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Abstract 
Studies of the effects of bilingualism on cognition have given results that do not 

consistently replicate, reflecting at least in part wide differences in criteria for bilingualism and 
heterogeneity of language combinations within studied samples. We examined the bilingual 
advantage in attention, working memory and novel-word learning in early sequential Hindi-
English bilinguals. We sought to clarify the aspects of cognition that benefit from bilingualism 
by using multiple measures and a sample sufficiently well-defined to permit independent 
replication. Bilinguals outperformed monolinguals on response inhibition, novel-word learning 
and almost all working memory tasks. In contrast, both groups performed comparably on 
selective attention.  Analyses of individual differences showed that bilingual novel-word 
learning was related to their verbal working memory and ability to inhibit an ongoing action 
whereas this was not the case for monolinguals.  Results indicate a specific bilingual advantage 
that is confined to some but not all aspects of cognition. 
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Recently there has been growing public and academic interest in the effects of bilingualism 

on cognitive function, with studies suggesting a bilingual advantage relative to monolinguals in 

executive processing tasks assessing the control over attention to competing cues (e.g., Bialystok, 

Craik, Klein, & Viswanathan, 2004; Bialystok, Craik & Ryan, 2006; Costa, Hernández & 

Sebastián-Gallés, 2008). Also experience with two or more languages facilitates novel-word 

learning (e.g., Kaushanskaya & Marian, 2009a, b; Poepsel, & Weiss, 2016; Singh, Fu, Tay, & 

Golinkoff, 2017) and other aspects of linguistic processing (e.g., metalinguistic awareness; c.f., 

Reder, MarecǦBreton, Gombert, & Demont, 2013). However, despite this there still remains little 

consensus regarding the impact of bilingualism on cognition (see Gathercole, Thomas, Kennedy, 

Prys, Young, Viñas Guasch, Roberts, Hughes, & Jones, 2014; Duñabeitia, Hernández, Antón, 

Macizo, Estévez, Fuentes, & Carreiras, 2014; Hilchey & Klein, 2011). One factor that leads to 

problems of replication is wide variation in the criteria used to define bilingualism and frequent 

heterogeneity of language combinations within bilingual samples (c.f., Hua & David, 2008; 

MiĊkisz, Haman, Łuniewska, KuĞ, O’Toole, & Katsos, 2017). The current study seeks to reduce 

problems of replicability by using a well-defined group of Hindi-English bilinguals to examine how 

novel-word learning differs between bilinguals and monolinguals and to examine the extent to 

which differences in executive processes and other aspects of working memory can account for 

performance. 

Executive control and novel-word learning in bilinguals 

Executive control refers to a set of top-down attentional processes that are fundamental to 

task maintenance and execution (see Miyake & Friedman, 2012). Bilingual adults are reportedly 

more efficient than their monolingual peers in the deployment of attentional resources and are 

significantly less affected by irrelevant information (e.g., Hernández, Costa, & Humphreys, 2012). 

To account for this advantage it has been suggested that the need for bilinguals to focus processing 

on one language and avoid interference from the other language leads them to develop more 

efficient processes of executive control (see Green & Abutalebi, 2013). Similarly, recent evidence 
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suggests that the bilingual advantage in novel-word learning may be facilitated by enhanced 

executive control (see Bartolotti & Marian 2012; Bartolotti, Marian, Schroeder, & Shook, 2011; 

Kaushanskaya & Marian, 2009a, b), possibly reflecting the need to suppress erroneous responses 

(c.f., Hammer, Mohammadi, Schmicker, Saliger, & Münte, 2011; Warmington & Hitch, 2014; 

Warmington, Hitch, & Gathercole, 2013). More generally, executive control abilities have been 

shown to be a concurrent and longitudinal predictor of vocabulary development in monolinguals, 

and children and adolescents with specific language impairment show significant deficits in 

performing executive tasks (see Gathercole, 2006; Rose, Feldman, & Jankowski, 2009).   

However, research on cognition in bilinguals has raised a number of concerns. One is the 

possibility of a publication bias in favour of positive results (see De Bruin, Treccani, & Della Sala, 

2015; but, see Bialystok, Kroll, Green, MacWhinney, & Craik, 2015). Another issue is undue 

reliance on a limited set of measures of executive abilities focused on response conflict (i.e., Simon 

and Flanker tasks; see Paap & Greenberg, 2013; Paap, Johnson, & Sawi, 2015). The Simon (Lu & 

Proctor, 1995) and Flanker tasks (Eriksen & Eriksen, 1974) require the resolution of conflict in 

identifying a target stimulus. In the Simon task the location of the response key is randomly either 

congruent or incongruent with the location of the target. In the Flaker task the target stimulus is 

surrounded by non-target stimuli that are either congruent or incongruent to the directional response 

of the target. Reaction times are faster on congruent trials than on incongruent trials and the size of 

this congruency effect is taken to reflect the efficiency with which an individual is able to resolve 

conflict by inhibiting irrelevant information (i.e., Flanker) or a motor reaction (i.e., Simon). 

Bilingual children and adults have been shown to produce faster reaction times and smaller 

congruency effects than their monolingual counterparts on both tasks (Flanker: Costa et al., 2008; 

Luk, De Sa, & Bialystok, 2011; Simon: Bialystok, 2006; Bialystok et al., 2004; Martin-Rhee & 

Bialystok, 2008; see Bialystok, 2017 for a review). Crucially, bilinguals demonstrate no 

time/accuracy trade-off (i.e., their accuracy is comparable to monolinguals) in their faster reaction 

times highlighting that they are more efficient than monolinguals in performing these tasks (c.f., 
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Kapa & Colombo, 2013). However, not all studies have yielded consistent findings. For example, 

although Bialystok, Martin, and Viswanathan (2005) found a bilingual advantage on the Simon task 

in children, middle aged (30-59 years) and older adults (60-80 years), this effect was absent in 

young adults (20-30 years). Furthermore, Gathercole et al. (2014) found no evidence of a bilingual 

advantage in children, adolescents (13-16 years) and adults (18-90 years) (see also Paap & 

Greenberg, 2013 for the Flanker task). In a recent review Hilchey and Klein (2011) found that 

although bilinguals tended to perform faster than monolinguals, the congruency effect was of 

similar magnitude. This led them to conclude that bilinguals “enjoy a general processing advantage 

that can be detected early developmentally and that persists throughout life… [but] places the locus 

of control not on inhibitory processes per se, but on a central executive system that has some 

capacity to regulate processing across a wide variety of task demands” (p., 654). The central 

executive system is a broad construct, comprising a set of correlated but broadly separable 

processes involving attention, cognitive flexibility and memory updating (see Friedman, Miyake, 

Young,  DeFries, Corley,  & Hewitt, 2008; Friedman, & Miyake, 2004; Miyake & Friedman, 

2012). Given that the Simon and Flanker tasks measure only limited aspects of executive function 

(selective attention and conflict monitoring), use of a broader range of tasks to assess the potential 

cognitive advantages associated with bilingualism may be prudent.  

Role of working memory in executive control and word learning 

At this point it is useful to consider executive control and novel-word learning in the context 

of working memory, the limited capacity system responsible for retaining and manipulating 

information in cognitive tasks. According to the influential model of Baddeley and Hitch (1974), 

the working memory system consists of a central executive attentional controller interacting with 

short-term buffer stores for verbal and for visuo-spatial information. Of particular relevance in the 

present context, the verbal short-term store has been associated with the ability to acquire new 

(novel) word forms. Thus, neuropsychological patients with a selective impairment in verbal short-

term memory show deficits in novel-word learning (e.g., Bormann, Seyboth, Umarova, & Weiller, 
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2015). Furthermore, verbal short-term memory is a significant predictor of children’s vocabulary 

(e.g., Gathercole, Willis, Emslie, & Baddeley, 1992), as well as their ability to learn novel-words 

(e.g., Gathercole, Hitch, Service, & Martin, 1997). The verbal short-term store has been 

conceptualised as a system whose function is to hold new phonological sequences while more 

stable lexical representations are created in long-term memory (c.f., Baddeley et al., 1998).  

In contrast, much less is known about working memory in relation to bilingualism. In a 

seminal study Papagno and Vallar (1995) compared adult Italian polyglots and controls on verbal 

paired associate learning (PAL). The polyglots learned word-nonword (Italian-Russian) pairs more 

efficiently, but performed comparably in learning word-word (Italian-Italian) pairs. They also 

performed significantly better on measures of verbal short-term memory while performing 

comparably on tests of visuo-spatial short-term memory (see also Van Hell & Mahn, 1997 for a 

similar results in the case of Dutch multilinguals). This evidence suggests that the novel-word 

learning advantage in bilinguals arises as a consequence of enhanced verbal short-term storage 

capacity. However, in a recent study Kaushanskaya (2012) found that bilinguals outperformed 

monolinguals in novel-word learning even when their verbal short-term memory ability was 

matched challenging the view that the novel-word learning advantage was attributed to enhanced 

verbal short-term memory. Instead, Kaushanskaya argued that the advantage was due to the impact 

of the bilingual experience on learning (see also Bartolotti et al., 2011; Kaushanskaya & Marian, 

2009a, b). 

Other findings have been contradictory too. In a group of bilingual children aged between 5 

and 7 years Morales, Calvo, and Bialystok (2013) found a bilingual advantage in a task involving 

visuo-spatial working memory. Similarly, Blom, Küntay, Messer, Verhagen and Leseman (2014) 

found that Turkish-Dutch children aged 5-6 years outperformed monolingual children on tests 

involving verbal and visuospatial working memory. In contrast, Engel de Abreu (2011) reported 

that 6-year-old bilingual children performed comparably to monolinguals on standardised tasks 

taken from the Luxembourgish adapted versions of the Automated Working Memory Assessment 
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(AWMA: Alloway, 2007) assessing various aspects of verbal working memory (see also Engel de 

Abreu, Cruz-Santos, Tourinho, Martin, & Bialystok, 2012; Namazi & Thordardottir, 2010). In one 

of the few studies conducted with adults Ratiu and Azuma (2015) examined verbal and visuo-

spatial working memory in Spanish-English bilinguals who had reported speaking both languages 

before the age of 4. Ratiu and Azuma found that lifelong bilingualism did not facilitate working 

memory capacity.  

In light of this evidence, it remains unclear as to the cognitive mechanisms underpinning the 

bilingual advantage in novel-word learning. Another limitation of the current evidence is that 

previous studies have considered the role of attention and working memory in bilingual novel-word 

learning separately (e.g., Bartolotti et al. 2011; Papagno & Vallar, 1995). We are not aware of 

studies that have examined the roles of attentional control and working memory mechanisms 

simultaneously in learning novel-words in bilinguals. In the present study, we compared 

monolinguals and bilinguals on novel-word learning, executive control and short-term storage and 

assessed the extent to which these aspects of cognition contribute to the bilingual advantage in 

novel-word learning. 

Overview of present study 

Cummins (1976) proposed that a certain level of competence in both languages was 

required for bilingualism to yield cognitive benefits.  Consistent with this, Bialystok and colleagues 

(e.g., Barac & Bialystok, 2012; Luk et al., 2011) have demonstrated that the cognitive benefits of 

bilingualism are associated with early onset and significant bilingual experience.  Thus, counter to 

most previous studies we recruited a single population of bilinguals (i.e., Hindi-English) who 

acquired both languages early on in life.  They had started to speak two languages before the age of 

7, having achieved fairly equal proficiency in both (often referred to as early sequential bilinguals) 

with lifelong experience of using both languages.  The bilinguals were predominantly international 

university students who lived in India for most of their lives and only recently moved from India to 

study in the United Kingdom (UK).  A group of monolingual English-speaking university students 
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served as controls. Hindi and English do not share scripts, have any commonality in phonology and 

do not contain cognates (c.f., Mishra & Singh, 2014).   

Departing from previous studies that have utilised a single task to assess executive 

processes (c.f., Antón, et al., 2014; Bialystok, Craik, Grady, Chau, Ishii, Gunji, & Pantev, 2005; 

Bialystok & Viswanathan, 2009; Duñabeitia et al., 2014; Kirk, Fiala, Scott-Brown, & Kempe, 

2014; Prior & Gollan, 2011) we were keen to employ multiple tasks measuring various aspects of 

attention and working memory to help identify more precisely which aspects of cognition are 

privileged in bilingualism. Previous studies have differentiated two processes related to attention – 

one that facilitates suppression of irrelevant information and the other that aids inhibiting prepotent 

response tendencies (e.g., Bunge, Dudukovic, Thomason, Vaidya & Gabrieli, 2002).  We use the 

terms selective attention (i.e., the ability to respond to the appropriate stimulus, while successfully 

ignoring distracters) and response inhibition (i.e., the ability to stop an ongoing response) to denote 

these two attentional control processes (e.g., Booth et al., 2003) using the Flanker task (Eriksen & 

Eriksen, 1974) to assess selective attention and the Stop Signal Reaction Time (SSRT) task (Logan, 

1994) to assess response inhibition. The Flanker task requires participants to selectively attend to a 

target (usually by responding to a relevant feature) while ignoring distracters that are either 

congruent or incongruent to the target. The SSRT task is one in which an infrequently presented 

stop signal indicates that an ongoing action should be aborted. By varying the delay before 

presentation of the stop signal the paradigm can be used to measure the time taken to inhibit a 

simple reaction time response (see Band, van der Molen & Logan, 2003; Logan & Cowan, 1984).  

Thus, if the stop process finishes before the go process the response is inhibited, but if the go 

process finishes first the response escapes inhibition and is executed.  By applying a horse-race 

model the SSRT can be calculated as the time required for inhibiting the go response.   

To assess the various components of working memory we administered subtests from the 

AWMA (Alloway, 2007), a standardised measure that taps central executive function in the verbal 

and visuo-spatial domains, as well as verbal and visuo-spatial short-term memory. There were eight 
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subtests in all, two of each of the four types. They have been standardised with children aged 4-18 

years and adults aged 19-23 years, with the adult norms based on students with English as their first 

language attending UK universities, representing top, average, and low ranking higher education 

institutions (see Alloway, 2007).   

To assess novel-word learning we adopted a modified version of Papagno and Vallar’s 

(1995) word-nonword PAL task. Participants were administered a visual-verbal PAL task which 

involves learning arbitrary cross-modal associations between a stimulus and response (c.f., 

Warmington & Hulme, 2012), a process that has been aligned with attentional control (c.f., 

Abrahamse, Braem, Notebaert, & Verguts, 2016; Blaisdell, Sawa, Leising, & Waldmann, 2006). 

“Whereas learning is concerned with acquiring new (or updating old) knowledge and skills, 

cognitive control enables us to counter negative effects of such learning (i.e., when it opposes 

current goals).” (Abrahamse et al., 2016, p. 693). The design we adopted was in principle very 

simple; specifically, participants learned Spanish words for a set of novel objects. The Spanish 

words were selected so that they were dissimilar to words in either Hindi or English in order to 

focus on learning unfamiliar phonological word forms, as when learning an unusual name for 

someone you just met (c.f., Papagno and Vallar, 1995). We selected 8 pairs, which is typical of 

visual-verbal PAL studies (see Mayringer & Wimmer, 2000; Messbauer, & De Jong, 2003; 

Papagno & Vallar, 1995; Warmington & Hitch, 2014). Unlike previous studies which focused on 

immediate learning (e.g., Kaushanskaya & Marian, 2009a; Papagno & Vallar, 1995) we were 

additionally interested in assessing language group differences regarding the integrity of the newly 

learned items over the long-term. Thus, participants’ learning was assessed both immediately and 

one day later.  

Finally, participants were administered a set of measures to assess their general cognitive 

ability. Fluid intelligence and verbal ability were assessed using the Matrix Reasoning and 

Vocabulary subtests taken from the Wechsler Abbreviated Scale of Intelligence (WASI: Wechsler, 

1999) and a tapping task was used to assess motor processing speed.  



10 
 

In summary, we investigated whether bilingual adults show an advantage relative to 

monolingual peers on a constellation of tasks involving (1) attention and working memory 

(Experiment 1) and (2) novel-word learning (Experiment 2).  

Consistent with research that bilingualism modulates attentional control (see Adesope, 

Lavin, Thompson, & Ungerleider, 2010) we predicted a bilingual advantage in selective attention 

(i.e., Flanker task) and response inhibition (i.e., SSRT task). We expected bilingual advantages to 

emerge on (1) the time required for inhibiting a response (i.e., SSRT task), and (2) congruency 

effects (i.e., time taken to resolve conflict by inhibiting irrelevant information) and overall response 

time on the Flanker task; however, we did not expect group differences to emerge on Flanker task 

accuracy (c.f., Kapa & Colombo, 2013). 

Given that working memory is implicated in both language processing (c.f., Gathercole et 

al., 1997) and executive control (Engle, 2002), there are good grounds to speculate that working 

memory would be enhanced in bilinguals. Bilinguals’ ability to focus processing on one language 

while avoiding interference from the other language is heavily dependent on working memory (see 

Thorn & Gathercole, 1999), and lifelong use of working memory resources may lead to enhanced 

working memory capacity. Thus, we predicted a working memory advantage in bilinguals.  

As bilingualism is associated with better attentional control (see Bialystok, 2017) and 

metalinguistic awareness (Bialystok, Majumder, & Martin, 2003) it has been postulated that these 

cognitive-linguistic advantages may have additive effects on novel-word learning in bilinguals (see 

Cenoz, 2003). In light of this, as well as the growing body of evidence (c.f., e.g., Kaushanskaya & 

Marian, 2009a, b; Poepsel, & Weiss, 2016; Singh, et al.,  2017), we predicted a bilingual advantage 

in novel-word learning. Moreover, given the (1) documented relationship between executive control 

and working memory (c.f., Engle, 2002); (2) that working memory is implicated in vocabulary 

development and novel-word learning (e.g., Gathercole et al., 1997); (3) that optimal learning is 

contingent on a set of sophisticated system that implicitly facilitates the simultaneous monitoring of 

feedback from the environment, updating a task-appropriate representation and behavioural control 
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- skills that correspond to working memory and attention (c.f., Duijvenvoorde et al., 2013); and (4) 

that learning and attentional control are considered as complementary functions (c.f., Abrahamse, et 

al., 2016), we anticipated that verbal working memory and attention would be concurrent predictors 

of novel-word learning. Further, we predicted that these relationships would differ between 

language groups (i.e., attention would be a unique significant predictor in bilinguals, but not 

monolinguals, due to their enhanced attentional control).   

Experiment 1  

This experiment examined the bilingual advantage in executive control - working memory, 

selective attention, response inhibition. Given recent failures to replicate the bilingual advantage in 

cognition (e.g., Paap et al., 2015), we sought to first establish whether a bilingual advantage exists 

in a well-defined group of Hindi-English bilinguals. We predicted medium to large magnitude 

effect sizes (i.e., bilingual advantage) across all measures. We conducted a priori power analyses 

using the software package, G*Power 3 (Faul & Erdfelder 1992), to determine the appropriate 

sample size for detecting language group differences in working memory and attention. Given a 

minimum statistical power (i.e., 1 – ȕ probability) of .80 with Į .05 (Fritz & MacKinnon, 2007), to 

detect medium to large effects in working memory (Cohen’s d = .45; Morales et al., 2013) and 

attention (Cohen’s d = .76; Engel de Abreu et al., 2012) a total sample size of 42 and 44 

participants, respectively is required. Experiment 1 has a total of 46 participants and as such there 

was adequate power to detect the predicted effects. 

Method 

Participants  

Twenty three monolingual adult speakers of English (mean age 23 years, 4 months; 15 

females and 8 males) and 23 bilingual adult speakers of Hindi and English (mean age 23 years, 7 

months; 14 females and 9 males) with no known hearing problems participated.  Both groups did 

not differ significantly in age, t(44) = .55, p = .87. All were university students studying in the UK 
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and reported having no knowledge of Spanish. All participants recruited were included in all 

analyses reported.  

Bilinguals completed a language background questionnaire adapted from Bialystok et al. 

(2004) in which they rated their proficiency in both languages as well as their usage of each 

language at home, work (or school), and with friends (see Table 1). They reported using English 

significantly more than Hindi on average, t(22) = 7.21, p < .001, d = 2.51; but rated their 

proficiency in Hindi and English as comparable, t(22) = 1.32, p = .20, d = .42. In addition, 

following Flege, Mackay, and Piske (2002) we estimated the degree of bilingualism by dividing 

reported English proficiency by reported Hindi proficiency (i.e., L2/L1 ratio). The mean ratio was 

.98 (see Table 1). This did not differ significantly from a value that might be taken to indicate 

perfect bilingual balance (i.e., a ratio of 1.0), t(22) = .41, p = .69, d = .03.  Reported age of initial 

exposure to English was 3 years, 5 months; with first exposure to English occurring in the home, 

approximately 11 months earlier than their exposure to English in school, t(19) = 3.76, p = .001, d = 

1.02 (see Table 1). All bilinguals reported that they learned English through formal education and 

by speaking English with others.   

< Insert Table 1 about here> 

Design and materials 

Fluid intelligence and verbal ability 

In WASI Matrix Reasoning participants viewed a series of incomplete matrixes and 

completed each one by selecting the correct response option. In WASI Vocabulary participants 

provided spoken English definitions for English words presented visually and orally.  

Motor processing speed 

A motor tapping task which required participants to tap a key as many times as possible in 

5000ms was administered.  The start of a trial was signalled by a tone followed immediately by a 

picture displayed for approximately 5000ms and the end of the trial was signalled by a tone and a 

different visual stimulus.  There were three conditions: (1) using the index finger of the preferred 
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hand participants tapped a key on the keyboard as many times as possible (2) using the index finger 

of the preferred hand participants alternately tapped two keys on the keyboard as many times as 

possible and (3) using the middle and index fingers of the preferred hand participants alternately 

tapped two keys on the keyboard as many times as possible.  Each condition consisted of 6 trials.  

The principal measure was ms/tap. The motor tapping task was run using the DMDX software 

(Forster & Forster, 2003).   

Working memory measures 

Subtests from the AWMA were administered.  Each began with practice trials followed by 

test trials presented in blocks of increasing difficulty, with each block containing 6 trials. If the 

participant responded correctly on 4 out of 5 trials in a block the test continued to the next block. 

Otherwise the test was discontinued. 

Verbal short-term memory was assessed using Digit Recall and Nonword Recall in which 

sequences of spoken digits and nonwords respectively have to be immediately repeated in the order 

that they were presented.  

Visuo-spatial short term memory was assessed using Dot Matrix and Block Recall.  Dot 

Matrix requires the individual to remember the location and order of dots displayed sequentially in 

a grid. In Block Recall, the individual views a series of blocks being tapped and reproduces the 

sequence in the correct order by tapping on the blocks.  

Verbal executive was assessed using Listening Recall and Backward Digit Recall.  In the 

Listening Recall task, the individual is presented with a series of spoken sentences, has to 

determine the veracity of the sentence and recalls the final word for each sentence in sequence.  In 

Backward Digit Recall, the individual is required to recall a sequence of spoken digits in reverse 

order.  

Visuo-spatial executive was assessed using Odd One Out and Spatial Recall.  In the Odd 

One Out task the individual views three shapes, each in a box presented in a row, and identifies the 

odd-one-out shape. At the end of each trial, the individual recalls the location of each odd-one-out 
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shape, in the correct order, by tapping the correct box on the screen. In Spatial Recall the individual 

views a picture of two arbitrary shapes, where the shape on the right has a red dot on it. The 

individual identifies whether the shape on the right is the same as or opposite to the shape on the 

left. The shape with the red dot may also be rotated. At the end of each trial the individual has to 

recall the location of the red dot on each shape in sequence by pointing to a picture with three 

compass points that represent the possible location of the red dot. 

Attention measures 

Selective attention was assessed using the Flanker task where participants were required to 

identify the direction of a central target while disregarding a number of adjacent distracters that 

may be congruent or incongruent to the direction of the target.  The task consisted of 40 congruent 

and 40 incongruent trials. The congruent trials consisted of a central target (i.e., either an arrow 

pointing to the left or the right) and four distracters (i.e., two arrows on either side of the target) 

pointing in the same direction as the target.  The incongruent trials consisted of a central target (i.e., 

either an arrow pointing to the left or the right) and four distracters (i.e., two arrows on either side 

of the target) pointing in the opposite direction as the target.  Participants were required to identify 

the direction of the target (i.e., left or right) as quickly as possible by pressing the right and left shift 

keys respectively while ignoring the orientation of the distracters.  The stimulus for each trial was 

displayed on the computer screen for approximately 1000ms.  Participants were instructed to 

respond as quickly as possible to the direction of the target.  The principal measures taken were 

mean reaction time and accuracy for congruent and incongruent trials. 

Response inhibition was assessed using a Stop Signal Reaction Time task.  This task had a 

frequent visual ‘go’ signal set up a prepotent response tendency and a less frequent visual ‘stop’ 

signal for participants to withhold their response.  Go signals occurred on 75% of trials and stop 

signals on 25% of trials.  The go signal followed a fixation point and participants were required to 

respond with a single button press when it appeared.  On stop trials, the stop signal followed the 

onset of the go signal at different delays as outlined in Jennings, Van der Molen, Pelham, Debski 
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and Hoza (1997) and Overtoom et al. (2002). Participants were instructed to respond as quickly as 

possible without making mistakes, trying not to respond on stop trials.  They were instructed not to 

wait for the stop signal, because it occurred randomly and infrequently.  The purpose of this 

instruction was to avoid monitoring for the stop signal. SSRT (i.e., mean time required for 

inhibiting responses) served as an index of response inhibition. Variability of response latencies for 

go-trials (i.e., SDRT) served as an index of response variability, and the proportion of trials that 

were successfully inhibited on stop-trials (i.e., P(i)) served as an index of probability of inhibition. 

Additionally, accuracy and response latencies on go-trials were measured.  

The order of trial presentation in the selective attention and response inhibition tasks was 

randomised for each participant and was run using DMDX.   

Testing Schedule 

All tasks were administered in one session which lasted for approximately one hour, with a 

5 minute break. All participants were tested in the UK.  

Results 

Preliminary analyses 

Overall, monolinguals and bilinguals were matched on general cognitive ability and motor 

processing speed: groups did not differ significantly on verbal ability as measured by WASI 

Vocabulary (monolinguals = 63, bilinguals = 63; F(1, 44) = .06, p = .81, ƾp
2 = .001), fluid 

intelligence (monolinguals = 60, bilinguals = 62; F(1, 44) = 2.87, p = .09, ƾp
2 = .06) and motor 

processing speed (monolinguals = 212ms/tap, bilinguals = 227ms/tap; F(1, 44) = 3.84, p = .06, ƾp
2 = 

.08).  

Before examining group differences on the core tasks, reliability was computed for the 

attention tasks (Cronbach’s Į).  The reliability of these tasks was excellent: Flanker .95 and SSRT 

.96.  We also adopted the following criteria to reduce the effects of outliers in the Flanker task: 

prior to analysis erroneous responses were excluded and an inverse transformation was used to 

reduce the effect of remaining outliers (see Ratcliff, 1993; Ulrich & Miller, 1994).  For the Stop 
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Signal Reaction Time task, SSRTs were estimated using the mean method (mean of inhibition 

function subtracted from the mean of RT distribution) as outlined by Band et al. (2003) and 

Verbruggen and Logan (2009).   

Table 2 summarises the performance of the monolinguals and bilinguals on the eight 

working memory tasks and the two attention tasks.   

< Insert Table 2 about here> 

Working memory 

Data were entered in to a multivariate analysis of variance (MANOVA), with language 

group as the fixed factor. Using Pillai’s Trace, there was a statistically significant effect of language 

group on working memory, V = .54, F (8, 37) = 5.43, p < .001, ƾp
2  =.54. Furthermore, separate 

univariate analyses of variance (ANOVA) showed that bilinguals performed significantly better 

than monolinguals on all 8 working memory measures (see Table 2). 

Attention 

Response inhibition 

Data were entered in to a MANOVA, with language group as the fixed factor. Using Pillai’s 

Trace, there was a statistically significant effect of language group, V = .36, F (5, 40) = 4.42, p = 

.003, ƾp
2  = .36. Separate univariate ANOVA on the outcome variables showed a bilingual 

advantage in mean time required for inhibiting responses (i.e., SSRT). However, there were no 

language group differences on response latencies for go-trials, SDRT, P(i) and accuracy on go-trials 

(see Table 2).  

Selective attention 

RT data were entered into a 2 (language group: bilinguals, monolinguals) × 2 (congruency: 

congruent, incongruent) repeated measures ANOVA. As expected, in the Flanker task there was a 

statistically significant congruency effect (i.e., response latencies on congruent trials were 

significantly shorter than response latencies on incongruent trials), F(1, 44) = 119.02, p < .001, p
2   

= .73 (see Table 2).  Importantly, monolinguals and bilinguals did not differ in overall response 
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latencies, F(1, 44) = .90, p = .35, p
2   = .02, and there was no statistically significant interaction 

between language group and congruency effect, F(1, 44) = .56, p = .46, p
2   = .01 (see Table 2).   

Accuracy on the Flanker task was excellent (99.89%), and a 2 (language group: bilinguals, 

monolinguals) × 2 (congruency: congruent, incongruent) repeated measures ANOVA revealed that 

there was no statistically significant main effect of congruency (i.e., no difference between 

congruent and incongruent trials) and language group, F(1, 44) = .98, p = .33, p
2   = .02 and F(1, 

44) = 1.07, p = .31, p
2   = .02, respectively (see Table 2).  Similarly, the language group × 

congruency interaction was not statistically significant, F(1, 44) = .00, p = 1.00, p
2   = .00 (see 

Table 2), illustrating that there was no time/accuracy trade-off in task performance.   

Discussion 

Bilinguals showed an advantage in working memory, supporting the view that lifelong use 

of more than one language enhances working memory. Regarding executive control, a bilingual 

advantage was found in response inhibition, but not in selective attention, highlighting the notion 

that bilingualism modulates different aspects of executive mechanisms: bilingualism enhances the 

ability to inhibit ongoing responses, but has no impact on the ability to supress irrelevant perceptual 

information.  

Experiment 2 

Experiment 2 sought to replicate and extend Experiment 1 by additionally examining novel-

word learning advantage in bilinguals, and the underlying skills that may contribute to this 

advantage. Based on the effects reported in Experiment 1 and by Papagno and Vallar (1995) we 

predicted medium to large magnitude effect sizes for language group differences in working 

memory (Cohen’s d = 1.17), response inhibition (Cohen’s d = .56) and novel-word learning 

(Cohen’s d = 1.04; Papagno & Vallar, 1995); but a small effect in selective attention (Cohen’s d = 

.10). Thus, given a minimum statistical power of .80 with Į .05 a total sample size of 22, 30, 26 and 

28 participants are required for the working memory, response inhibition, novel-word learning and 
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selective attention tasks, respectively. Experiment 2 has a total of 40 participants; thus, there was 

adequate power to detect the predicted effects.  

Method 

Participants  

Twenty monolingual adult speakers of English (mean age 21 years, 7 months; 10 males and 

10 females) and 20 bilingual adult speakers of Hindi and English (mean age 23 years, 5 months; 14 

males and 6 females) with no known hearing problems participated.  The bilinguals were 

significantly older than the monolinguals by approximately 21 months, t(38) = .2.93, p = .006. As 

in Experiment 1 participants were university students studying in the UK and reported having no 

knowledge of Spanish. Similar to the bilinguals in Experiment 1, the bilinguals reported using 

English significantly more than Hindi on average, t(19) = 5.23, p < .001, d = 2.40. In contrast to 

Experiment 1, bilinguals rated their proficiency in Hindi significantly higher than their proficiency 

in English, t(19) = 3.85, p < .001, d = 1.76. Additionally, the mean ratio for the degree of 

bilingualism was .88 (see Table 1), and this differed significantly from a value that might be taken 

to indicate perfect bilingual balance, t(19) = 2.76, p = .013, d = .62.  Reported age of initial 

exposure to English was 3 years, 7 months; with first exposure to English occurring in the home, 

approximately 10 months earlier than their exposure to English in school, t(16) = 2.86, p = .01, d = 

1.43 (see Table 1). Bilinguals reported that they learned English through formal education and by 

speaking English with others.  All participants recruited for this experiment were included in all 

analyses reported.  

Design and materials 

The design and materials are the same as in Experiment 1, except where differences are 

noted below. 

Visual-verbal PAL 

In this task participants learned novel names for novel objects.  Forty spoken English words 

with low frequency ratings (see Morrison, Chappell & Ellis, 1997; Morrison, Ellis & Quinlan, 
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1992) were translated and recorded in Spanish by a native Spanish speaker. Ten adults (mix of 

bilinguals and monolinguals) with no knowledge of Spanish rated the familiarity of the Spanish 

words on a 5 point scale (1= not familiar, 5 = very familiar) in order to ensure that the words were 

not familiar. Based on these ratings, 8 spoken Spanish words were selected and were paired with 8 

unfamiliar pictured objects taken from Warmington and Hitch (2014). Appendix A provides the 

mean familiarity ratings for the Spanish words and novel objects. The novel-word learning task 

consisted of three phases: familiarization, training and test.  

During the familiarization phase participants were presented with each word-object pair one 

at a time.  Each pictured object appeared one at a time on the computer screen for 5000ms while its 

name was simultaneously presented over headphones.  Participants were instructed to repeat each 

name aloud during presentation.  Each pair was presented across three blocks and item presentation 

was randomized within blocks and across participants.   

Following familiarization, participants were administered the training phase in which each 

pictured object appeared one at a time on the computer screen.  Participants were required to 

provide the name of the object.  If their response was incorrect or they failed to provide a response 

corrective feedback was provided.  This procedure was repeated until participants learned the name 

of the objects to criterion, that is, named 6 out of 8 objects (75%) correctly in a given trial. 

Participants had a maximum of 10 trials to reach criterion.  Item presentation was randomized 

within trials and across participants.  Once participants reached criterion they completed the test 

phase (i.e., object naming and object-name recognition) with no corrective feedback.   

Object naming.  Learning was assessed via an object naming task presented immediately 

after training (immediate test). In each case the 8 pictures were shown in a random order and the 

number named correctly and errors were recorded.  The object naming task was administered again 

in second session a day later (delayed test), in a fresh, randomized order.   

Object-name recognition.  This task was presented in the delayed test only. Participants 

heard the novel names one at a time over headphones and had to match each name with the 
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corresponding pictured object.  Each name was presented simultaneously with a number on the 

computer screen. Participants had before them a sheet of paper showing the 8 learned objects and 2 

novel distracter objects and had to match the object with its name by writing the number under the 

correct pictured object.  Participants were not allowed to change their response once they moved on 

to the next item.   

The experiment was run using DMDX software which recorded participants' responses for 

scoring. Item presentation across all phases was randomized for each participant.  The principal 

measures taken were number of trials taken to reach criterion, object naming accuracy at immediate 

and delayed test, and object-name recognition accuracy.  

Testing Schedule 

 There were two sessions.  In session 1 participants were administered the novel-word 

learning task, object naming (immediate test), working memory measures and language background 

questionnaire.  In session 2 (a day later) participants completed the object naming (delayed test), 

object-name recognition, attention, processing speed and general cognitive ability tasks.  Sessions 

lasted for approximately one hour, each with a 5 minute break. All participants were tested in the 

UK. 

Results 

Preliminary analyses 

Overall, monolinguals and bilinguals were matched on general cognitive ability and motor 

processing speed: groups did not differ significantly on verbal ability as measured by WASI 

Vocabulary (monolinguals = 65, bilinguals = 64; F(1, 38) = .28, p = .59, ƾp
2 = .007) and motor 

processing speed (monolinguals = 219ms/tap, bilinguals = 233ms/tap; F(1, 38) = 1.52, p = .23, ƾp
2 = 

.04); bilinguals tended to perform slightly better than monolinguals on WASI Matrix Reasoning 

(monolinguals = 59, bilinguals = 62), but this difference did not reach statistical significance, F(1, 

38) = 3.89, p = .06, ƾp
2 = .09.  
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As in Experiment 1, reliability (Cronbach’s Į) for our bespoke measures was good: Flanker 

.98, SSRT .94, novel-word learning .78.  We adopted the same criteria as in Experiment 1 to reduce 

the effects of outliers in the Flanker task.   

As the bilinguals and monolinguals differed significantly in age, when analysing language 

group differences on the core task (i.e., working memory, attention and novel-word learning) we 

entered age as a covariate.  

Table 3 summarises the performance of the monolinguals and bilinguals on the eight 

working memory, the two attention and novel-word learning tasks.  

< Insert Table 3 about here> 

Working memory 

Data were entered in to a multivariate analysis of covariance (MANCOVA), with language 

group as the fixed factor and age as a covariate. Using Pillai’s Trace, there was a statistically 

significant effect of language group on working memory, V = .45, F (8, 30) = 3.02, p = .013, ƾp
2  = 

.45.  Furthermore, separate univariate ANOVA showed that bilinguals performed significantly 

better than monolinguals on 7 of the 8 working memory measures, the single exception being 

Listening Recall (see Table 3). There was no statistically significant effect of age on working 

memory, V = .19, F (8, 30) = .86, p = .56, ƾp
2 =.19.  

Attention 

Response inhibition 

Data were entered in to a MANCOVA, with language group as the fixed factor and age as a 

covariate. Using Pillai’s Trace, age was not statistically significant, V = .10, F (4, 34) = .96, p = .44, 

ƾp
2  = .10.  

The effect of language group on response inhibition was statistically significant, V = .34, F 

(4, 34) = 4.48, p = .005, ƾp
2  = .35. Furthermore, separate univariate ANOVA on the outcome 

variables confirmed a bilingual advantage in SSRT (see Table 3). Additionally, response latencies 

on go-trials were significantly shorter and less variable in the bilinguals than in the monolinguals 
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(see Table 3). In contrast, language groups did not differ significantly in the proportion of stop-

trials that were successfully inhibited (i.e., P(i)) and accuracy on go-trials (see Table 3).  

Selective attention 

RT data were entered into a 2 (language group: bilinguals, monolinguals) × 2 (congruency: 

congruent, incongruent) repeated measures ANCOVA with age as a covariate. As in Experiment 1 

monolinguals and bilinguals did not differ in overall response latencies, F(1, 37) = 2.67, p = .11, 

p
2   = .07, and the language group × congruency interaction was not statistically significant, F(1, 

37) = .00, p = .99, p
2   = .00 (see Table 3).  In contrast to Experiment 1, response latencies on 

congruent trials did not differ significantly from response latencies on incongruent trials, F(1, 37) = 

1.69, p  = .20, p
2   = .04 (see Table 3).  The covariate, age, was not statistically significant, F(1, 37) 

= .56, p  = .46, p
2   = .01.  

Accuracy on the Flanker task was excellent (99.87%), and a 2 (language group: bilinguals, 

monolinguals) × 2 (congruency: congruent, incongruent) repeated measures ANCOVA with age as 

a covariate revealed that there was no statistically significant main effect of congruency (i.e., no 

differences between congruent and incongruent trials), age and language group, F(1, 37) = .02, p = 

.87, p
2   = .001, F(1, 37) = .09, p = .77, p

2   = .002 and F(1, 37) = 2.73, p = .11, p
2   = .07, 

respectively (see Table 3).  Similarly, the language group × congruency interaction was not 

statistically significant, F(1, 37) = 2.73, p = .11, p
2   = .07, illustrating that there was no 

time/accuracy trade-off (see Table 3). 

Novel-word learning 

Trials to criterion 

A univariate ANCOVA, with language group as the fixed factor and age as the covariate 

showed a bilingual advantage in the number of trials taken to reach criterion, F(1, 37) = 7.71, p = 

.009, p
2   = .17 (see Table 3). However, age was not significantly related to the number of trials 

taken to reach criterion, F(1, 37) = .29, p = .59, p
2   = .008.  
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Object naming 

A 2 (language group: bilinguals, monolinguals) × 2 (test session: immediate, delayed) 

repeated measures ANCOVA with age as a covariate, showed a bilingual advantage in object 

naming, F(1, 37) = 12.39, p = .001, p
2   = .25 (see Table 3). Performance did not decrease 

significantly between test sessions, F(1, 37) = 1.03, p = .32, p
2   = .03, and the language group × 

test session interaction was not statistically significant, F(1, 37) = .39, p = .54, p
2   = .01. The 

covariate, age, was not statistically significant, F(1, 37) = .05, p = .82, p
2   = .001.    

Object-name recognition 

Object-name recognition performance was at ceiling (99.37%). Data were entered into a 

univariate ANCOVA, with language group as the fixed factor and age as the covariate. Results 

showed no statistically significant effect of language group, F(1, 37) = .12, p = .73, p
2   = .003, and 

age, F(1, 37) = 1.72, p = .19, p
2   = .04, (see Table 3).   

Correlation analyses 

Table 4 shows the Pearson product-moment correlations between measures. Correlations 

were collapsed across groups in order to ascertain the general pattern of relationships between 

working memory, attention and novel-word learning (c.f., Gathercole, et al., 1997). A novel-word 

learning score was derived by averaging the number of correct responses collapsed across test delay 

in the object naming task (performance at immediate and delayed test correlated highly and 

significantly, r = .59, p < .01).   

Six of the 8 working memory measures correlated moderately and significantly with novel-

word learning (rs ranging from .34-.48, p < .05), the exceptions being Nonword Recall and Dot 

Matrix which correlated weakly and non-significantly with novel-word learning (rs ranging from 

.26-.27, p > .05). Novel-word learning correlated moderately with response inhibition (r = -.34, p < 

.01), but weakly and non-significantly with Vocabulary (r = .11, p > .05), selective attention (r = -

.10, p > .05), fluid intelligence (r = .23, p > .05) and motor processing speed (r = -.17, p > .05).   
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Response inhibition correlated moderately and significantly with fluid intelligence, verbal 

and visuospatial short term memory (Digit Recall and Block Recall) and verbal and visuospatial 

executive (Backward Digit Recall, Odd One Out and Spatial Recall) (rs ranging from -.42-.45, p < 

.05).  Selective attention correlated weakly and non-significantly with verbal and visuospatial short 

term memory and verbal and visuospatial executive (rs ranging from .004-.25, p > .05). 

Furthermore, selective attention correlated weakly and non-significantly with response inhibition (r 

= -.004, p > .05).   

< Insert Table 4 about here> 

A separate set of analyses showed that, for the bilinguals, the balance ratio correlated 

strongly and significantly with response inhibition (i.e., SSRT) (r = .70, p = .001), but weakly and 

non-significantly with selective attention (i.e., Flanker task) (r = .16, p = .51). These patterns of 

correlations augment the group differences by illustrating that bilingualism enhances the ability to 

stop ongoing responses, but has no additional facilitative impact on the ability to suppress irrelevant 

perceptual information.     

Regression analyses: Predicting novel-word learning from verbal working memory and 

attention 

We conducted regression analyses in order to determine the role of verbal working memory 

and attention in predicting unique variance in novel-word learning in monolinguals and bilinguals 

separately.  The predictor variables were Vocabulary, Digit Recall, Nonword Recall, Backward 

Digit Recall, Listening Recall, selective attention (Flanker task) and response inhibition (SSRT), 

and were entered into the model in this order.  The regression analysis consisted of a single step 

with all 7 variables entered together. Vocabulary and the verbal working memory measures were 

entered as a predictors given their established relationship with novel-word learning (see 

Gathercole & Baddeley, 1990; Gathercole et al., 1997; Papagno & Vallar; 1995).  

Additionally, to address the issue of multicollinearity (i.e., two or more variables are very 

closely linearly related) between predictors entered in the regression analyses (c.f., Kreft & de 
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Leeuw, 1998) all relevant variables were standardised (i.e., converted into z scores) prior to 

analyses. Multicollinearity among the predictor variables was assessed using the variance inflation 

factor (VIF) and tolerance statistics. VIF scores of less than 4 indicate that the result will not 

significantly influence the stability of the parameter estimates (Myers, 1990). VIF scores for the 

predictor variables ranged between 1.14-1.55 for monolinguals and between 1.09-2.00 for 

bilinguals. Similarly, tolerance statistics were well above .20 (monolinguals = .64-.88; bilinguals = 

.49-.92) also indicating that there was no collinearity in the data (Menard, 1995). Further, given the 

small sample size in each group an additional bootstrapping procedure (Efron & Tibshirani, 1993; 

Shrout & Bolger, 2002) was applied to increase confidence in the reliability of findings. We 

achieved this by re-sampling with replacement 1000 samples derived from the original sample. 

Thus, 95% confidence intervals of unstandardized coefficients derived from bootstrap analysis are 

included in the regression results. 

< Insert Table 5 about here> 

Table 5 shows the hierarchical regression analysis for novel-word learning in monolinguals 

and bilinguals.   

For monolinguals, the model accounted for 47.20% of the variance in novel-word learning, 

F(7, 12) = 1.53, p = .24, and only Listening Recall explained statistically significant unique 

variance.  

In contrast, for bilinguals the model accounted for 72.70% of the variance in novel-word 

learning, F(7, 12) = 4.57, p = .01. Interestingly, not only did verbal working memory (i.e., Digit 

Recall and Listening Recall) explain statistically significant unique variance in novel-word learning 

in bilinguals, but response inhibition also accounted for unique significant variance. This pattern is 

consistent with the idea that enhanced executive skills underpin the novel-word learning advantage 

in bilinguals.  

Vocabulary did not contribute statistically significant unique variance to novel-word 

learning in both groups. This suggests that, regardless of language status, lexical knowledge did not 
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support novel-word learning in the present sample of young adults, perhaps reflecting our use of 

Spanish words that had no phonological or lexical resemblance to either English or Hindi.   

Mediation analysis: Does verbal working memory mediate the relationship between 

bilingualism and novel-word learning? 

A simple mediation model was tested to examine the extent to which verbal working 

memory (i.e., Digit Recall and Listening Recall), as a statistically significant unique predictor in the 

regression, mediated the relationship between language status (monolingual vs. bilingual) and 

novel-word learning. All continuous variables were converted into standardised z scores on the full 

sample to facilitate between and within-model comparisons and allow unstandardised regression 

coefficients to be interpreted as Cohen’s d effect sizes when predicting from a categorical variable, 

in this case language status/group (Hayes, 2009). Additionally, we derived a verbal working 

memory composite by summing the z scores for Digit Recall and Listening Recall.  

Mediation analysis was carried out using bias-corrected bootstrapping to minimise Type II 

error (Shrout & Bolger, 2002) and to establish the statistical significance of all total, direct, and 

indirect effects. The bootstrapping method is advantageous primarily because it increases power 

and was carried out using the PROCESS macro for SPSS developed by Preacher and Hayes (Hayes, 

2013; Preacher & Hayes, 2008). The Preacher and Hayes bootstrapping method is a non-parametric 

test and as such does not violate assumptions of normality making it ideal for small sample sizes. In 

the analysis reported 1000 samples were derived from the original sample (N = 40) by a process of 

resampling with replacement. PROCESS allowed us to detect the difference between the direct 

effect of language status on novel-word learning, and the indirect effect after accounting for verbal 

working memory. Cohen’s d effect sizes, standard errors, 95% bias-corrected confidence intervals, 

are shown in Figures 1 and 2. 

< Insert Figure 1 about here> 

Examination of the total effect (see Figure 1) showed that language status was related 

significantly to novel-word learning, such that bilingualism was associated with better novel-word 
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learning prior to accounting for verbal working memory. Importantly, verbal working memory was 

a statistically significant, partial mediator of language status differences in novel-word learning, 

and accounted for 35% of the variance in the relation (see Figure 2).  

< Insert Figure 2 about here> 

Discussion 

The results of Experiment 2 are consistent with Experiment 1: bilingual advantage in 

working memory (excluding Listening Recall) and response inhibition, but not in selective 

attention.  Bilinguals outperformed monolinguals in novel-word learning, and this advantage was 

partially mediated by bilingual’s enhanced verbal working memory capacity.  Additionally, 

individual differences in response inhibition explained unique variance in bilingual novel-word 

learning.  

General discussion 

Our results confirm a bilingual advantage in virtually all measures of working memory 

(excluding Listening Recall: Experiment 2) and response inhibition (depicting medium to large 

effects), but not in selective attention. This is consistent with the view that the bilingual advantage 

in cognition is attributable to a particular pattern of strengths in executive control and working 

memory.   

Selective attention and response inhibition correlated weakly. Response inhibition 

correlated moderately with working memory, while selective attention correlated weakly with 

working memory. These patterns are consistent with the suggestion of some commonality and 

diversity across executive mechanisms (Miyake & Friedman, 2012).  

We found a bilingual advantage in novel-word learning, and this was true for the number of 

trials taken to reach criterion and their ability to recall the names both at immediate and delayed 

test.  Instead, individual differences in response inhibition and verbal working memory explained 

unique significant variance in bilingual novel-word learning, but not in monolinguals.  

Additionally, verbal working memory was a partial mediator of differences in novel-word learning 
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between language groups. On the basis of this preliminary evidence, we propose that the underlying 

cognitive characteristics of being bilingual contributed to this advantage in novel-word learning. 

Whilst monolinguals only activated verbal (executive) working memory, bilinguals simultaneously 

activated verbal short-term memory, verbal (executive) working memory and response inhibition 

when retrieving new words.  

At first glance the present findings appear to be at odds with studies that reported no 

differences in attention between monolinguals and bilinguals who were university students (i.e., 

young adults: Bialystok et al., 2005; Gathercole et al., 2014; Paap & Greenberg, 2013).  We 

employed two attention tasks - Stop Signal Reaction Time and Flanker tasks. Previous studies 

typically utilised the Simon task, which taps selective attention or interference control.  The Simon 

and Flanker tasks are logically equivalent: both assess the participant’s ability to respond to a task-

relevant perceptual attribute while suppressing or ignoring a task-irrelevant attribute.  However, the 

Stop Signal Reaction Time task is distinct from both of these in the sense that it taps the inhibition 

of an ongoing response (c.f., Khng & Lee, 2014). Performance on the Flanker and Stop Signal 

Reaction Time tasks are influenced by different cognitive processes (c.f., Khng & Lee, 2009; 

Livesey et al., 2006), consistent with the fact that both tasks were uncorrelated in the present study.  

Furthermore, we found that SSRT was highly correlated with balance ratio whereas selective 

attention was weakly and non-significantly correlated. Thus, our results are consistent with the 

argument that selective attention offers no additional processing advantage in bilinguals (see 

Bialystok et al., 2005; Gathercole et al., 2014; Paap & Greenberg, 2013). Moreover, our results 

highlight the importance of adopting multiple tasks to identify the aspects of executive processes 

that are enhanced in bilinguals (Paap et al., 2015).   

We report a bilingual advantage in verbal and visuo-spatial working memory, extending the 

findings of Papagno and Vallar (1995) by illustrating that the bilingual advantage in working 

memory is also evident in visuo-spatial working memory. Our findings are consistent with those 

reported by Morales et al. (2013) and Blom et al. (2014), but differ from those reported by Engel de 
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Abreu and colleagues (Engel de Abreu, 2011; Engel de Abreu et al., 2012). We are confident that 

the differences between our findings and those reported by Engel de Abreu are not down to task 

differences as we used the same tasks from the AWMA as Engel de Abreu. Additionally, our 

results are inconsistent with those reported by Ratiu and Azuma (2015), Alternatively, we suggest 

that these differences may be related to sampling factors such as the heterogeneity of the bilinguals 

(c.f., Gasquoine et al., 2017), and as such it is vital that subsequent research considers accounting 

for sample heterogeneity when comparing monolinguals and bilinguals.  

Additionally, working memory was significantly related to response inhibition (c.f., Namazi 

& Thordardottir, 2010; Unsworth & Spillers, 2010).  This pattern of results is unsurprising, adding 

to a long-standing body of evidence that working memory is not only used for maintaining online 

information, but also for using that information along with contextual cues to generate imminent 

action (c.f., Roberts, Hager, & Heron, 1994).  

We acknowledge that a closed system of learning 8 novel words is not entirely typical of 

word learning outside the laboratory. Nevertheless, the current findings provide insight regarding 

how bilinguals and monolinguals differ in terms of the underlying mechanisms they recruit to 

establish and retrieve novel associations from memory. Unlike previous bilingual word learning 

studies that teach participants the associations between a novel and a familiar word (e.g., Papagno 

& Vallar, 1995), our participants learned the associations between novel words and novel objects. 

Despite lacking ecological validity, this approach provides a useful demonstration that bilinguals 

acquire novel verbal information more efficiently even when there are very few 

contextual/situational cues to facilitate learning.  

Although our findings must be interpreted cautiously due to the small sample, they 

nevertheless highlight that bilingualism is not a unitary construct.  Furthermore, our findings shed 

light on the notion that associative learning mechanisms are implicated in executive control 

processes (Abrahamse et al., 2016), and that future research should consider testing paradigms 

related to the application of implicit learning in executive control.  
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 Appendix A 

Mean (SD) familiarity ratings for Spanish words 
 
Item Rating 

Silbato 1.70 (.48)         

Oruga 1.30 (.48)       

Mapache 1.50 (.52)       

Flauta 1.90 (.56) 

Escoba 1.80 (.42)            

Cincel 1.50 (.52)          

Cangreho 1.20 (.63)         

Alicates 1.60 (.51) 

 

Mean familiarity ratings for novel objects taken from Warmington and Hitch (2014) 

         
          1.10                          1.20                     1.10                              1.55 
 
 

                   
          1.66                          1.88                           1.20                       1.00 
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Table 1.  Mean (and standard deviation) language proficiency and language usage self-reports of 
bilinguals for Experiment 1 (N = 23) and Experiment 2 (N = 20). 
 
 Experiment 1 Experiment 2 

Language Proficiency   

Hindi proficiency  6.30 (1.01) 6.40 (.94) 

English proficiency  5.95 (.64) 5.55 (.60) 

Balance ratio .98 (.25) .88 (.18) 

   

Language Usage   

Use of Hindi in family contexts  3.48 (1.16) 4.05 (.94) 

Use of Hindi with friends  3.52 (1.16) 4.15 (.67) 

Use of Hindi in work/study contexts  1.39 (8.39) 1.25 (.44) 

Average Usage of Hindi 2.79 (.71) 3.15 (.46) 

Use of English in family contexts  3.86 (1.01) 3.33 (1.03) 

Use of English with friends  4.43 (.66) 4.25 (.85) 

Use of English in work/study 

contexts  

4.82 (.49) 4.85 (.48) 

Average Usage of English 4.37 (.55) 4.13 (.63) 

   

Age of Initial Exposure to English   

Home 3 years 3 years, 2 months (1.28) 

School 3 years, 11 months 4 years, 0 months (1.17) 

Average Age of Initial Exposure 3 years, 5 months 3 years, 7 months (.81) 

Note.  Language proficiency was rated on a 7 point scale, with 1 = very poor and 7 = native like. 
Use of language was rated on a 5 point scale, with 1 = never and 5 = all the time.   
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Table 2.  Mean (and standard deviation) for working memory and attention measures for both 
groups with group differences (N = 46) for Experiment 1. 
   

 Monolinguals (N = 23) Bilinguals (N = 23)  

  F 
statistic 

p 
value 

ƾp
2 

WORKING MEMORY      
Verbal STM      

Digit Recall (SS) 97 (11) 110 (14) 9.95 .003 .18 
Nonword Recall (SS) 119 (8) 127 (8) 10.73 .002 .20 

      
Visuo-spatial STM      

Dot Matrix (SS) 99 (9) 112 (12) 15.20 <.001 .26 
Block Recall (SS) 100 (11) 108 (14) 4.19 .04 .09 

      
Verbal Executive      

Listening Recall (SS) 103 (11) 113 (13) 6.744 .013 .13 
Backward Digit Recall (SS) 97 (11) 116 (12) 26.98 <.001 .38 

      
Visuo-spatial Executive      

Odd One Out (SS) 105 (9) 116 (14) 7.01 .01 .14 
Spatial Recall (SS) 98 (10) 112 (11) 19.73 <.001 .31 

      
ATTENTION      
Stop Signal Reaction Time      

SSRT (ms) 200 (108) 115 (37) 12.54 .001 .22 
GORT (ms) 600 (191) 539 (105) 3.14 .08 .06 
SDRT (ms) 187 (36) 195 (72) .24 .63 .005 
P(i) (%) 66 (11) 73 (14) 2.98 .09 .06 
Go-trials Accuracy (%) 99 (1) 98 (2) .61 .44 .01 
      

Flanker      
RT      

Congruent  457 (71) 479 (96) - - - 
Incongruent  510 (67) 529 (104) - - - 
Congruency Effect 53 (32) 50 (30) - - - 

Accuracy (%)      
Congruent  99 (.52) 100 (0) - - - 
Incongruent  99 (.72) 99 (.52) - - - 

Note. df = (1,44); STM = short-term memory; SS = Standard Score; GORT = reaction time for go-
trials; SDRT = standard deviation (variability) of RTs for go-trials; P(i) = probability of inhibition 
(i.e., the proportion of trials that were inhibited on stop-trials); Congruency Effect = calculated by 
subtracting RT on incongruent trials from RT on congruent trials; ƾp

2 = partial eta squared (small 
effect = .01, medium effect = .09, large effect = .25).   
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Table 3.  Mean (and standard deviation) for working memory, attention and novel-word learning 
measures for both groups with group differences (N = 40) in Experiment 2. 
   

 Monolinguals 
(N = 20) 

Bilinguals 
(N = 20) 

  

  F statistic p value ƾp
2 

WORKING MEMORY      
Verbal STM      

Digit Recall (SS) 91 (6) 104 (11) 16.47 < .001 .31 
Nonword Recall (SS) 106 (16) 119 (11) 6.30 .02 .15 

      
Visuo-spatial STM      

Dot Matrix (SS) 102 (13) 111 (8) 7.39 .01 .17 
Block Recall (SS) 94  (14) 113  (16) 9.98 .003 .21 

      
Verbal Executive      

Listening Recall (SS) 101  (11) 107 (13) 2.30  .14 .06 
Backward Digit Recall (SS) 98  (15) 114  (11) 9.22 .004 .20 

      
Visuo-spatial Executive      

Odd One Out (SS) 104  (11) 114 (11) 5.72 .02 .13 
Spatial Recall (SS) 100  (13) 114 (11) 9.22  .004 .20 

      
ATTENTION      
Stop Signal Reaction Time      

SSRT (ms) 283 (138) 123 (85) 13.48 .001 .27 
GORT (ms) 684 (138) 524 (85) 13.48 .001 .27 
SDRT (ms) 211 (98) 133 (29) 8.21 .007 .18 
P(i) (%) 67 (11) 68 (11) .20 .66 .005 
Go-trials Accuracy (%) 99 (1) 99 (1) .63 .43 .02 
      

Flanker      
RT      

Congruent  478 (70) 515 (57) - - - 
Incongruent  537 (91) 575 (70) - - - 
Congruency Effect 59 (32) 60 (24) - - - 

Accuracy (%)      
Congruent  100 (0) 100 (0) - - - 
Incongruent  99 (1) 100 (0) - - - 

      
NOVEL-WORD LEARNING      

Trials to Criterion (Max = 
10) 

4.10 (1.92) 2.70 (1.08) - - - 

Object Naming      
Immediate (Max = 8) 5.75 (1.25) 6.75 (.72) - - - 
Delayed (Max = 8) 4.75 (1.37) 6.10 (.79) - - - 

Recognition (Max = 8) 7.90 (.45) 8 (0) - - - 
Note. df = (1,37); STM = short-term memory; SS = Standard Score; GORT = reaction time for go-
trials; SDRT = standard deviation (variability) of RTs for go-trials; P(i) = probability of inhibition 
(i.e., the proportion of trials that were inhibited on stop-trials); Congruency Effect = calculated by 
subtracting RT on incongruent trials from RT on congruent trials; ƾp

2 = partial eta squared (small 
effect = .01, medium effect = .09, large effect = .25)   
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Table 4. Correlations between working memory, attention and novel-word learning collapsed across language groups (N = 40). 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1. Motor Processing Speed  .15 .38* -.12 -.06 -.07 -.01 -.07 -.03 .09 .23 .16 .04 -.17 
2. Fluid Intelligence   .51** .10 .21 .25 .37* .02 .05 .06 .06 -.42** .23 .23 
3.  Vocabulary    .04 .16 .17 .004 -.11 -.18 -.02 -.12 .004 -.25 .11 
4.  Digit Recall     .38* .42** .51** .29 .55** .47** .41** -.39* .005 .48** 
5.  Nonword Recall      .34* .49** .20 .28 .11 .23 -.25 -.18 .27 

6.  Listening Recall       .48** .53** .29 .19 .31* -.15 -.10 .46** 
7.  Backward Digit Recall        .34* .44** .38* .59** -.45** -.13 .45** 
8. Dot Matrix         .55** .48** .41** -.22 .24 .26 
9. Block Recall          .64** .57** -.35* .19 .41** 
10. Odd One Out           .67** -.37* .06 .35* 
11. Spatial Recall            -.41** .13 .38* 
12.  Response Inhibition             -.004 -.34* 
13. Selective Attention              -.10 
14. Novel Word Learning               

Note. *p < .05 **p < .01. Motor Processing Speed = Simple Reaction Time; Fluid Intelligence as measured by WASI Matrix Reasoning; 
Vocabulary as measured by the WASI; Response Inhibition = SSRT; Selective Attention was calculated by subtracting RT on incongruent trials 
from RT on congruent trials. 
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Table 5. Hierarchical regression with vocabulary, verbal working memory and attention as predictors of novel-word learning in monolinguals 
and bilinguals (N = 40). 
 
Variable Monolinguals (N = 20) Bilinguals (N = 20) 

 B  SE B t ȕ 95% BCa CI B

  

SE B t ȕ 95% BCa CI 

Vocabulary .007 .38 .02 .006 -.78, .86 -.02 .12 -.25 -.04 -.21, .36 

Digit Recall -.14 .41 -.47 -.11 -1.04, .95 .24 .12 2.64* .44 .03, .40 

Nonword Recall .06 .36 .23 .05 -.67, .54 -.18 .16 -1.49 -.32 -.47, .06 

Backward Digit Recall  .18 .43 2.29  .16 -.81, 1.65 -.18 .13 -1.57 -.34 -.45, .06 

Listening Recall .70 .41 .64* .60 -.38, 1.48 .35 .14 3.05* .64 .12, .62 

Selective Attention .09 .33 .41 .09 -.52, .75 -.20 .15 -1.79 -.32 -.5, .19 

Response Inhibition -.32 .44 -1.17 -.27 -1.39, .93 .50 .19 3.41* .57 .07, .87 

Note.  *p < .05. Vocabulary as measured by the WASI; Selective Attention was calculated by subtracting RT on incongruent trials from RT on 
congruent trials; Response Inhibition = SSRT; B = bootstrap unstandardised coefficients; SE B = bootstrap standard error for unstandardised 
coefficients; ȕ = standardised beta values; BCa CI = bias-corrected bootstrap confidence intervals.  
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Figure 1. Schematic model depicting total effects of language status on novel-word learning. Cohen’s d for the c pathway reflects the impact of 
language status on novel-word learning before taking into account the mediating variable. Effect sizes (or ȕ weights) are significant based on 95% 
BCa CI.  
Note. *p < .05. Language Status = dummy coded variable: 0 - monolinguals; 1 - bilinguals; d = Cohen’s d effect size; BCa CI = bias-corrected 
bootstrap confidence intervals.  

  

Language Status Novel Word Learning 

Path c (total)
d =1.93* (.49); 95% Bca CI [.93, 2.92]
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Figure 2. Schematic model depicting direct, indirect and mediating effects of verbal working memory (i.e., composite of Digit Recall and 
Listening Recall) on novel-word learning. Cohen’s d for the c’ pathways reflects the impact of language status on novel-word learning after 
taking into account the mediating variable. Effect sizes (or ȕ weights) are significant based on 95% BCa CI. Values for path b reflect ȕ weights 
due to the use two continuous variables to calculate the direct effect. Solid lines represent significant pathways.  
Note. *p < .05. Language Status = dummy coded variable: 0 - monolinguals; 1 - bilinguals; d = Cohen’s d effect size; BCa CI = bias-corrected 
bootstrap confidence intervals. 

 

 

Language Status Novel Word Learning 

Path c’ (direct)
d =1.25*(.54); 95% Bca CI [.15, 2.35]

Verbal Working 
Memory

Path ab (indirect)
d = .67 (.28); 95% Bca CI [.22, 1.36]


