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Abstract—Modernizing production-grade, often legacy appli-
cations to take advantage of modern multi-core and many-core
architectures can be a difficult and costly undertaking. This is
especially true currently, as it is unclear which architectures will
dominate future systems. The complexity of these codes can mean
that parallelisation for a given architecture requires significant
re-engineering. One way to assess the benefit of such an exercise
would be to use mini-applications that are representative of the
legacy programs.

In this paper, we investigate different implementations of
TeaLeaf, a mini-application from the Mantevo suite that solves
the linear heat conduction equation. TeaLeaf has been ported
to use many parallel programming models, including OpenMP,
CUDA and MPI among others. It has also been re-engineered
to use the OPS embedded DSL and template libraries Kokkos
and RAJA. We use these different implementations to assess the
performance portability of each technique on modern multi-core
systems.

While manually parallelising the application targeting and
optimizing for each platform gives the best performance, this has
the obvious disadvantage that it requires the creation of different
versions for each and every platform of interest. Frameworks
such as OPS, Kokkos and RAJA can produce executables of
the program automatically that achieve comparable portability.
Based on a recently developed performance portability metric,
our results show that OPS and RAJA achieve an application
performance portability score of 71% and 77% respectively for
this application.

Keywords—Mini-apps, OPS, RAJA, Kokkos, Performance
Portability

I. INTRODUCTION

Modernizing production-grade, often legacy applications to

take advantage of modern multi-core and many-core archi-

tectures can be a difficult and costly undertaking. Often, these

applications have been developed over decades and consist of

code bases with thousands or even millions of lines of code.

Adapting to new systems may require major re-engineering,

since languages, parallel programming models and optimisa-

tions vary widely between different platforms. At the same

time, there is considerable uncertainty about which platforms

to target; it is not apparent which parallel programming

approach is likely to “win” in the long term. Clearly, manually

porting large code-bases to use various different programming

models and languages, and then maintaining these different

versions, is infeasible.

One common strategy is to use small representative applica-

tions to test and evaluate new technologies, programming mod-

els, frameworks and optimisations. The use of such programs,

called proxy or mini-applications, is not new. The idea can be

traced to the development of small benchmark codes such as

LINPACK [1] and the NAS Parallel Benchmarks [2]. More re-

cent efforts include the Mantevo [3] and UK Mini-Application

Consortium [4] suites. Due to their small size, mini-apps are

much more manageable than production applications and can

feasibly be re-written in different programming languages and

with specific optimisations. They are also unrestricted and/or

devoid of any commercially sensitive code, allowing them to

be readily distributed to many parties and sites.

In this paper, we explore the performance of one such

mini-app called TeaLeaf, recently developed as a proxy for

algorithms of interest at the UK AWE plc. TeaLeaf implements

a set of linear equations which form a sparse, structured mesh

and use a five point stencil and cell-centred temperatures to

calculate the conduction coefficient [5]. It has been parallelised

using a variety of different programming models and language

extensions, including OpenMP, MPI, CUDA and OpenACC.

It also has been implemented using the OPS embedded do-

main specific language [6], and the C++ template libraries

Kokkos [7] and RAJA [8]. Many of these programming

frameworks allow for compilation and execution on multiple

different systems and architectures.

Specifically, this paper makes the following contributions:

• First, we compare the performance of different implemen-

tations of TeaLeaf, including how manually parallelised

and optimised versions compare to those using the frame-

works OPS, Kokkos and RAJA;

• Second, we analyse the performance of TeaLeaf on

a number of current multi-core systems including In-

tel’s Xeon Phi Knights Landing (KNL) processor and

NVIDIA’s Tesla P100 GPU.

As part of this work, we examine the idea of performance

portability – a measure of the performance gained by a

single application across a range of different systems. An



application is said to be highly performance portable if it

achieves the best execution possible (or close to best) on each

platform it is tested on. We use a recently developed metric for

performance portability in analysing the achieved performance

of TeaLeaf developed with the above of programming models

and frameworks [9].

The rest of the paper is organised as follows: in Section II,

we discuss the background of mini-applications and briefly

detail the development of TeaLeaf; Section III discusses the

different implementations of TeaLeaf to achieve parallelism

through different techniques; in Sections IV and V, we discuss

the performance of the many versions of TeaLeaf and the

resulting performance portability on the systems of interest;

finally, Section VI, concludes the paper.

II. BACKGROUND

Improving the performance of large-scale, production appli-

cations is a significant undertaking. Often, these applications

have been developed over decades, by multiple teams, using

several third party libraries and consist of code bases with

thousands or even millions of lines of code. However, in many

cases, the performance is dominated by a few units within the

application. As such, a representative program, often smaller

in size, can be created to act as a proxy of the original

code. A key benefit of these representative applications is that

they can be modified and deployed on a range of systems

quickly, implemented with multiple parallelisation models and

optimised using a wide range of techniques [3].

Notable efforts in developing and using mini-apps include

the NAS Parallel Benchmarks in the late 1980s [2], the

ASCI applications in the 1990s [10], and more recently the

Mantevo [3] and UKMAC [4] benchmark suites. Mini-apps

have been developed to represent production applications from

a wide range of scientific and engineering areas, including

CFD [2], [11], [12], particle transport [13], hydrodynam-

ics [14], [15] and machine learning [16], to name just a few.

In this paper, we focus on the heat conduction solver

mini-app TeaLeaf [17], part of the Mantevo and UKMAC

suites. Martineau et al. [5], [18], [19] discuss several variants

of TeaLeaf that have been parallelised using a number of

programming models. Further, they compare different solvers

within TeaLeaf: Conjugate Gradient (CG), Chebyshev and

Chebyshev polynomially preconditioned CG (PPCG), on three

different Intel Xeon processors, an IBM Power8 processor,

an NVIDIA Tesla K20x GPU and an Intel Knights Corner

accelerator card [5], [18], [19]. Recently, TeaLeaf was re-

engineered to use the OPS [6] embedded domain specific

language, and the Kokkos [7] and RAJA [8] C++ template

libraries.

III. PARALLELISING TEALEAF

TeaLeaf is one of 15 mini-applications within the Mantevo

suite [3]. The reference version, and a number of versions

capable of executing in parallel using MPI and OpenMP, are

written in Fortran. In order to make use of other parallel

programming models, the application has also been converted

to C/C++. In this section we detail the different versions of

TeaLeaf used in our study. We first describe the original refer-

ence application and a number of versions ported manually to

make use of various parallel programming models. Secondly

we detail the version parallelised using OPS. Finally, we

describe versions parallelised by the C++ template libraries,

Kokkos and RAJA.

A. Reference Implementation and Manual Parallelisations

The initial reference version of TeaLeaf employs both

OpenMP and MPI to allow parallelisation on both shared

and distributed memory systems. Subsequently, it has been

manually ported to use other parallel programming models.

TeaLeaf’s CUDA and OpenCL ports are aimed primarily

at accelerator cards. The CUDA implementation specifically

targets NVIDIA GPUs. There is also an implementation that

uses OpenACC directives, to offload the computation to accel-

erator devices, including NVIDIA GPUs and Intel’s Knights

Corner. Each of these manual ports are standalone programs,

replicating the full mini-app that has over 7000 LoC, and

require maintenance by the authors of the code. The latest

versions can be found on the UKMAC website and GitHub

repository [17].

B. OPS

OPS (Oxford Parallel Library for Structured-mesh solvers)

is a domain specific language embedded in C/C++ and For-

tran [6]. It consists of a domain specific API that facilitates

the development of applications operating over a multi-block

structured mesh. Such a mesh can be viewed as an unstructured

collection of structured mesh blocks, together with associated

connectivity information between blocks. Using OPS, an ap-

plication developer can write a multi-block structured-mesh

application using the API as calls to a traditional library.

A source-to-source translator is then used to parse the API

calls and produce different parallelisations. A number of mini-

apps have been re-engineered to use the OPS API, including

CloverLeaf [20] and TeaLeaf.

Currently, OPS is able to automatically produce code that

makes use of a range of parallel programming models and

extensions such as OpenMP, CUDA, OpenCL, OpenACC and

their combinations with MPI. The generated code attempts to

use the best optimisations for the given programming model.

Examples include the use of cache-blocking tiling to reduce

data movement in the OpenMP and MPI versions of the

generated code [21]. The key advantage of using OPS is

that all these parallelisations and optimisations are produced

automatically, from a single high-level source, without the

need for maintaining each parallel version.

C. Kokkos and RAJA

Kokkos and RAJA are both C++ template libraries, designed

with a similar goal to OPS. Through template metaprogram-

ming, they aim to add portability to applications. They are

also able to handle a wider range of domains.

Kokkos is able to select the most appropriate data layout

(array of structures (AoS) or structure of arrays (SoA)) based



Version Compiler Flags

Manual

OpenMP Intel 17.0u2,
IMPI 2017u2

-O3 -no-prec-div -fpp -align array64byte -qopenmp -ip

-fp-model strict -fp-model source -prec-div -prec-sqrtMPI
OpenMP and MPI

CUDA Intel 17.0u2,
CUDA 8.0.61

nvcc -gencode arch=compute_60,code=sm_60 -restrict

-DNO_ERR_CHK -O3

ifort -O3 -fpp -no-prec-div -qopenmp -fp-model strict

-fp-model source -prec-div -prec-sqrt

icc -O3 -qopenmp -fp-model strict -fp-model source

-prec-div -prec-sqrt

OpenACC PGI 17.3, Open-
MPI 1.10.6

-O3 -acc (-ta=multicore or -ta=tesla:cc60) -mp

OPS

OpenMP Intel 17.0u2,
IMPI 2017u2

-O3 -ipo -fp-model strict -fp-model source -no-prec-div

-prec-sqrt -vec-report2 -xHost -parallel -restrict

-fno-alias -inline-forceinline -qopenmp

MPI
OpenMP and MPI
MPI Tiled

CUDA
(OPS BLOCK SIZE X=64,
OPS BLOCK SIZE Y=8)

Intel 17.0u2,
IMPI 2017u2,
CUDA 8.0.61

nvcc -O3 -restrict --use_fast_math -gencode

arch=compute_60,code=sm_60

icc -O3 -ipo -fp-model strict -fp-model source -no-prec-div

-prec-sqrt -vec-report2 -xHost -parallel -restrict

-fno-alias -inline-forceinline -qopenmp

OpenACC PGI 17.3, Open-
MPI 1.10.6

-acc -ta=tesla:cc60 -O2 -Kieee -Minline -ldl

Kokkos

OpenMP Intel 17.0u2 -O3 -no-prec-div -fpp -fp-model strict -fp-model source

-prec-div -prec-sqrt

CUDA GNU-5.4.0,
CUDA 8.0.61

-O3 -march=native -funroll-loops -DKOKKOSP_ENABLE_PROFILING

-ffloat-store

RAJA

OpenMP Intel 17.0u2,
IMPI 2017u2

-O3 -no-prec-div -restrict -fno-alias -xhost -std=c++11

-qopenmp -DNO_MPI -DENABLE_PROFILING

CUDA GNU-5.4.0,
CUDA 8.0.61

nvcc -ccbin g++ -O2 --expt-extended-lambda -restrict -arch

compute_60 -std=c++11 -Xcompiler -fopenmp --x cu

icpc -march=native -funroll-loops -std=c++11 -ffloat-store

-fopenmp

TABLE I: List of all versions of TeaLeaf with compilers and corresponding flags used on the single node, multi-core systems

on the underlying architecture. It is able to produce three on-

node/shared-memory parallelisations: PThreads, OpenMP and

CUDA [7].

Similar to Kokkos, RAJA [8] is a template based C++ li-

brary that can be used to produce parallelised implementations

of programs. RAJA also uses lambda functions in order to

allow for more flexibility when building kernels. This model

allows for parallelisation through OpenMP, CUDA and their

combinations with MPI.

IV. PERFORMANCE

Our aim is to compare each of the different implementations

of TeaLeaf as described in Section III in terms of their

efficiency across multiple different systems. By doing so, we

can determine which frameworks perform better, and which

multi-core/many-core systems are able to offer performance

increases for TeaLeaf.

A. Experimental Setup

The results in this paper have been collected from 3 different,

single node, multi-core/many-core systems. Each of these

systems have been configured with the same set of compilers

(which are described later), Linux kernel (3.16.0-4-amd64)

and operating system (Debian GNU/Linux 8), in order to

get comparable results. These systems can be found listed in

Table II.

System Key information

Intel Xeon E5-
2660 v4

2 processors, each with 14 core and 2 hy-
perthreads per core. 2.00GHz

Intel Xeon Phi
7210 (KNL)

1 processor with 64 cores and 4 hyper-
threads per core. 1.30GHz, Flat memory
mode, Quadrant clustering mode

NVIDIA Tesla P100 3840 single precision CUDA cores (1920
double precision CUDA cores).

TABLE II: List of all single node, multi-core systems used to

test different versions of TeaLeaf

The compilers and flags used on each of the implementa-

tions can be seen in Table I. Where possible, the Intel compiler

(17.0u2) and Intel MPI (2017u2) were used when using Intel

hardware. There were two exceptions to this: (1) when using

the C++ template libraries Kokkos or RAJA with CUDA, GNU

5.4.0 and CUDA 8.0.61 were employed; and, (2) when using

OpenACC, the PGI compiler (17.3) and OpenMPI (1.10.6)

were used to enable support for OpenACC pragma statements.
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Fig. 1: Performance of all implementations of TeaLeaf on all systems specified in Table II

For the Tesla P100 system, CUDA 8.0.61 was used.

Some of the versions, such as OPS’s CUDA, can take

parameters at runtime to further optimise the program. On

this implementation, the block size for the kernels can be set

by the user to allow for better performance on GPUs. For this

paper, the block size has been set to (64, 8) as this was shown

to provide the largest improvements.

B. Results

Figures 1 and 2 detail the performance on each system.

Figure 1 presents the time taken by ten iterations of the main

time-marching loop of TeaLeaf solving a 2D problem size of

10002. Figure 2 shows the same but for the larger problem

size of 40002. In Figures 1a and 2a, the first four sets of

columns represent results from manually parallelised versions

of TeaLeaf on the Xeon CPU and the Knights Landing system.

The next four groups are from OPS on the same systems,

and the final three groups represent the C++ template libraries

Kokkos and RAJA. Figures 1b and 2b show the performance of

implementations capable of running on GPU architectures. The

first two bars represent the manually parallelised CUDA and

OpenACC implementations, the third and fourth bars represent

the OPS’ CUDA and OpenACC versions, and the final two

bars represent the Kokkos and RAJA CUDA implementations.

The times given in Figures 1 and 2 are the minimum

execution times given all the available options for an im-

plementation. For example, the OpenMP versions were tested

over a large range of configurations to find the optimal number

of threads. Of particular note, the high bandwidth memory

(MCDRAM) for the Knights Landing system was set up to

be in flat mode, using Quadrant clustering [22]. This allowed

for the memory to be separately addressable and allocates

the memory to the closest set of processors. Our experiments

showed that this configuration provided the fastest run times

compared to the other memory modes. To access this memory,

numactl was used to allocate all the memory required by the

program to the MCDRAM. Should the MCDRAM run out

of available memory, numactl would start to use the available

DDR memory.

OpenMP and MPI

The only parallelisation model used within all the libraries

tested is OpenMP. This provides an opportunity to compare

each of the libraries with a consistent model. OpenMP was the

slowest on all systems using CPU architectures when using the

small problem set. The slowest two executions were achieved

by Kokkos, with a runtime of 4.49 seconds on the Xeon E5-

2660 v4, and 11.02 seconds on the Knights Landing system.

Out of all the OpenMP versions, the manual implementation of

OpenMP on the KNL achieved close to the fastest time for the

platform, with OPS’s MPI Tiled implementation matching this

performance or marginally performing better. This is not the

case when looking at the larger dataset, where the manually

parallelised version of OpenMP achieved the worst time out
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Fig. 2: Performance of all implementations of TeaLeaf on all systems specified in Table II

of any implementation when run on the Xeon. However, this

appears to be an outlier, being almost 3× slower than any

other implementation. Particularly, the manually parallelised

version using MPI is almost always faster than its OpenMP

counterpart. NUMA issues may be contributing to part of

this performance degradation, but it is apparent that further

optimisations may be required for the manual OpenMP version

to improve performance. The best OpenMP performance on

the KNL system for the larger dataset is given by the version

using the RAJA library.

Most of the frameworks used to parallelise TeaLeaf include

an MPI implementation. All of the MPI implementations

tested also contain an option to use OpenMP alongside MPI.

With MPI+OpenMP, TeaLeaf often performed better than the

equivalent, OpenMP only implementation. OPS allows the

user to generate code with specific optimisations on top of the

MPI+OpenMP parallelisation. One such optimisation allows

for cache-blocking tiling to reduce data movement [21]. The

tiling optimisation made the code faster than the equivalent

OpenMP and MPI+OpenMP implementations without tiling.

This is especially true for the KNL system, where it gained

the fastest time for the small dataset and the second fastest for

the larger dataset.

RAJA and Kokkos

Out of all of the OpenMP implementations tested on the CPU

architectures, RAJA gave the best performance on the the

small dataset using the Xeon system, and the large problem

size on the KNL. In contrast, the Kokkos implementation

was often the slowest out of all OpenMP implementations,

the exception being the large dataset being run on the KNL

system.

While Kokkos’ OpenMP implementation of TeaLeaf may

not perform well on either the Xeon or the KNL, the CUDA

version does perform better on NVIDIA’s Tesla P100 GPU.

For both problem sets, the Kokkos implementation was faster

than the OPS and RAJA versions designed for GPUs. How-

ever, the fastest variant of TeaLeaf on a GPU is the manually

parallelised implementation using CUDA.

For both the small and large problem sizes, RAJA’s CUDA

implementation is slower than both the manually implemented

CUDA version and the Kokkos implementation. Using the

larger dataset, RAJA CUDA was quicker than all of the OPS

implementations. However, the same cannot be said for the

smaller dataset, where it is slower than all implementations of

OPS running on the P100 system.

OpenACC

Another parallelisation model that is predominately designed

for GPU compilation is OpenACC. Two OpenACC imple-

mentations were tested on the P100 GPU, one generated

using OPS and one which was manually implemented. For

the larger problem set, the manually parallelised OpenACC

implementation performs very well, getting the second fastest



time running on the Tesla P100. However, both OpenACC

implementations are slower than the Kokkos CUDA imple-

mentation using the smaller dataset. When using both datasets,

the CUDA implementations of TeaLeaf is faster than the

OpenACC counterparts.

As well as offloading to the GPU, OpenACC can offload

to the host processor. This means that the CPU can do all of

the processing that would be executed on the GPU. Currently,

OPS’s OpenACC implementation does not support offload

to the host device, so this was tested using the manually

parallelised version of TeaLeaf OpenACC. For the smaller

dataset, the OpenACC implementation on CPUs performs

marginally better than the manually parallelised OpenMP and

Kokkos versions. However, it is slower than both OPS’s and

RAJA’s OpenMP implementations. On the larger problem

size, the manually parallelised OpenACC version performs

extremely well, performing the best of any implementation

on the Xeon. OpenACC cannot offload to a KNL as a host

device using the PGI 17.3 compilers, so could not be tested

with the OpenACC implementation.

C. System Analysis

Between the two Intel architectures, performance on the Xeon

was generally greater than the KNL when the smaller problem

size was used. With the 10002 dataset, the application requires

in the region of 200 MB of memory; for the 40002 dataset, this

increases to 2.5 GB. Analysing the caching behaviour for the

two cases shows that the Xeon system has a third of the cache

misses of the KNL for the small dataset. For the larger dataset,

the KNL has a less cache misses, and less cache accesses

overall. The application is memory-bound (as we shall see

later) and the MCDRAM therefore increases performance.

The P100 specific implementations are generally more per-

formant than those that can be run on either the Xeon or

KNL systems, when using the large problem set. However,

the percentage difference between the fastest time on a GPU

compared to the fastest on a CPU is not as large when the

smaller dataset is used (3.04% for the small dataset, 50.57%

for the larger dataset). This is an expected performance trait

of GPUs where smaller problem sizes benefit less from the

increased parallelism available. Overheads (as a proportion of

total run time), such as kernel calls and memory copies, further

reduce performance when working on smaller problem sizes.

V. PERFORMANCE PORTABILITY

Performance portability has been a topic of interest within

HPC community for some time; the US Department of En-

ergy’s Centers of Excellence Performance Portability Meeting

was set up specifically to discuss how to mitigate the problems

with platform diversification and how different laboratories

are working on the issue. During and following the April

2016 meeting, an attempt was made to establish a more

concrete definition of performance portability. Performance

and Portability are subjective terms, heavily dependent on the

user’s point of view and the problem being solved [23]. One

similarity in all definitions was the intuition that a performance

portable code should be able to run on a variety of machines.

There have been many different approaches to solve this,

including compiler directives such as OpenACC [24] and

OpenMP, languages designed for performance portability such

as Chapel [25] and PetaBricks [26], execution models such as

EARTH [27], and using embedded domain specific languages

such as OPS [6] and OP2 [28]. Template libraries have also

been used to add performance portability to an application,

examples of which include Kokkos [7] and RAJA [8].

Assessing the portability of a particular program is usually

done by measuring performance on multiple machines and

then comparing the results. Quantifying how “performance

portable” an application is from these results is difficult. To

remedy this, Pennycook et al. [9] propose the metric:

P (a, p,H) =

8

>

<

>

:

|H|
P

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise

(1)

where, H is the set of systems used to test the application,

and e is the efficiency of the application a given the input

parameters p [9]. The metric uses the harmonic mean to

assess either: (i) the application efficiency, i.e., how fast the

application runs compared to the best time on each system;

or, (ii) the architecture efficiency, i.e., the achieved number of

floating point operations per second compared to the maximum

possible on each system. The resulting score ranges between

0% and 100%; should the program not be portable to one or

more systems, a score of 0% is achieved.

In this paper, we use the metric to evaluate the different

versions of TeaLeaf. Because the systems tested fall under

two distinct architectures: CPUs and GPUs, two sets of

performance measures have been taken. The first looks at the

CPU architectures only and the second looks at all available

systems. This means that some of the implementations of

TeaLeaf can be compared to the other implementations even

though an implementation cannot be run on a particular

system.

Table III shows the performance portability of different

versions of TeaLeaf using the larger dataset (40002). In order

to compare them all effectively, the manually parallelised

implementations have been combined together into one ver-

sion, named “Manual”. The best performing implementation

running the best options was then used for the architecture and

the application efficiency. Note that the implementation that

achieves the best architecture efficiency may not also achieve

the best application efficiency and vice versa. In order to

effectively represent the architecture efficiency, we calculated

two metrics. The first is the achieved number of FLOPs (i.e.

compute intensity) for each parallelisation and the second is

the memory bandwidth used. Both measures were obtained

using, Intel’s VTune 2017 profiler for the CPU systems, and

NVIDIA’s CUDA profiler nvprof for the GPU systems.

Table III has been laid out such that the efficiencies for the

two CPU architectures are given, followed by the performance

portability of these architectures. The efficiency of the frame-



Version

Eff. (Xeon) (%) Eff. (KNL) (%) P (CPU) (%) Eff. (P100) (%) P (CPU ∪ GPU) (%)

Arch.
App.

Arch.
App.

Arch.
App.

Arch.
App.

Arch.
App.

Com. BW Com. BW Com. BW Com. BW Com. BW

Manual 0.96 60.49 100.00 1.52 91.61 93.73 1.18 73.19 96.76 2.36 75.70 100.00 1.42 74.01 97.82
OPS 1.35 89.61 67.02 3.39 95.93 100.00 1.93 92.66 80.26 2.83 61.21 57.32 2.16 79.11 70.81

Kokkos 2.73 64.11 91.45 1.57 23.59 31.40 2.00 34.49 46.74 5.30 65.86 72.65 2.52 41.00 53.05
RAJA 0.91 53.13 80.73 1.60 60.87 84.25 1.16 56.74 82.45 1.87 70.63 67.46 1.33 60.72 76.77

TABLE III: Performance Portability on Xeon E5-2660 v4, KNL (MCDRAM) and a P100 card for the 40002 mesh

works on the P100 system are then presented, accompanied

by the performance portability of all three systems. For

completeness, the architecture efficiency has been split into

two sections, one for the compute performance and one for

the memory bandwidth.

A. Architecture Efficiency

From Table III, we can see that the compute efficiency is

a significantly smaller portion of the system peak, on all

systems. Barely 5% of the peak is achieved. However the

bandwidth efficiency is mostly over 50%. As such, it is clear

that TeaLeaf is a bandwidth limited application. Therefore, we

will concentrate only on the architectural efficiency related to

BW, in this section.

With the exception of Kokkos on the KNL, the amount of

bandwidth used by the different parallelisation models exceeds

60%. The highest bandwidth usage was achieved by OPS

on the KNL, utilising 95.93% of the available bandwidth.

When looking specifically at the KNL results, the amount of

bandwidth used correlates with the application efficiency, with

models using more bandwidth gaining the higher application

efficiency. This is to be expected, as we would expect a

faster program to better utilise the hardware available. Over all

the CPU architectures, OPS achieved the highest bandwidth,

and thus gained the largest performance portability for CPU

systems.

Looking at the Tesla P100 system, we can see that the

bandwidth efficiency is relatively high, and spread over a

small range (14.49% difference). As with the KNL system, the

fastest implementation got the highest bandwidth. However,

unlike the KNL system, the highest bandwidth utilisation was

achieved by the manually parallelised implementation. This

leads to both the manually parallelised and OPS versions

having very close performance portability based on the ar-

chitecture efficiency (74.01% and 79.11% respectively).

B. Application Efficiency

Delving into the application efficiency, nearly all the results on

the CPU architectures are greater than 80%. The exceptions

are OPS on the Xeon (67.02%), and Kokkos on the KNL

(31.40%). These low results are reflected in the performance

portability metric for the CPU, where Kokkos is approximately

34% away from the the next highest performance portability

score across all CPU architectures.

As stated previously, almost all the other implementations

of TeaLeaf performed very well, getting above 80% efficiency.

This is reflected in the performance portability metric, with the

highest being 96.76% by using the manual implementation.

Both OPS and RAJA achieved very similar performance

portability scores across both CPU architectures, with only

a 2.19% difference.

However, very few implementations gained a high appli-

cation efficiency when executed on the P100 system. The

manually parallelised versions were the fastest, with Kokkos

coming in second with a 72.65% application efficiency.

Due to the low performance portability on the CPU architec-

tures, Kokkos’ overall performance portability for application

efficiency was the lowest out of all the frameworks, scoring

53.05%. On the other hand, the manually parallelised imple-

mentations scored the highest out of all models, being the

only one to score above 90%. This very much agrees with the

intuition that manually optimising and parallelising the code

will get the best results, even if this means longer development

time. Both OPS and RAJA got lower performance portability

once the GPU architecture was included.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the performance of different

implementations of TeaLeaf, a mini-application that solves

the linear heat conduction equation. First, we looked at the

performance of the mini-app across 3 different multi-core

systems: Intel’s Xeon E5-2660 v4 CPU; Intel’s Xeon Phi

Knights Landing processor; and, NVIDIA’s Tesla P100 GPU.

We showed that the GPU implementations of the different

frameworks were faster for larger datasets, with the KNL sys-

tem closely behind. The best times on the CPU were achieved

by the manually parallelised OpenACC implementation and

the MPI tiled implementation of OPS.

Secondly, we looked at the performance portability of

different version of TeaLeaf. Overall, the architecture effi-

ciency based on compute intensity (FLOPs/s) was significantly

low. However, this was expected, as real-world programs

such as TeaLeaf, are usually more complex than traditional

benchmarking applications such as LINPACK, that typically

designed to stress the hardware fully. One the other hand,

architecture efficiency based on the bandwidth was almost

always over 50%, leading us to conclude that TeaLeaf is a

memory bound application.

OPS’s architectural efficiency, based on bandwidth, was the

highest on CPU architectures. However, for the GPU systems,

the manually parallelised version utilised a higher percentage

of the peak bandwidth. Overall, both OPS and manual imple-

mentations achieved comparable architecture efficiencies.

In terms of application efficiency, the manually parallelised

implementations achieved the highest scores, showing that



hand-coding the parallelisations and optimisations will typi-

cally produce better results. However, the downside to this

method is the need to develop and maintain each separate

version. Out of all the library based methods, both OPS and

RAJA produced good performance. Both OPS and RAJA

achieved above 70% overall performance portability.

A. Future Work

Future work for this research will include further investigating

the performance of TeaLeaf on heterogeneous architectures,

specifically with regards to memory and cache usage. We

also aim to examine the difference between single node and

distributed memory systems containing the same multi-core

processors, and investigate how performance portability will

change for codes developed with each of the frameworks.
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