampling bias. Image

credit: [3].

As active learning proceeds, selecting uncertain observations, the classifier would

most likely converge to ω, in the centre of Figure 5. However, the classifier ω has

5% error, while ω∗ has only 2.5% error [3]. This occurs as the most probable initial

sample is poorly representative of the underlying distribution in the data [8]. It

includes no observations in the second group from the left (5% grey block), and

as a result, this group is overlooked; therefore, the learner is mistakenly confident

that these data have a 0 label [3]. To clarify, this group hides behind the decision

boundary ω due to a poorly placed initial classifier h. This example presents just

one-dimension; in higher dimensions the problem can get worse, as there are more

spaces for groups of data to hide [3]. This phenomenon is referred to as sampling

bias.

The issues of sampling bias are a significant challenge for active learning, partic-

ularly those based on efficient search through hypothesis space [3, 10, 15]. If the

learning algorithm is incorrectly confident about regions far away from the decision

boundary, the results can be worse than standard supervised learning [10]. To coun-

teract this effect, sampling should systematically include representative observations

(i.e. those far away from the version space) as well as uncertain observations [14].

Several methods have been suggested; typical heuristics, such as the pre-clustering

algorithm by Nguyen and Smeulders [13], or the QUIRE algorithm by Huang et

al. [14], combine an unsupervised clustering with the classification algorithm, to

inform the active learning process. This leads to a hybrid framework, where a bal-

ance of uncertain observations (close to the decision boundary) and representative

observations (near cluster centroids) are selected.

Active learning frameworks that are purely cluster-based [3,8,13] can automatically

mitigate sampling bias by querying across the entire cluster structure, even after

a poorly representative initial sample. As discussed, the generalised cluster-based

9
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framework [3] completely removes the classifier from the active learning steps; thus,

this approach prevents the learner from being constrained by an ill-informed hy-

pothesis. Considering the issues of sampling bias, as well as the benefits associated

with label prorogation, this work focusses on the DH algorithm [3] as a cluster-based

variation of active learning.

3 The DH learner

Hierarchical sampling for active learning — applied via the DH algorithm — is an

active learning tool proposed by Dasgupta and Hsu [3]; this technique utilises a

cluster-adaptive framework for guided sampling and label propagation. The heuris-

tic is clearly defined in the original papers [3,8]; however, each stage of the algorithm

is explained here — with some slight differences in implementation, indicated in Sec-

tion 3.3.

3.1 A Cluster-based Framework for Guided Sampling

Clustering

The DH learner starts with a hierarchical clustering of the input data. In the

experiments here, agglomerative clustering is used; an unsupervised technique that

works by sequentially joining groups of data. Initially, it compares N groups, each

containing one observation (K = N). At each step the dissimilarity matrix d is

assessed (Equation 2, 3), and the two most similar groups are merged, until there is

a single cluster containing all the data (K = 1) [4].

The dissimilarity between objects is calculated using the Euclidean distance for

single data points,

d(xi, xi′) =

√

√

√

√

D
∑

j=1

(xij − xi′j)2, (2)

and Ward’s average linkage for groups of data,

dr,s =

√

2nrns

nr + ns

× d(x̄r, x̄s), (3)

10
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where ns and nr are the number of data in groups r and s respectively, while x̄r and

x̄s are the cluster centroids. Pseudocode for the agglomerative clustering algorithm

is provided in Algorithm 1.

Algorithm 1 Agglomerative clustering [4]

1: compute dissimilarity matrix d between all observations in X

2: initialise clusters as singletons: for i← 1 to N do Ci ← {i}

3: initialise set of clusters available for merging: S ← {1, ..., N}

4: repeat

5: Pick the two most similar clusters to merge: (j, k)← argminj,k∈S(dj,k)

6: Create new cluster Cl ← Cj ∪ Ck

7: Mark j and k as unavailable: S ← S {j, k}

8: if Cl 6= {1, ..., N} then

9: Mark l as available, S ← S ∪ {l}

10: end if

11: for i ∈ S do

12: Update dissimilarity matrix d(i, l)

13: end for

14: until no more clusters are available for merging

The merging process can be represented with the use of a binary tree T , called

a dendrogram, shown in Figure 6. The initial groups (singleton observations) are

represented by the leaves of the tree, at the bottom of the graph. Each time two

groups are merged they are joined in the tree at a node u. The tree T can be

defined as a set of nodes, T = {ui}
N−1
i=1 , and the height of branches represents the

dissimilarity between two respective groups [4]. The root of the tree, at the top of

the dendrogram, represents one group containing all the data.

If the tree is cut at any given height, a clustering is induced for a given number of

groups K. For example, if the tree in Figure 6 was cut at height 2.5, this induces a

clustering where K = 2, with groups: {{4, 6}, {2, 5}}, {1, 3}.

11
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Figure 6: Dendrogram of hierarchical clustering, down to single observations N = 6.

Cluster-adaptive guided sampling & label propagation

To illustrate guided sampling and label propagation, one can return to Dasgupta

and Hsu’s one-dimensional example [3]. In Figure 7, the dendrogram represents the

top few nodes of a hierarchical clustering; therefore, each leaf defines a group of

data rather than singleton observations. Proportions of the total data in each leaf

are provided.

Figure 7: The top few levels of a hierarchical clustering. Clustered groups are shaded

according to their majority label: (1) grey, (0) white. Image credit: [3]

Following hierarchical clustering, the DH algorithm will work with a particular par-

12
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tition of the dataset at any given time, defined by a pruning P of the tree T [3]. A

pruning of the tree is a subset of nodes that are disjoint and together cover all the

data [3]; P = {v1, ..., vm} ⊂ T . Initially this is set as the root node from agglomera-

tive clustering, a single group containing all the data, P = {1}. A small number of

random points are drawn from this cluster and queried; these initial labels provide

the first indication of the underlying distribution in the data, for all levels of the

hierarchy. These samples will usually reveal that the top node is very mixed, while

nodes {2} and {3} are relatively pure [3]. Once this transpires, partition {1} will

be replaced with a pruning of P = {2, 3} [3]. The next set of observations will then

be selected according to a querying strategy that favours the less pure node [3].

After further rounds of sampling, the P would most likely be refined to {2, 4, 9}. At

this stage, the benefits of cluster-based sampling become most obvious [3]. Consid-

ering the observations seen so far, it can be concluded that cluster {9} is relatively

pure, so fewer queries will be made from this group [3]. Instead, future samples will

be directed towards groups {2} and {4}. Guided sampling continues in this way,

working down the dendrogram.

The querying can be stopped at any stage; when this is done, the unlabelled data

Xu associated with each cluster in final pruning P are assigned their majority label,

according to the queried data seen so far Xl. (Provided that a set of criterion are

met, Section 3.3). In this way, the learner looks to label the entire dataset, such

that XL = (Xl ∪Xu, YL), while keeping the number of erroneous propagated labels

in YL to a minimum [3].

3.2 Pruning & Node Properties

For any node u in the tree T , Tu denotes the subtree rooted at node u, as well as all

the data contained in that node [3]. Therefore a pruning of the tree P = {v1, ..., vm},

is such that Tvi are disjoint and together cover all the data [3]. Partial prunings

are also considered when working with sub-trees, here the associated leaves do not

cover all the data.

The weight wu of a node u ∈ T is the proportion of total data contained in the

13
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subtree of that node, where Nu is the number of data in Tu.

wu =
Nu

N
. (4)

The weight of a pruning w(P ) is the fraction of the total data contained in the

pruning P [3]:

w(P ) =
∑

v∈P

wv. (5)

For a complete pruning, w(P ) = 1, and for a partial pruning, 0 < w(P ) < 1.

If there are k possible labels, the proportion of each label observed in node u is [3]:

pu,l =
nu,l

nu

. (6)

Where nu,l is the number of times l has been observed in u, while nu is the total

number of queries taken from node u.

Let the label for node u be L(u) ∈ {1, 2, ..., k}. The approximate error induced

when assigning all the data in cluster Tu with the label L(u) is given in Equation

7 [3]. Intuitively, it makes sense to assign a cluster u with is majority label [3], so

L(u) = largmaxl(pu,l)
.

ǫu,l = 1−max
l

(pu,l). (7)

For a partial or complete pruning, the error introduced when assigning each cluster

with its majority label is defined as [3]:

ǫ(P,L) =
1

w(P )

∑

v∈P

wvǫv,L(v). (8)

Due to limited sampling, labels are only available in the queried nodes, and these

queries are not necessarily indicative of the majority label. At a given time, l(t)

labels have been observed, and there has been nu(t) queries; so based on the la-

bels seen so far, the current estimate for the label proportions is pu,l(t) [3]. The

corresponding error at this time is given by ǫu,l(t) = 1− pu,l(t) [3].

The quality of these estimates can be assessed using generalisation bounds. At

any given time the label proportion estimates can be assigned confidence intervals,

{pLBu,l , pUB
u,l } [3]. The true value of pu,l is expected to lie within these bounds. The

confidence intervals are defined using a variation of Wald’s interval [3, 16]:

{pLBu,l , pUB
u,l } = {max[pu,l(t)− δu,l(t), 0], min[pu,l(t) + δu,l(t), 1]} (9)

14
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for,

δu,l(t) ≈
1

nu(t)
+

√

pu,l(t)(1− pu,l(t))

nu(t)
. (10)

3.3 Algorithm properties

Admissible clusters

When pruning the tree it is useful to work down the dendrogram as far as possible [3];

this way, clusters can be analysed at a higher resolution, so queries can be directed

to specific areas of the feature space, and label propagation can be applied to more

complex clusterings. However, to justify descending into lower levels of the hierarchy,

the learner should first be confident about majority label estimates L(u) for all nodes

in the potential pruning.

Considering this, the admissibility Au,l(t) is defined to establish when and where

the learner can be confident about a majority label estimate [3]:

Au,l(t) = True ⇔ (1− pLBu,l (t)) < β ·min
l 6=l′

(1− pUB
u,l′ (t)). (11)

In words, for each cluster, a label is admissible if its (largest) expected error is at

least β times less than the (smallest) expected error of any other label. For these

experiments the hyper-parameter β is set to a value of 1.5, so Equation 11 becomes:

Au,l(t) = True ⇔ pLBu,l (t) > (1.5pUB
u,l′ (t)− 1) ∀ l 6= l′. (12)

The set of admissible cluster-label (u, l) pairs is defined using A(t); at any given

time there may be several labels associated with each node. The set A(t) is used

throughout sampling to identify any new set of nodes that could make up a refined

pruning — with increased homogeneity in each cluster.

Adjusted empirical error

The error estimates ǫu,L(u)(t) can be inaccurate when a node has been inadequately

sampled, as the learner has weak confidence about the label proportion estimates

pu,L(u)(t).

ǫu,L(u)(t) = 1− pu,L(u)(t). (13)
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With this in mind, the admissibility can be used to adjust the empirical error and

define a more conservative estimate in areas of sparse sampling [3]:

ǫ̃u,L(u)(t) =







1− pu,L(u)(t) if (u, L(u)) ∈ A(t)

1 if (u, L(u)) /∈ A(t)
. (14)

In words, label proportion estimates are only valid when their cluster-label pairings

are admissible.

The adjusted empirical error is now defined as:

ǫ̃(P,L, t) =
1

w(P )

∑

v∈P

wv ǫ̃v,L(v)(t). (15)

The select procedure for guided sampling

This describes how the learner actively directs sampling in the current working

partition (P ) of the tree. As suggested by Dasgupta and Hsu [3], the select procedure

will favour nodes v that appear most mixed. Once a mixed node is chosen, a random

sample is taken from the cluster that it represents, and the label is queried. Formally,

the select procedure is defined as,

Select v ∈ P with probability P(v) ∝ wv(1− pLBv,L(v)(t)). (16)

This definition is used in the experiments; however, the select procedure is flexible

and can be modified according to the the application [3].

Pruning refinements

When refining the current pruning, P = {vi}
m
i=1, it is convenient to think of the

process one node at a time. Therefore, for each node v ∈ P , the best pruning and

labelling of the associated subtree Tv is (Pv, Lv). The following rules are used to

define (Pv, Lv), where Pv = {v̂i}
mv

i=1:

• L(u) is defined for v̂ ∈ Pv and ancestors of Pv in Tv [3],

• (u, L(u)) ∈ A(t) is defined for for v̂ ∈ Pv and ancestors of Pv in Tv.
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For this implementation, while searching through Tv for the best pruning Pv (from

the root node down), any new set of nodes must meet the above criteria. Addition-

ally, any two child nodes chu = {uch1, uch2} can only replace their parent node u if

a reduction in the adjusted empirical error is observed:

ǫ̃(chu, L, t) < ǫ̃u,L(u)(t) where ǫ̃(chu, L, t) =
1

w(u)

2
∑

i=1

wchiǫ̃chi,L(chi)(t). (17)

Label propagation

An additional rule is added to this implementation to prevent inconsistent perfor-

mance at low query budgets n. It states that label propagation (assumption) to the

unlabelled instances Xu only occurs if the number of clusters in the final, admissible

pruning is ≥ number of unique labels observed so far:

Assign each unlabelled point in Tv the label L(v) ⇔ |P | ≥ |l(t)| (18)

This is intuitive; for example, it is illogical to assume labels for three admissible

clusters across the whole data, when a total of seven classes have been observed.

3.4 The Algorithm

The pseudocode in Algorithm 2 formalises this implementation of the DH learner;

it follows the same flexible structure presented in the original paper [3].

Classification

Following the cluster-based active learning process, any supervised classifier can be

trained using XL. The classification algorithm is independent of the active learning

heuristic; therefore, it does not affect the active elements of the learner. Further-

more, as the ‘no free lunch’ theorem suggests [17], the performance of any algorithm

is entirely data dependant. Thus, the choice of classifier is trivial when focussing on

the active learning characteristics of the process (provided the same model is used

throughout tests).
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Algorithm 2 Cluster-adaptive active learning

Input: Agglomerative clustering T = {ui}
N−1
i=1 of the input observations X

1: P ← {root} ⊲ Initialise current pruning as the root node

2: L← {0} ⊲ Initialise arbitrary root label

3: #———— GUIDED SAMPLING ————#

4: for t = 1 : T do ⊲ Algorithm run budget T

5: for i = 1 : B do ⊲ Guided sampling, batch size B

6: v ← select(P ) ⊲ select v from P according to Equation 16

7: randomly sample x̂ form Tv ⊲ Adding to Xl

8: query l the label of x̂, update XL ⊲ Provided by engineer/oracle

9: update (nu(t), pu(t)) ⊲ For all nodes containing new sample x̂

10: end for

11: for all nodes u ∈ T do ⊲ Compute the admissibility and error for all nodes

12: update (A, ǫ̃u,L(u))

13: end for

14: #—— PRUNING REFINEMENTS ——#

15: for each v ∈ P do ⊲ Refine the current pruning, node by node

16: let (Pv, Lv) be the best pruning

and labelling of Tv: ⊲ According to the rules in Section 3.3

17: P ← Pv ∪ (P \ v) ⊲ Update node v to refine P

18: L(v)← Lv(v̂) for all v̂ ∈ Tv ⊲ Update L(v) to reflect the refined pruning

19: end for

20: end for

21: #———– LABEL PROPAGATION ———–#

22: for each cluster v ∈ P do ⊲ For each cluster in the final pruning

23: if |P | ≥ |l(t)| then ⊲ Additional rule, Equation 18

24: assign each unlabelled point in ⊲ Propagate labels to Xu

Tv the label L(v), update XL

25: end if

26: end for

27: return: final pruning and labelling (P,L), labelled data XL

18
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In fact, as suggested by Wang et al. [9], a classification algorithm is not necessary

for cluster-based active learning. Future data can be classified according the final

pruning P of the feature space and a majority vote [9]. Nonetheless, a classifica-

tion algorithm is applied in the experiments for direct comparison to conventional

techniques; some justification is provided.

Initially a Multi-Layer Perception (MLP) was considered, however, when label prop-

agation does not occur, the training data is far too sparse to correctly train an MLP.

A Bayesian classifier, such as the Relevance Vector Machine, was also considered

to provide probabilistic outputs for the classification; however, these probabilities

are less meaningful when labels have been assumed in a non-probabilistic manner.

Eventually it was decided to use bagged decision trees for computational efficiency.

Combining the Classification and Regression Tree (CART) algorithm with boot-

strap aggregating provides a simple yet effective classifier, shown in the literature

to give excellent parametric performance, even when compared to more complex

methods [18]. Model parameters where kept constant, as proper validation was not

possible for small values of n — this provides a simple classification metric, suitable

for the purposes of this paper.

4 Experiments

Cluster-adaptive active learning is applied to engineering data from aircraft experi-

ments.

4.1 Methods

DH active learning will be compared to two benchmark methods: random sample

training and standard supervised learning. For each experiment, the input data and

hidden labels (X, Y ) are split into a test set (Xtest, Ytest) (33%) and a potential

training set (Xpt, Ypt) (66%) using random indices.

1. Standard supervised learning: The traditional approach for passive learn-

ing in engineering applications. All the available training data are used to train

the classifier, (Xpt, Ypt) = (Xtrain, Ytrain). As a result, this is the most ex-
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pensive method (in terms of labels); therefore, the achieved accuracy should

be considered the target performance.

2. Random sample training: Another form of passive learning [10,11], which

takes a simple random sample of n data from the potential training set, then

queries the labels: (Xtrain, Ytrain) ⊂ (Xpt, Ypt), where (Xtrain, Ytrain) =

({x̂i}
n
i=1, {ŷi}

n
i=1). The classifier is trained using this subset alone.

3. DH cluster-adaptive active learning: Xpt is presented as a pool of un-

labelled instances. Following Algorithm 2, guided sampling actively selects

n of the most informative data, according to the select procedure; such that

Xl = {x̂i}
n
i=1 and the queried labels are given by {ŷi}

n
i=1. When the budget

runs out, these labels are propagated to the unlabelled data Xu, throughout

the admissible cluster structure, giving XL = (Xl ∪ Xu, YL). A classifier is

trained using this dataset, where XL = (Xtrain, Ytrain).

4.2 Procedure

For standard supervised learning (Xtrain, Ytrain) is resampled fromX 100 times, then

the classifier is trained/validated 10 times for each sample. The model generalisation

is evaluated using the test set (1000 runs in total).

For methods 2 and 3 the same procedure applies while increasing the sample budget

n, where n̂ = {ni}
198
i=1 = {3, 6, 9, ..., 594}:

1: for n in n̂ do

2: for s = 1:100 do

3: split (X, Y ) into (Xtest, Ytest) and (Xpt, Ypt) by random sample

4: define (Xtrain, Ytrain) according to method, query budget n

5: for r = 1:10 do

6: train a supervised classifier using (Xtrain, Ytrain)

7: test the classifier using Xtest, record the misclassification error

8: end for

9: end for

10: end for
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4.3 Gnat aircraft data

When following Rytter’s hierarchy [19], an SHM process accumulates information

to inform damage detection, followed by location and classification of that damage.

The Gnat data are defined to consider the first two levels of this hierarchy.

A series of four research papers explain how the data were acquired and processed

[20–23]. The first two publications establish the experimental procedure and damage

detection strategy. These methods utilise vibration data and outlier analysis to flag

faults in a test rig [22] and aircraft wing [20]. The third and fourth papers explore

damage location methods, using wholly supervised classification techniques [21].

The active learning tests is this work return to the classification problem, with

limited supervision information.

Data capture and signal processing

Throughout experiments with the Gnat aircraft, it was undesirable to permanently

damage the wing structure, so damage was simulated by sequentially removing one

of nine inspection panels. The advantage of this method is that the ‘damage’ was

reversible, allowing for repeatability of measurements [22]. It should be considered

that the removal of each panel imitates a fairly large, significant fault.

The nine inspection panels are shown in the schematic, as in Figure 8a (not to

scale). Panels were chosen based on ease of removal, and to cover a range of damage

locations/sizes [22]. Each panel is held in place with number of screws, ranging from

8–26. These were removed using an electric screwdriver with controllable torque, in

an attempt to keep constant boundary conditions [20]. It was estimated that panels

3 and 6 would cause the most problems for any pattern recognition techniques, as

they are the smallest and placed relatively close together [21].

Transmissibilities across each of the selected panels were used as the main mea-

surements, for justification see References [20–22]. The panels were split into three

groups (A, B & C) and assigned a central reference transducer; nine additional re-

sponse transducers were then associated with each specific panel. The transducer

layout, with the relevant transmissibilities, is shown in Figure 8b.
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Figure 8: Gnat aircraft wing schematics; (a) panel locations [23]. (b) transducer groups

and transmissibility paths [23].

The transmissibility associated with each response transducer is obtained by taking

the ratio of the acceleration response spectrum with the reference acceleration spec-

trum. Spectra were estimated using the fast Fourier transform and an appropriate

windowing average [23]. The wing was excited using an electrodynamic shaker with

white Gaussian excitation. In all cases, 1024 spectral lines were measured between

1024 and 2048 Hz [23]. The real and imaginary parts of the response functions were

recorded, then converted into magnitudes for feature selection. In total, 700 one-

shot measurements were made for the normal condition and 198 for each damage

condition [23].

Feature extraction and novelty detection

In Reference [20], damage sensitive features were established by selecting regions

from each tranmissibility that were observed to be unambiguously different from

the normal condition when damage was simulated. 44 features were found [20], each

characterised by a vector of spectral lines. A large amount of ‘engineering judgement’
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was used in these initial feature extraction steps, and the (damage location) labels

were used informally to aid the process. Ideally, the selection of transmissiblilty

regions should follow a pragmatic framework — e.g. included in the dimension

reduction regime, summarised in the next Section.

For each damage sensitive feature, a novelty detector was constructed using mul-

tivariate outlier analysis and Mahalanobis-squared distance [22]. Each detector

provides a scalar novelty index x(d) which is assessed against a threshold, calcu-

lated using the normal condition and the theory outlined in Reference [1]. If this

threshold is exceeded, damage is inferred. The outcome of these data-compression

steps leads to the processed input data X = {xi}
1782
i=1 (198 observations for each

panel). Each observation is characterised by 44 damage sensitive features, defined

by novelty indices: xi = {x
(d)
i }

44
d=1. The log of each novelty index is used to expose

information at low levels of the scalar output [23]; this high-dimensional dataset is

summarised in Equation 19.

(X,Y ) = ({xi}
1782
i=1 , {yi}

1782
i=1 ) where xi ∈ R

44, y ∈ {1, 2, 3, ..., 9}. (19)

Genetic dimension reduction

The work in the final paper [23] outlines a pragmatic approach for dimension reduc-

tion, applied to the extracted features of X, where xi ∈ R
44. A Genetic Algorithm

(GA) was used to determine the optimal subset of damage sensitive features, used

as the inputs for a damage location model. Briefly, the GA implementation iterates

though a population of different features sets — represented by a vector of integers

(ranging from 1 - 44) [23]. The fitness of each set is assessed using a simple multi-

layer-perception and a validation set — the inverse validation error is used [23].

The fittest sets are passed on to the next generation by combining their solutions.

Mutation is also included by the occasional random switch of a feature [23]. In

these experiments, the optimal feature set containing 9 novelty indices is used —

providing the compressed input data, X = {xi}
1782
i=1 , now with nine dimensions,

xi ∈ R
9.

It is worth mentioning that training/validation sets must be used to assess the fit-

ness when using a genetic algorithm for dimension reduction, and the availability of

these sets can negate the need for active learning. However, if these data groups are
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small, they could be used as the initial sample for the DH learner. The investigation

of further data could then be dictated by active learning. Alternatively, effective,

wholly unsupervised methods for feature extraction (with high-dimensional engi-

neering data) would be ideal for active learning applications; the investigation of

such techniques is suggested as further work.

The classification problem

To summarise, the damage location model is trained using observations following

feature extraction and dimension reduction; the lower-dimensional dataset (X,Y ) is

summarised in Equation 20. Observations in X are described by 9 novelty indices

(features), and the hidden labels Y define which damage state has occurred (the

removal of panel 1 – 9):

(X,Y ) = ({xi}
1782
i=1 , {yi}

1782
i=1 ) where xi ∈ R

9, y ∈ {1, 2, 3, ..., 9}. (20)

Therefore the Gnat data present a 9-class classification problem, with 9-dimensional

input data. The dataset was designed to be wholly supervised; however, in these

tests the labels are hidden, to demonstrate active learning. The data are projected

through a linear transformation onto three dimensions for visualisation, as shown

in Figure 9. The new co-ordinates, or principal component scores (pc1, pc2, pc3),

are a linear combination of the information retained within the original features

and account for the maximum variance within the data [4]. It is worth noting

the tests are not applied to this projection of the data; however, Figure 9 is still

used to reference the separability of the data in X, as principal component analysis

highlights this variance.

4.4 Results & Discussion

The first admissible pruning and labelling of T (leading to label propagation) was

generally found after 54 queries. According to the rules set out in Section 3.3, this

occurs when the number of clusters in the refined pruning P is greater than or equal

to the number of labels seen so far. Intuitively, this will usually occur when |P | ≥ 9

— this threshold is shown by the highlighted datum in Figure 10a. Interestingly,

after this point, the number of clusters in the final pruning grows almost linearly
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Figure 9: Gnat data for the three principal components (pc1, pc2, pc3).

with n; suggesting the additional rule (Equation 18) works well to define when label

propagation is suitable/stable.

The classification error e is plotted against an increasing query budget n — shown

in Figure 10b. Each curve has a shaded region representing one standard deviation

about the mean. Results show that using the DH learner provides a significant

increase in classification performance, particularly for lower query budgets. As to

be expected, there is a notable increase in the classification performance as label

propagation becomes admissible, n ' 54. At this stage, just 3.0% of the hidden

labels are used, and the average associated error on the test set is 7.2%. This is

compared to the supervised learning error, 2.8%, which requires all the hidden labels.

In other words, at n = 54, the DH active learner achieves 95.5% of the performance

of the supervised learning benchmark, while using just 3.0% of the labels; this is

a significant achievement for engineering applications. At the same query budget,

random sample training reaches 80.5% of the performance of supervised learning.

This reduced performance (15.1%) further demonstrates the advantages brought

about by cluster-adaptive active learning. Following 102 queries, the DH learner

achieves 98.5% of the wholly supervised benchmark performance, while using only
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Figure 10: (a) Average number of clusters in the final pruning |P | for an increasing query

budget n; marker � indicates the point at which label propagation becomes admissible,

(n, |P |) = (54, 9.52). (b) Misclassification error e for an increasing query budget n. Plots

are provided for the DH learner and both benchmark methods.
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5.7% of the hidden labels. Here random sample training achieves 92.4% of supervised

learning performance, for the same label budget n.

Figure 11: Misclassification error e for an increasing query budget n. Plots are provided

for classifiers trained using guided sampling (the DH learner without label propagation) vs.

random sample training.

In order to highlight any advantages from guided sampling alone, the classifica-

tion error (without label propagation) is compared to random sample training in

Figure 11. Ideally, a classifier trained using a subset selected via guided sampling

would outperform one trained by a plain random sample. However, Figure 11 fails

to illustrate a significant advantage, particularly for lower values of n. As a re-

sult, it is safe to deduce that improvements provided by the DH learner, in these

specific experiments, are a result of cluster-adaptive label propagation. In order to

increase the influence of guided sampling, the select procedure (Equation 16) could

be adapted for applications to engineering data. However, it is acknowledged in the

original paper [3] that guided sampling will only provide a significant benefit when

the hierarchical clustering has some large, fairly pure clusters near the top of the
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tree. (These will quickly be identified, and very few queries will subsequently be

made in those regions [3].) It is clear from Figure 9 these data do not present the

ideal case; although, some relatively pure, separate groups are still shown in the

data projections (classes 5 and 7).

1 2 3 4 5 6 7 8 9
Predicted label

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.976 0.002 0.005 0.007 0.004 0.003 0.001 0.000 0.003

0.008 0.976 0.004 0.004 0.000 0.000 0.005 0.000 0.001

0.015 0.008 0.939 0.008 0.008 0.012 0.000 0.000 0.011

0.003 0.005 0.000 0.989 0.000 0.003 0.000 0.000 0.000

0.000 0.000 0.000 0.002 0.994 0.000 0.001 0.003 0.000

0.015 0.003 0.007 0.012 0.004 0.950 0.000 0.000 0.009

0.000 0.001 0.000 0.000 0.000 0.006 0.993 0.000 0.000

0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.997 0.002

0.012 0.014 0.013 0.012 0.001 0.013 0.000 0.003 0.933

Figure 12: Confusion matrix: averaged classification accuracy for supervised learning.

To investigate this further, the averaged confusion matrix for supervised learning

experiments is provided in Figure 12. This is shown in an attempt to highlight

classes that are mixed, as these are assumed the most confused. With successful

guided sampling, querying should be higher in the confused, mixed groups, while

reduced in homogeneous, separable groups. Specifically, classes 9, 6, 3 should receive

a high number of queries, while classes 8, 7, 5, 4 are queried less.

Averaged sample counts across each class are provided in Figure 13. There is not

a great deal of specificity for guided sampling, however, the select procedure does

successfully direct queries to some extent. In particular, classes 5 and 7 are sampled

significantly less than other groups; this makes sense, as they are among the least
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confused in Figure 12; furthermore, they define clear, separable clusters in Figure 9.

Class 2 also has a low query fraction, which is justified considering its ranking in

the confusion matrix.

5 7 2 3 6 9 8 1 4

damage class
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Figure 13: Average faction of (n) queries per class.

For the remaining classes, guided sampling is more ambiguous. This is understand-

able, considering how mixed these classes are — see Figure 9. Class 8, however, is

observed to be relatively separate in the data projections, and it is the least con-

fused; despite this, it is frequently queried by the learner. This can be explained as

the clustering results are poorly representative of the underlying distribution of the

data in class 8, for high levels of the hierarchy. As a result, guided sampling is less

influential for this class. The same principle leads to higher queries in classes 1 and

4 than might seem necessary, although this is less surprising, as these clusters are

visibly mixed in the data projections. To combat this, the initial clustering could

be defined in an alternative manner. Experiments with alternative linkage functions

and distance metrics (other than Ward’s average linkage and Euclidean distance)

might pose a solution; however, the issue is very application specific. In the best

case scenario, the input data will define more separable, pure clusters.
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5 Conclusions

To demonstrate the relevance of active learning for data-based engineering, a cluster-

based heuristic has been applied to data from aircraft experiments. For the major-

ity of engineering data, comprehensive labelling is rare; additionally, it is imprac-

tical/expensive to investigate the associated labels. Active learning addresses this

issue, as the learning algorithm looks to systematically build an accurate mapping of

(measured) observations to (descriptive) labels, while keeping the number of queries

to a minimum.

Dasgupta’s and Hsu’s (DH) cluster-adaptive heuristic is applied [3]. This starts with

a hierarchical clustering of the unlabelled data, which divides the feature-space into

many partitions. An informative training set is built by directing queries to areas

of the feature-space that appear mixed in terms of labels, while clusters that appear

homogeneous are queried less. When appropriate, queried labels can be propagated

to any remaining unlabelled instances, using the cluster structure and a majority

vote — a process typically associated with semi-supervised learning. A standard

supervised classifier can then be learnt from the resulting labelled dataset.

Experiments successfully demonstrate that cluster-adaptive active learning has the

potential to significantly reduce labelling costs by utilising both labelled and unla-

belled data in an active framework. The DH heuristic provides a significant increase

in performance over passive training with a random sample of the same budget n;

furthermore, the classification performance is highly competitive when compared to

the supervised learning benchmark — which requires all the data to be labelled.

Notably, following label propagation (n ' 54), the DH active learner achieves 95.5%

of supervised learning performance, while using just 3.0% of the labels.

In the experiments here, active learning is successful as a result cluster-adaptive label

propagation — a process enabled by the hierarchical framework of the heuristic.

Although guided sampling is directing queries to some extent, this procedure alone

is not influential enough to directly affect the classification performance, particularly

for low query budgets. Alternative select procedures might increase the influence

of guided sampling, although in real terms, the success of this mechanism is very

data specific. If relatively pure, separable clusters existed in high levels of the

hierarchy, guided sampling should be more influential. This fact does not discredit
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the algorithm as an active learner for these data; the working partition is adapted

according to the labels seen so far, and querying is successfully directed towards

mixed groups, facilitating the discovery of additional admissible clusters. This allows

the pruning to be further refined, which in turn enables successful label propagation.

The algorithm is well suited to engineering applications. It utilises unlabelled data,

and importantly, the damage classes do not need to be defined a priori. As a result,

new labels can be included as they are discovered. The heuristic is limited in some

respects, as a large pool of unlabelled data has to be initially available to create

an informative hierarchical clustering. To address this, future work must consider

modifications to accept a stream of online data, with the underlying cluster structure

updated on the fly. Alternatively, a hypothesis space active learner could be used as

the final classifier — this can then accept a stream of future data online, querying

when appropriate. Finally, it would be interesting to use probabilistic clustering

to give certainty bounds on the propagated labels; this would also allow for the

select procedure and label propagation framework to be controlled in a probabilistic

manner.

A MATLAB package for this implementation of Dasgupta and Hsu’s active learner

is available, including a demo, through GitHub: https://github.com/labull/

cluster_based_active_learning.
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