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Abstract—Large scale simulation performance is dependent on
a number of components, however the task of investigation and
optimization has long favored computational and communication
elements above I/O. Manually extracting the pattern of I/O
behavior from a parent application is a useful way of working
to address performance issues on a per-application basis, but
developing workflows with some degree of automation and
flexibility provides a more powerful approach to tackling current
and future I/O challenges. In this paper we describe a workload
replication workflow that extracts the I/O pattern of an applica-
tion and recreates its behavior with a flexible proxy application.
We demonstrate how simple lightweight characterization can be
translated to provide an effective representation of a physics
application, and show how a proxy replication can be used as a
tool for investigating I/O library paradigms.

I. INTRODUCTION

The challenge of understanding and capitalizing on data in-

put/output (I/O) performance is complex, yet increasing in

importance as HPC systems continue to grow in scale. A

persisting trend in this growth is computational power over-

shadowing I/O and data storage. Departure from traditional

programming models and architectures has the potential to

further this disparity should I/O techniques fail to adapt to

match the way in which future applications will operate.

Following an I/O operation becomes burdensome as calls

are translated down through high level libraries, middleware

and parallel file systems. As a result, it becomes less obvious

where to focus efforts for optimization and how to tune each

layer in the software stack to reduce any apparent performance

bottlenecks. Moreover, with many institutions deploying their

own libraries to support in-house data models and ensure

consistency, I/O practices can be dictated by design decisions

and not by current best practices.

In efforts to gain some insight into I/O performance,

applications can be instrumented to monitor the operations

that occur during a simulation with their corresponding pa-

rameters. Doing so on a per-application basis however is a

time consuming task, hence lightweight profiling and tracing

libraries have been invaluable for capturing the data required to

demonstrate what is happening during execution. Performing

multiple repetative runs of full scale applications to experiment

with potential performance improvements is largely inefficient

and cumbersome and highlights the requirement of a more

streamlined approach for replicating application workloads.

Proxy applications are invaluable tools for uncovering op-

timizations in production applications, notably showcased by

the highly successful Mantevo project [1]. The clear benefit

being a smaller representative code base with which to apply

changes and assess new software libraries. Performance im-

provements uncovered while working with these proxies can

then be integrated back into the original parent application.

While benchmarks exist representing I/O workloads of a

small number of applications, they can become outdated with

regards to their parent application, or are not updated to

keep pace with changes to high level libraries. For example,

prominent I/O benchmarks such as MADbench2 and Chombo

I/O were last updated in 2006 and 2007 respectively. It is

this situation that motivates the use of proxy applications to

represent the behavior and performance of a wide range of

production applications.

In this paper, we demonstrate a process for replicating the

I/O workload of an application through the use of the Multi-

purpose, Application Centric, Scalable I/O proxy application

(MACSio). We have developed tools to translate Darshan

characterization logs to a set of MACSio input parameters,

which represent a target application. To enable replication of

applications using the TyphonIO high level library, we have

developed a plugin that allows MACSio to use the library

to perform file I/O. Finally, we present a case study of our

replication workflow mimicking the behavior of a physics

application, which is used to investigate a parallel performance

feature of the underlying high level I/O library.

The remainder of this paper is organized as follows: Section

II describes related work; Section III provides background

information of the MACSio proxy application and the Ty-

phonIO library; Section IV outlines our replication workflow,

from execution of a target application to replication with the

MACSio proxy; Section V provides a case study of our work-

flow replicating the Bookleaf application and a performance

observation made from this replication; finally, the conclusion

of the paper is given in Section VI along with an outline of

plans for future work.

II. RELATED WORK

With I/O representing increasing proportions of application

runtime, investigation into its intricacies has been carried out

at a system level on representatively large scale machines. It



has been established that mixed Workloads often struggle to

reach peak performance and vary drastically with the use of

different I/O libraries and specific tuning parameters [2].

Snyder et al. propose interesting workload generation tech-

niques and identify three classes of I/O workload repre-

sentations: traces, synthetic and characterization [3]. Trace

workloads refer to those generated using snapshots of in-

dividual I/O operations along with associated timing data.

Tools such as Recorder [4], RIOT [5] and ScalaIOTrace [6]

capture the required granularity of information at multiple

levels in the software stack. With such high fidelity data

collection, it is possible to translate application traces into

a representative proxy using auto-generation tools, such as

the Replayer tool [7]; however these require refinement and

there are questions as to how much of an effect intensive data

collection has on the application behavior we are monitoring.

Synthetic workloads are manually defined using a domain

specific language to exercise a desired pattern on a storage sys-

tem. An example being the CODES I/O language [8], which

has been used to demonstrate performance improvements of

burst buffer systems for some user interpreted workloads [9].

Characterizing I/O activity uses a technique similar to that

of tracing, however compact high level statistics are produced

rather than comprehensive trace logs. Darshan [10] has been

used to produce characterization data of this form, and is

effective due to its lightweight instrumentation and suitability

for continuous machine wide deployment. Vitally, the data

produced is still rich enough to study I/O behavior at the

demands of petascale machines [11].

A common technique among I/O benchmarks, such as

FLASH-IO, MADBench2 [12], Chombo I/O and S3D-IO, is

to manually extract important kernels from an application.

FLASH-IO focuses on write performance of the Flash su-

pernova code, while MADBench2 attempts to gain a more

complete picture through the inclusion of both read and write

operations for the same simulation. This approach attempts

to bridge the gap between a stand-alone benchmark and the

applications it attempts to model. While highly effective at

providing insight for a single application, there is a lack of

flexibility for handling a wider range of I/O paradigms.

IOR [13] is a synthetic parametrized benchmark derived

from workload analysis of applications used at the US National

Energy Research Scientific Computing Center (NERSC). This

work attempts to cover two of the common shortfalls of I/O

benchmarks: a lack of representative access patterns and the

inconsistent use of parallel libraries. With diverse configu-

ration options, the authors claim to be able to reconstruct

the behavior of an application to within 10%. Whilst this

behavioral prediction is only achievable with a very specific

selection of parameters, with careful use, IOR can be an

effective benchmarking tool. We adopt a similar parametrized

approach, attempting to focus on the performance of high level

libraries.

A different approach taken to application benchmarking,

demonstrated by the Skel [14], [15] and APPrime [16] tools,

automatically generates I/O kernels based on application

traces. Skel uses two mark-up based configuration files, a

parameter file and descriptor file, to dictate the structure and

behavior of its kernels. The simplicity of the Skel approach

comes from leveraging the existing parametrization of the

ADIOS high level library. The transport method used by

ADIOS can be varied in a configuration file, requiring no

source recompilation, and hence is valuable for comparing

the performance of different I/O paradigms. Currently the

focus of Skel is the deployment of ADIOS for experimentation

purposes and extension to use alternative high level libraries

is not possible. Similarly, APPrime auto-generates benchmark

code to represent applications, but does so based on statistical

‘trace’ data taken from execution of the original target appli-

cation. Initial evaluation of this technique suggests recreation

of applications with a degree of accuracy; however, the ability

to configure these applications forin depth analysis has yet to

be demonstrated.

III. BACKGROUND

The work makes use of MACSio and TyphonIO. MACSio

was developed by Lawrence Livermore National Laboratory.

TyphonIO is an I/O library developed by AWE.

A. MACSio Proxy Application

MACSio [17] was developed to fill a long existing void in

co-design proxy applications that allow for I/O performance

testing as well as evaluation of tradeoffs in data model

interfaces and parallel I/O paradigms for multi-physics, HPC

applications. Two key design features of MACSio set it apart

from existing I/O proxy applications and benchmarking tools.

The first is the level of abstraction at which MACSio is

designed to operate and the second is the degree of flexibility

MACSio is designed to provide in driving an HPC I/O work-

load through parameterized, user-defined data objects and a va-

riety of parallel I/O paradigms and I/O interfaces. Combined,

these features allow MACSio to closely mimic I/O workloads

for a wide variety of real HPC applications, in particular,

multi-physics applications where data object distribution and

composition vary dramatically both within and across parallel

tasks. These data objects are then marshaled between primary

and secondary storage according to a variety of application

use cases (e.g. restart dump or trickle dump). Using one

or more I/O interfaces (plugins) and parallel I/O paradigms,

allows for direct comparisons of software interfaces, parallel

I/O paradigms, and file system technologies with the same set

of customizable data objects.

B. TyphonIO Parallel I/O Library

TyphonIO is a library of routines that perform I/O for scientific

data in applications. The library provides C/C++ and Fortran90

APIs to write and read TyphonIO-format files for restart or

visualization purposes and are completely portable across HPC

platforms. The library, which is based on HDF5 [18] provides

the portable data infrastructure. The way TyphonIO has been

designed means that it would be possible to replace HDF5



with an alternative library implementation without having to

make any code changes to applications using TyphonIO.

The TyphonIO file format is a hierarchical structure of dif-

ferent objects, with each object corresponding to a simulation

or model feature, like those found in scientific or engineering

applications. Each object is designed to hold the data and

associated metadata for each feature and some of these objects

are chunked. Due to the way TyphonIO is designed, it is

straightforward to add more objects in future and expand the

format to cover more models.

IV. WORKFLOW COMPONENTS

In general there are four steps to the replication process: data

collection on representative runs of an application to serve as

an input to the generation tools; processing and translation of

I/O characterization logs to a set of parameters; development

of a plugin for MACSio to replicate the I/O pattern of the

target application with a parallel I/O library; adaptation of the

MACSio replication to investigate I/O behavior by exploration

of library tuning and variation of I/O paradigms.

A. Profiling

As discussed in Section 2, there are three methods of obtaining

representations of application I/O activity. For the purpose of

this work, we choose to adopt the workload characterization

approach using Darshan. We believe the lightweight data

collection performed by Darshan is best suited for recording

I/O activity without introducing the overheads seen with the

more comprehensive tracing techniques. A simple evaluation

of the total runtime for an example application with Darshan

enabled shows that there is no observable overhead introduced.

At single node scale, the average instrumented runtime is

307.43 seconds compared to 309.25 seconds uninstrumented,

demonstrating profiling overhead is effectively indistinguish-

able from the impact of machine load. To verify this is the

case at scale, we increase the node count to 64, observing an

average runtime of 352.29 seconds (instrumented) compared

to 352.33 seconds (uninstrumented).

Another benefit of this technique is the characterization

of commercially sensitive applications, allowing transfer to a

non-sensitive environment through recording individual func-

tion call parameters. This portability of application logs under

sensitive conditions is seen as a necessary requirement for our

future working goals.

A point of note is the level of the I/O software stack that

Darshan monitors. At this time, it is possible to intercept

POSIX and MPI-IO library calls, providing execution statistics

from the middleware and serial I/O layers of the stack. As

of version 3.0.0 the design of Darshan has become modular

allowing for characterization data to be collected for additional

interfaces, making it possible to produce information at the

HDF5 level. Currently, this capability is not yet complete, but

its future inclusion is predicted to extend the scope of our

workflow’s abilities without warranty or representation.

B. Parameter Generation

Extraction of execution data from the compressed Darshan

logs is handled firstly by the darshan-parser utility, and then

through a series of Python utility scripts. As an intermediate

step, the text generated by the parser is translated to a YAML

file, from which an I/O access diagram can be generated to

demonstrate the pattern of activity for the target application.

Following the creation of the log characterization YAML

file, we can map the recorded application data to a set of usable

input parameters for MACSio. To complete this mapping, a

supervised generation tool is used to incorporate the collected

I/O behavior statistics with any available user input. This

provides a more accurate set of parameters than would be

possible through a purely automatic translation process.

C. MACSio Library Plugin

An important requirement for any application we wish to

replicate is the ability to demonstrate comparable behavior

using the same elements of the I/O software stack. Develop-

ing plugins for the same high level libraries used in target

applications makes the process of verifying the replication

process possible, in addition to forming the basis of tuning

and optimization that can be applied to the original appli-

cation implementation. Furthermore, the development of a

range of plugins capable of replicating similar underlying

I/O patterns is what gives MACSio flexibility to investigate

different paradigms and implementation features.

To demonstrate a unique process of workload replication,

we have implemented a plugin for MACSio that operates with

the TyphonIO library interface, introduced in Section III-B.

This implementation ensures that the parallel performance

elements of TyphonIO are included in the MACSio replication,

specifically the chunking and parallel shared file capability

of the library. Additionally, the plugin has been constructed

to demonstrate a multiple independent file approach, an al-

ternative approach to that generally observed in TyphonIO

applications.

V. WORKLOAD REPLICATION

To illustrate our workflow acting as a proxy for the I/O pattern

of real applications, we have completed the process of char-

acterization and replication for the Bookleaf mini application,
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Fig. 1. File access Pattern
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which supports the TyphonIO library [19]. Bookleaf is a 2D

unstructured Lagrangian hydrodynamics application, making

use of a fixed check-pointing scheme that produces initial and

final output files covering the complete dataset.

Bookleaf solves four physics problems: Sod, Sedov, Saltz-

mann and Noh. The different inputs vary the computational

aspect, but execution will remain the same with regards to I/O

characteristics. For the purposes of our work, we use the Noh

problem [20] input deck, in part due to its larger problem size

providing a greater volume of data to handle.

For this study, the ARCHER supercomputing platform was

used. ARCHER is a 4920 node Cray XC30 comprising two

12-core Ivy Bridge processors per node, giving a total of

118,080 processing cores. The system is backed by three

Lustre filesystems, access to which is load balanced meaning

users will be given access to one of the three filesystems based

on project allocation. The file system used for our experimen-

tation contains 12 OSSs, each with 4 OSTs. Each OST is

spread across 10 4TB Seagate disks in RAID6 configuration,

ensuring failure tolerance. One MDS is used per filesystem

with a single MDT comprised of 14 600GB Seagate disks

in RAID1+0. Finally, the filesystem is accessed via 10 LNet

Router nodes in overlapping primary and secondary paths.

The general I/O pattern of Bookleaf outputs two distinct

checkpoint files, at the beginning and end of the computation

sequence, representing 125 MB datasets for the Noh large

problem size. Each dataset is structured as an object hierarchy

with the unstructured mesh object and nine associated mesh

variables contained within a state object container. Notably,

Nodes Part Size (Bytes) Wait Time (s)

1 404 320 266

2 202 205 120

4 101 148 53

8 50 619 22

16 25 355 11

32 12 723 7

64 6407 5

TABLE I
MACSIO INPUT PARAMETERS USED TO REPLICATE BOOKLEAF RUNS ON

ARCHER

TyphonIO operations in Bookleaf are issued from all processes

and write to a single shared file independently, meaning there

is no collective buffering or data aggregation enabled.

Due to the fixed problem size, scaling the application

changes the distribution of the dataset across the available

processors and hence reduces the size of the data chunk on

each rank. As a result, the parameters controlling the dataset

chunk size per rank and the length of the time between

checkpointing vary in relation to the scale of execution.

From the characterization of Bookleaf, the parameters

shown in Table I were extracted using our processing and

generation tool. By modeling the relationship between the

size of a data file and the composition of the dataset when

using MACSio, it is possible to construct Equation 1. In

this equation, F is the filesize, Pr is processor count, PS

is the part size, V ars is the number of dataset variables

and α,β, γ, δ,ψ and η are constants. The determination of

these constants is calculated automatically from MACSio file

generation trials. Taking this expression and substituting the

known checkpoint file size for Bookleaf and the processor

count as the application scales, we have generated the data

chunk sizes given in the second column of the parameter table.

F = Pr(PS(αV ars+ β) + γV ars+ δ) + ψV ars+ η (1)

The third column in Table I is the wait time, which rep-

resents the measured time buffer between I/O actions during

execution. Determining this value is straightforward using the

operation timestamps recorded by Darshan for the beginning

and end of I/O operations on each file. The final configura-

tion option required to mimic Bookleaf accurately requires

disabling the collective buffering behavior handled by HDF5.

The absence of recorded collective reads and writes in the

Bookleaf log files is used to indicate that a purely independent

I/O strategy has been adopted and thus, this is something that

our replication should adopt to verify correctness.

The execution diagram in Figure 1 demonstrates the periods

when file writing actions are recorded for both Bookleaf

and MACSio. Comparing the access patterns for the two

applications shows that checkpointing operations are offset and

identifies a latency period at the beginning of the Bookleaf ex-

ecution for simulation setup. The setup overhead for MACSio
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is smaller and the addition time is not currently factored in

to MACSio’s time buffers. This initial latency period is not

something that will change the overall I/O behavior and we

did not feel it would be necessary to make changes to MACSio

to reflect it. Accounting for the additional 50 second latency

period at the beginning of the MACSio execution pattern, the

remaining access patterns align between the two applications,

indicating that they have similar execution patterns.

Analyzing write times for each file, there is a clear linear

increase as the number of nodes scales. Importantly, the write

times for Bookleaf and MACSio are similar for both of the

output files produced. Figure 2 shows the similarity between

the write times for the two applications, suggesting that

each file write action performed has a similar I/O footprint.

Furthermore, the cumulative write time across all ranks shown

in Figure 2, and similarities between slowest MPI-IO write

operation in Figure 3, adds confidence to the two applications

demonstrating similar behavior during their I/O phases.

We can increase our confidence in the behavioural simi-

larity by considering further parameters taken from Darshan

log files. Firstly, comparing the number of independent I/O

operations intercepted at the MPI-IO layer, the counters vary

consistently by a value of 8 for all node counts representing

a difference of 1.5% for the smallest run of a single node.

Similarly, the number of sequencial writes differs by a value

of 7 for the smallest run and then maintains a consistent

difference of a single operation for all other node counts.

Knowing that the sizes of files being generated are consis-

tent in our MACSio replication and coupling the uniformness

in execution times we can verify that the applications exhibit

the same pattern of behavior. We can now demonstrate the

flexibility of the proxy application replication by adjusting the

way in which the TyphonIO and HDF5 libraries are performing

their I/O operations. From characterization of Bookleaf, we

identified that the collective I/O mode is not used, and hence

there is no aggregation of data before performing writes.

Figure 3 shows how the write times change when our MACSio

plugin is reconfigured to use collective I/O operations for

the Bookleaf workload instead of the default independent

approach. The performance of the workload can be seen to

be consistently better when using the collective strategy over

independent, which is due to a reduction in the amount of

data requests made through aggregation on a subset of the

processors performing the simulation. Performing this change

requires a simple configuration change to the MACSio input

parameters, something that would require code changes and

recompilation in the original application. With a simple library

tweak, we have identified a possible performance improvement

when running Bookleaf with the file system configuration

deployed on ARCHER. It may however be the case that a

different file system configuration does not offer the same

speedup, making our proxy useful for justifying a collective

I/O strategy without needing to port the original application.

VI. CONCLUSION AND FUTURE WORK

We have presented a workflow demonstration to replicate the

I/O activity of HPC applications using characterization and a

configurable proxy application. Using an open source mini-

application, we have conducted preliminary tests to show that

our approach can identify and mimic the pattern of execution

with a reasonable degree of accuracy.

We have suggested a number of advantages to using auto-

characterization as a way of representing I/O workflows. First,

capturing execution statistics with a lightweight method is a

worthwhile trade-off between manual descriptors and in depth

tracing. The application logs recorded can be mined to extract

pertinent data elements and form a representation of the I/O

behavior, which is bolstered by user knowledge of the target

application. Finally, a recreation can be achieved using the

generated parameter set to exercise one of a number of library

plugins, such as the TyphonIO plugin we have produced to

enable optimization work to be carried out using MACSio.

As part of our future work, we plan to adapt the replication

capability used here to handle more complex output file

combinations and validate this across a breadth of applications.

For example, it is often the case that checkpoint dump files are

accompanied by visualization data files, usually containing a

subset of the simulation data and following a slightly different

I/O strategy. Factoring in differently structured data files into

our I/O workload would add an extra degree of complexity

to the log extraction and representation process, but would

increase the variety of potential workload replications.

Benchmarking is often used to give a projection of the

performance achievable from new platforms and tools, some-

thing that can be invaluable when procuring new systems or

experimenting with different software components. With this

in mind, we hope to apply our workload replication to a real

world procurement exercise to understand how new systems

will perform under actual application workloads.
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