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Abstract. Energy consumption is rapidly becoming a limiting factor
in scientific computing. As a result, hardware manufacturers increas-
ingly prioritise energy efficiency in their processor designs. Performance
engineers are also beginning to explore software optimisation and hard-
ware/software co-design as a means to reduce energy consumption. En-
ergy efficiency metrics developed by the hardware community are often
re-purposed to guide these software optimisation efforts.
In this paper we argue that established metrics, and in particular those in
the Energy Delay Product (Et

n) family, are unsuitable for energy-aware
software optimisation. A good metric should provide meaningful values
for a single experiment, allow fair comparison between experiments, and
drive optimisation in a sensible direction. We show that Et

n metrics are
unable to fulfil these basic requirements and present suitable alterna-
tives for guiding energy-aware software optimisation. We finish with a
practical demonstration of the utility of our proposed metrics.

1 Introduction

Advances in processor design have delivered improvements in CPU performance
for decades. As physical limits are reached, however, refinements to the same
basic technologies are beginning to show diminishing returns [6]. One side-effect
of this is an unsustainable rise in system power consumption, which has been
identified as a primary constraint for exascale systems [20].

Moore’s law, which states that transistor density doubles every 18-24 months,
led to exponential increases in processor performance during a period often re-
ferred to as the “free lunch” [23]. More recently, the breakdown of Dennard
scaling has meant that performance improvements are increasingly reliant on
microarchitectural changes rather than increases in processor clock speed.

Hardware manufacturers are increasingly prioritising energy efficiency in their
processor designs [15]. Research suggests that software modifications will be re-
quired to fully exploit the resulting improvements in modern architectures [21].
This has spurred interest in the possibility of optimising software for increased
energy efficiency.

A fundamental aspect of performance engineering is performance assessment.
To comment on the performance of a high performance computing system or a
particular software package, we must first define an assessment metric. Metrics
provide a means to evaluate a code or system based on some property of in-
terest, allowing developers to perform high-level comparisons between different



implementations and approaches. Some metrics also serve as fitness functions,
combining various costs into a single figure of merit (FoM). Such metrics can be
used to guide optimisation attempts and the search for better solutions [12].

New metrics which incorporate both energy and runtime costs will be re-
quired if developers are to identify and capitalise on new classes of energy-aware
optimisations. Many early efforts have borrowed metrics developed by the hard-
ware community, which has a long history of energy efficiency research. In par-
ticular, the Energy Delay Product (Etn) family of metrics are frequently used
for software optimisation.

In this paper we argue that Etn and related metrics are not suitable for soft-
ware optimisation. We discuss their shortcomings and provide examples of their
failures in this domain. We then propose alternative metrics which address these
shortcomings and compare their performance with Etn. Finally, we demonstrate
our metrics with an investigation of the energy efficiency of scientific codes.

Specifically, this paper makes the following contributions:

– We present a set of criteria that we believe are necessary for effective software
optimisation metrics. Additionally, we introduce fitness landscape diagrams
to visualise the behaviour of these metrics;

– We evaluate the Etn family of metrics against our criteria. Our analysis
highlights weaknesses in metrics commonly used in the energy efficiency
optimisation literature;

– We propose two new metrics to measure software energy efficiency. We eval-
uate our proposals against the same criteria and describe how they improve
on established metrics;

– Finally, we validate our proposed metrics with a study into the efficiency of
codes from the Mantevo application suite.

The remainder of this paper is structured as follows: Section 2 presents a survey
of related work; Section 3 lays the foundations for this work, providing formal
definitions and criteria which we use to compare and assess different metrics;
Section 4 uses these criteria to assess the suitability of Etn metrics for software
optimisation; Section 5 introduces our proposed metrics and evaluates them
against the same criteria; Section 6 demonstrates the metrics discussed in previ-
ous sections by studying the energy efficiency of various applications; and finally
Section 7 concludes this paper and describes upcoming research.

2 Related Work

Although energy consumption is becoming a constraint for scientific computing,
minimising runtime is still an important optimisation objective. Optimising soft-
ware according to multiple properties simultaneously is known asMulti-Objective

Optimisation (MOO). MOO requires a balance to be struck between the poten-
tially conflicting requirements imposed by different objectives.



The simplest approach to dealing with multiple optimisation criteria is to han-
dle each one in isolation. A solution is said to be Pareto-Efficient if it is not
dominated by any other solution across all objectives. Pareto-Efficiency yields a
partial ordering, with a set of maximal elements but no ordering between them.
The set of maximal elements delineates the Pareto Front, as shown in Fig. 1.
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Fig. 1: Pareto-Efficiency

Pareto-Efficiency is useful when the relative importance of different requirements
is unknown and the final choice of optimal solution can be deferred to the end
user. For this reason it is often used by library developers who want their code
to run efficiently in many different execution environments.

Balaprakash et al. use this approach to investigate the trade-offs between
runtime and energy consumption for common kernels in scientific computing [2].
A similar technique has also been used to determine optimal checkpoint intervals
for energy efficient fault tolerance [1].

A second MOO approach combines multiple objectives into a single scalar
fitness function. This function then serves as a FoM metric for the overall utility
of different solutions. Scalar fitness functions are in some sense fundamental to
MOO; they can be used in isolation, but are also required by users choosing
between solutions from a Pareto-efficient set.

Energy Delay Product was first proposed by Gonzalez et al. to measure the
energy and runtime efficiency of microprocessors [9]. Martin et al. generalised
this concept into the Etn family of FoM metrics, with parameters E and t corre-
sponding to energy and time [17]. They argue that Et2 provides the best balance
between the two optimisation objectives for microprocessor design. Srinivasan et
al. reached the same conclusion, although for slightly different reasons [22].

Many authors have adopted these metrics originating from the hardware
community and applied them to software optimisation problems. Vincent et al.
describe a technique which minimises Et1 using CPU throttling [8]. Bingham
and Greenstreet use Etn metrics to analyse runtime constraints imposed by a
fixed energy budget for various algorithms [4]. Laros et al. use Etn metrics to
assess a number of production applications and state that Et3 strikes the right



balance between runtime and energy for high performance computing [16]. Et1

has also been used extensively to quantify the efficiency of resource provisioning
in a cloud computing environment [19,24].

Bekas and Curioni further generalised Etn metrics to the form E · f(t), a
product between energy and an application dependent function of time [3].

Another metric related to energy efficiency is FLOPS Per Watt, which relates
the number of Floating Point Operations Per Second (FLOPS) and the rate of
power consumption. Despite its name, this metric is quoted in units of Operations
per Joule (1 Joule is defined as 1 Watt-Second). FLOPS/Watt measures how
effective an application is at converting energy into floating point results.

Unlike Etn, FLOPS/Watt does not measure application cost and hence can-
not be used as a fitness function. This is analogous to metrics like branch mis-
prediction rate, which may inform optimisation attempts but are not measures
of utility. Branch misprediction can be eliminated by disabling speculative exe-
cution, but this does not result in better performance. Similarly, optimising for
FLOPS/Watt may increase both runtime and energy consumption.

Heuristic models offer another source of optimisation guidance. Choi et al.
proposed the Energy Roofline model to identify the algorithmic conditions needed
for trade-offs between runtime and energy [5]. Similarly, in previous work we de-
veloped the Power Optimised Software Envelope model to assess the scope a
code has for power optimisations on any given platform [18].

Some of our objections to existing metrics have been raised before, most
notably by Hsu et al. [14]. They point out that Etn and related metrics are
unfairly biased towards massive parallelism and argue that there is a need for
the development of new metrics.

We believe our work is timely and interesting because it offers a rigorous
assessment of energy-aware software optimisation metrics. We show the flaws
in current approaches and propose novel metrics which can be used as fitness
functions to guide energy-aware software optimisation. We believe this work will
be useful to practitioners in this nascent area of performance engineering.

3 Foundations

In this section we provide formal definitions which underpin later discussions
and outline the desirable properties an optimisation metric should exhibit. We
begin by formalising the notion of a code as a repeatable sequence of instructions
which, when executed by a processor, incurs energy and runtime costs.

Definition 1. All processors consume non-zero amounts of time and energy to

run programs. The cost of a code θ is the pair (Eθ, tθ) 2 R+ ⇥R+ corresponding

to the energy and runtime costs incurred by running it on a given platform.

Definition 2. Codes can be composed by concatenating their instruction se-

quences. The composition of codes θ and λ yields the following cost:

θ � λ = (Eθ + Eλ, tθ + tλ)



The goal of energy-aware software optimisation is to minimise the runtime and
energy costs of a given application. Energy-aware optimisation metrics are func-
tions of energy and time which capture the utility of a code.

Definition 3. An energy-aware optimisation metric is an element-wise mono-

tonic function M which combines energy and runtime costs into a scalar FoM:

M : (E, t) 2 R+ ⇥ R+ ! R+

Element-wise monotonicity means that for all fixed E0, t0 2 R+, the functions

M(E0, t) and M(E, t0) are monotonic. In other words, increasing one cost with-

out a corresponding reduction in the other leads to a worse FoM.

Software optimisation can be modelled as a hill-climbing problem. Starting from
an initial code θ, performance engineers make incremental changes and measure
their impact using a FoM metric. Changes which improve performance against
this metric are kept while those which reduce it are discarded. Whether a given
code change represents an optimisation depends on the metric chosen.

Definition 4. For logically equivalent codes θ and λ, the transformation θ ! λ

is an optimisation with respect to metric M iff M(λ) strictly dominates M(θ).

By Definition 3, all valid metrics identify code changes which reduce both energy
and time costs as optimisations. Similarly, all code changes leading to strictly
worse performance will be disregarded. Energy-aware optimisation metrics only
differ in cases where energy-time trade-offs are possible.

Fig. 2 shows how two valid metrics can disagree on whether the same code
change θ ! λ is an optimisation. Lighter green areas correspond to optimisa-
tions and darker red areas to performance degradations. They are separated
by a dashed Isometric line that connects all points with FoM values equal to
M(θ). Both metrics agree on code changes in the solid shaded regions where
costs change in tandem. Energy-time trade-offs are represented by cross-hatched
quadrants. The MOO metric in Fig. 2a identifies θ ! λ as a valid energy-time
trade-off, whereas Fig. 2b shows it is not an energy optimisation.

Energy-aware optimisation metrics ascribe a FoM to all (E, t) cost pairs.
Returning to the hill-climbing analogy, we say that an optimisation metric defines
a fitness landscape over the energy/time plane. Fig. 3 shows how plots similar
to Fig. 2 can be used to visualise the fitness landscape of a metric.

The isometric lines in Fig. 3 connect all points where the FoM is some multiple
of a fixed value. Mathematically these lines represent level sets of ourM function;
intuitively they are contours in our fitness landscape. The closeness of these lines
corresponds to the gradient of the fitness landscape.

Isotopic lines run perpendicular to isometric lines, and correspond to the
path of fastest decent (steepest gradient) within the fitness landscape. Mathe-
matically, these lines are orthogonal trajectories of a metric function M . Con-
ceptually, they show the direction in which a metric drives optimisation.

Having formally defined what an energy-aware optimisation metric is and
how it can be visualised, we now turn our attention to how it should behave.
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Fig. 2: Metric Optimisation Regions

The goal of an optimisation metric is to condense the utility of an application
into a single, meaningful FoM. We have identified the following properties which
an idealised optimisation metric should possess:

1. Bounded: A metric should bound regions of the optimisation space;
2. Directed: drive optimisation efforts in a sensible direction;
3. Additive: remain additive (linear) under code composition;
4. Stable: provide a stable definition of optimisation under code composition;
5. Tunable: be tunable to different application domains; and
6. Intuitive: correspond to a tangible and intuitive property of the system.

We explore these properties in more detail in the next section.

4 Et
n Evaluation

In the previous section we listed several desirable criteria for energy-aware op-
timisation metrics. We now use these criteria to evaluate the suitability of Etn

metrics for guiding software optimisation.

4.1 Analysis of Et
n

Bounded: Our first criteria states that energy-aware optimisation metrics should
bound regions of the optimisation space. By this we mean that a metric should
place upper limits on how much energy or runtime can be consumed under a
given FoM. This requirement is met if the isometric lines described by a metric
intercept both the energy and runtime axes.

Fig. 3 shows that Etn isometric lines do not intercept either axis. In theory,
codes can be modified to consume an arbitrarily large amount of either time or
energy while still improving their overall performance. We consider this to be a
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Fig. 3: Etn Metric Fitness Landscapes

flaw and assert that such changes should not count as optimisations. Another
benefit of bounded metrics is that they limit the space in which to search for
optimisations; something which Etn cannot do.

Directed: Our second criteria requires metrics to guide optimisation in sensible
directions. Intuitively, we wish to speed up slow codes and reduce the power
consumption of energy intensive ones. On the contrary, Etn disproportionately
rewards speeding up fast codes and saving energy in frugal ones. As energy
consumption increases, Etn gives higher priority to runtime optimisation and
vice versa. This fault was encountered by Hsu et al. when they noted that Etn

metrics are unfairly biased towards massive parallelism in HPC systems [14].
Our first two criteria are linked. It is necessary (but not sufficient) for a

metric to be bounded in order for it to guide optimisation in a sensible direction.
The isometric lines of an unbounded metric never touch either axis, meaning the
corresponding isotopic lines must intersect the axes at right angles. As the energy
or time cost of a code approaches zero, the path of fastest decent therefore tends
exclusively towards further reductions in this already close-to-zero cost.

Additive: Our third criteria states that FoM metrics should be additive under
code composition. Performance engineers focus their attention on expensive pro-
cedures within a code. This involves profiling the code to identify areas causing
poor performance, based on the assumption that the cost of a code is the sum of
the costs of its constituent parts. While true for simple metrics like energy and
time, this is not generally the case for compound metrics.

Definition 5. A metric is additive iff for code segments θ and λ:

M(θ � λ) = M(θ) +M(λ)



Metric functions must be linear in terms of both time and energy in order to fulfil
this requirement. This is not the case for Etn, where the cost of a code tends to
be much greater than the costs of its constituent parts. Profilers cannot be relied
upon to identify targets for Etn optimisation. Furthermore, this additional non-
local cost depends on total application runtime and energy consumption. An Etn

FoM is therefore meaningless outside the context of a single fixed application.

Stable: Our fourth criteria requires metrics to provide a stable definition for
optimisation. If the same code change alters the cost of two applications by the
same amount, and it is an optimisation with respect to metric M for one of the
codes, then it should count as an optimisation for both of them.

Definition 6. A metric is stable iff for equivalent code segments λ and λ0:

M(λ0) < M(λ) =) M(θ � λ0) < M(θ � λ)

It is worth noting that linear metrics automatically fulfil this requirement. Linear
metrics are inherently stable, however stable non-linear metrics also exist.

Etn is an unstable metric as it does not provide a consistent definition of
optimisation. Whether or not a code change counts as an optimisation under
Etn is context sensitive. Code changes can be counted as optimisations only
when evaluated in the context of the full application. Targeted optimisation
of particular subroutines is impossible, and all past optimisations must be re-
evaluated every time a change is made to the application.

This failure of Etn is best illustrated with an example. Suppose an application
contains a procedure which consumes 10 J over 10 s to produce some result. This
corresponds to an Et1 FoM of 10 ⇥ 10 = 100. We then modify our procedure
to produce the same result in 11 J and 9 s. This is a valid optimisation because
although it increases energy consumption it reduces Etn to 11⇥ 9 = 99.

Once the procedure completes we are given the option to output results at
a cost of (5 J, 10 s). Our un-optimised application could execute its tasks and
output the results with an EDP of (10 + 5) ⇥ (10 + 10) = 300. The same
sequence of actions in the ‘optimised’ application results in a higher (worse)
EDP of (11 + 5) ⇥ (9 + 10) = 304. Under Etn, choosing to save the results of
our procedure retroactively invalidates our optimisation.

Fig. 4a shows how the same cost change applied to two codes with the same
starting Etn FoM may be considered either an optimisation or a performance
degradation. Furthermore, Fig. 4b shows how any energy-time trade-off can be
made to appear as an optimisation or a performance degradation depending on
the context. Different ratios of Eθ and tθ can shift the optimisation/degradation
boundary to any point within the indeterminate quadrants.

Mini-applications are powerful tools in scientific computing [13]. They pack-
age relevant features of large production applications into smaller, more man-
ageable codes. Performance engineers use them as test beds to search for op-
timisations which can be ported back to the original application. Sometimes
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Fig. 4: Etn Optimisation Instability

optimisations which work at small scale will fail to improve the production ap-
plication, signalling a discrepancy between the mini and production applications.
Using Etn metrics, however, optimisations to the mini-app may not count as op-
timisations to the production code even when they yield identical cost changes in
both cases. This is further proof that Etn metrics are incompatible with modern
performance engineering techniques.

Tunable: Our penultimate criteria is that it should be possible to tune a metric
to reflect the energy and time constraints of different domains. The Etn metric
meets this criteria via its n parameter. This parameter sets the ‘exchange rate’ at
which small changes in runtime and energy can be traded against each other. This
can be shown by equating the partial derivatives of Etn as shown in Equation 1:

∂

∂E
(Etn) = tn and

∂

∂t
(Etn) = nEtn�1

tn · ∂E = nEtn�1
· ∂t

∂E

E
= n

∂t

t
(1)

Intuitive: Our final and most subjective criteria is that a metric should be
intuitive. In practice, this means it should correspond to some tangible property
of a system, ideally with values measured in meaningful units. Etn does not meet
this requirement.

The costs of an extra Joule or second are not fixed under Etn; in fact, the
cost of increasing each factor depends on the current magnitude of the other.
This implies that a Joule consumed by a long running process somehow costs
more than a Joule consumed by a short-lived one. Furthermore, real systems
impose maximum and minimum rates of power consumption on a code which



we refer to as Pmax and Pmin. Given that Pmin · t < E < Pmax · t, the growth
rate of Etn is Θ(tn+1). The FoM cost of an additional second or Joule grows
polynomially, hindering comparison between different scales.

4.2 Justification of Et
n

The continued use of Etn metrics despite their flaws is a testament to the need
for standardised energy-aware optimisation metrics. In the absence of better
alternatives, software engineers rely on Etn because of its popularity and relative
ease of use. Etn metrics remain the de-facto standard technique for combining
energy and runtime costs into a single FoM.

One factor which hides the problems with Etn metrics is the small range of
power consumption exhibited by modern hardware running HPC workloads as a
result of high base power consumption and marginal differences under load [10].
Fig. 5a shows isometric lines for Et1 and our proposed metrics. It shows how
a small [Pmin, Pmax] range confines (Eθ, tθ) costs to a narrow envelope within
the energy/time plane. This envelope limits the scope for divergence between
different metrics. In the extreme case, when Pmin = Pmax, Eθ is a scalar multiple
of tθ and all energy-aware metrics become functions of time.

The scarcity of power-instrumented hardware means energy-aware optimi-
sation is typically carried out at the level of individual nodes. Although single
nodes exhibit narrow [Pmin, Pmax] ranges, multi-node and system-level power
draw is much less constrained. Fig. 5b shows two performance envelopes, with
the larger having Pmin and Pmax values three times those of the smaller one.
This models the effect of running the same code on a single node and over three
nodes in parallel. Similar discrepancies would occur when running code on al-
ternative architectures with significantly differing power characteristics, such as
GPUs and FPGAs, that are emerging as candidate platforms for improved ef-
ficiency [7]. Even at this small scale the discrepancies between Etn and other
metrics become readily apparent.

5 Proposed Metrics

In this section we propose two new FoM metrics for energy-aware software opti-
misation. These metrics have slightly different properties and the choice of which
to use is left to the performance engineer. That said, they both significantly out-
perform Etn metrics according to our assessment criteria.

Our first metric is a weighted sum of energy and runtime costs. Our second
metric measures the cost of an application in terms of Euclidean distance from
an ‘optimal’ point at the energy/time origin. The fitness landscapes for both
metrics are shown in Fig. 6a and Fig. 6b respectively.

5.1 Proposed Metric 1: Energy Delay Summation (EDS)

Energy and compute time are limited resources which have costs associated with
their consumption. The primary cost of energy consumption is the purchase price
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of electricity. Environmental impact and other concerns can also be included.
Runtime also has a monetary cost – the purchase costs of the machine amortised
over its limited lifespan. Energy and runtime costs are captured by the α and β

parameters in Equation 2.

M(θ) = αEθ + βtθ

= (α,β) · (Eθ, tθ)
(2)

Bounded: Our first criteria requires metrics to bound regions of the energy/time
space. The isometric lines in Fig. 6a intercept both axes, satisfying this criteria.
An EDS FoM therefore places upper limits on energy and runtime costs. The
runtime contribution to a metric is maximised when energy is minimised and
vice versa, allowing us to deduce cost limits under a given FoM:

M(θ) = α · Emax + β · 0

∴ Emax =
M(θ)

α

M(θ) = α · 0 + β · tmax

∴ tmax =
M(θ)

β

Performance engineers need not evaluate code changes with energy costs greater
than Emax, or runtime costs greater than tmax. This is in stark contrast to
the Etn case, where any given energy or runtime cost could be considered an
optimisation under the right circumstances.

Directed: Our second criteria requires metrics to guide optimisation in sen-
sible directions. Fast, energy intensive codes are likely to require different op-
timisations to slow, energy efficient ones. As a linear function, EDS does not
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differentiate between these cases; the isotopic lines in Fig. 6a all run in parallel.
Our metric still outperforms Etn in this regard however as it does not introduce
perverse optimisation incentives.

Additive and Stable: Our third and fourth criteria require metrics to be
linear functions of time and energy and to provide stable definitions of optimi-
sation. The function αE + βt is linear in both parameters. Linear functions are
automatically stable; meaning this metric fulfils both criteria, providing stable
definitions for optimisation and allowing for meaningful code profiling.

Tunable: Our penultimate criteria is that metrics be tunable to different ap-
plication domains. Different energy and runtime costs can be specified via the α
and β parameters. Unlike the exponential formulation of Etn, it is immediately
apparent how different values will alter the balance between energy and runtime.

A single scalar parameter would be enough to express any ratio of energy and
time components. One property of this metric is that with appropriate tuning
factors it can be used as a proxy for the monetary cost of running a code. This
use-case is why we include two tuning parameters within this metric, to allow
us to provide notional value results.

Intuitive: Our final criteria requires metrics to correspond to some meaningful
property of the system. Given appropriate coefficients this metric can report
results in terms of monetary cost. Monetary cost has meaningful units, allows
for fair comparisons to be made between different platforms and architectures,
and is useful during procurement.
Equation 2 provides a dot product formulation of the EDS metric which suggests
a second geometric interpretation. Dot products correspond to the projection of
one vector onto another – in this case of (Eλ, tλ) onto (α,β).



5.2 Proposed Metric 2: Energy Delay Distance (EDD)

Our first metric measured code performance in terms of separable energy and
time costs. This definition fulfilled all but one of our criteria; as a linear function
it was not able to direct the optimisation of codes according to their starting
costs. Our second metric remedies this by defining the cost of a code as its
distance from the most optimal point on our fitness landscape – the origin.

M(θ) =

q

Eθ
2 + (βtθ)

2

EDD can also be expressed as the magnitude of a weighted cost vector:

M(θ) = k(Eθ, β · tθ)k

Bounded: The isometric lines in Fig. 6b follow semi-circular trajectories which
intercept the axes. This satisfies our first criteria, meaning this metric also limits
Emax and tmax for a given FoM. We can derive these limits as follows:

M(θ) =

q

Emax
2 + β · 0

∴ Emax = M(θ)

M(θ) =

q

0 + β · tmax
2

∴ tmax =
M(θ)

β

Directed: The isometric lines for this metric form concentric ellipse segments
centred about the origin. As a result, the corresponding isotopic lines converge
on the origin. Fig. 6b makes it clear that as a result this metric prioritises
optimisations which minimise whichever cost is greater.

Additive: The formula for EDD is non-linear, meaning the overall FoM of a
code is not equivalent to the sum of its parts. This is an unavoidable consequence
of being a directed metric, and means that EDD is not well suited for accurate
code profiling. Unlike Etn, the discrepancy between the sum of component FoMs
and the overall code FoM for EDD is bounded. As EDD is defined in terms of
vector magnitude it obeys the triangle inequality. As energy and time costs are
always positive, we have:

p

M(θ)2 +M(λ)2 < M(θ � λ)  M(θ) +M(λ)

Stable: EDD does not meet our stability criteria. Fig. 7 shows a case where
M(λ0) < M(λ), yet M(θ � λ0) > M(θ � λ). The runtime axis is scaled so that
isometric lines remain concentric for all values of β. That said, EDD instability is
bounded byM(θ)+M(λ)�M(θ�λ) as this metric obeys the following inequality:

M(λ0) < M(λ) =) M(θ � λ0) < M(θ) +M(λ)
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Tunable: This metric is tunable via the β parameter. A single parameter is
sufficient to achieve any ratio of energy to runtime contribution.

Intuitive: This metric has a direct geometric interpretation as the Euclidean
distance to the origin. It does not treat energy and runtime as separate and
distinct costs; in reality they are inseparable. In general, reducing the runtime of
a code will also reduce its energy consumption. EDD defines the cost of a code
in terms of how far away it is from being perfectly optimal.

6 Case Study

In this section we investigate the energy-efficiency characteristics of codes in the
Mantevo [13] mini-application benchmark suite. Our results show that the issues
with Etn become more evident at larger scales.

We carried out our experiments on the Taurus system at TU Dresden, which
is equipped with High Density Energy Efficiency Monitoring (HDEEM) instru-
mentation [11]. Taurus is a heterogeneous cluster with several classes of node.
This work was carried out on the largest of these classes, with each node featuring
two 12-core Intel Xeon E5-2680 v3 CPUs and 64GB of memory.

All codes were compiled with ICC version 15.0.3. Application parameters
were based on default values, with problem sizes tuned where necessary to ensure
reasonable run times on single nodes. Results were averaged over 5 runs to
minimise the impact of random variations in runtime and energy.
We use Et3 in these experiments because Laros et al. found that this strikes the
right balance between runtime and energy for high performance computing [16].
This implies that a 1% reduction in runtime is approximately three times more
valuable than the same reduction in energy consumption.

In order to facilitate comparison we have based our EDS and EDD parameter-
isation on the same 3:1 ratio. Whereas the Etn parameter operates in a relative



fashion, however, EDS and EDD parameters are based on absolute costs of con-
sumption. The power drawn by active Taurus nodes ranges between 207.68W
and 345.33W [18], meaning the magnitude of energy costs will be around 300
times greater than that of runtime. In order to compensate for this effect we
scale the runtime cost by a factor of 300 before applying the 3:1 ratio, resulting
in the parameters α = 1 and β = 3⇥ 300 = 900.

In practice we would prefer to adopt a more fine-grained parameterisation
which reflects real-world costs incurred by HPC systems. That said, exact cost
figures are seldom made available in the public domain.

For our first test we measured the runtime and energy consumption of various
codes running on a single node. The results for this test are presented in Table 1.

Table 1: Single Node Code Costs

Code Runtime (s) Energy (J) Et3 EDS EDD

TeaLeaf 323.8 99,810.3 3,388,489,410,000 391,230 100,280
PathFinder 337.1 71,943.9 2,755,945,330,000 375,334 72,646
CloverLeaf 214.3 57,861.2 569,447,289,000 250,731 58,214
CloverLeaf3D 153.1 43,755.9 157,022,581,000 181,546 43,991
MiniMD 125.5 31,162.1 61,596,822,000 144,112 31,387
CoMD 105.6 24,837.8 29,248,540,000 119,878 25,037
MiniFE 36.7 8,465.6 418,461,937 41,496 8,536
HPCCG 36.5 8,059.5 391,910,164 40,910 8,133

The first thing to note is that Etn results rapidly become unwieldy even for
relatively short runtimes and low node counts. The runtime of HPCCG is around
11.4% that of TeaLeaf, and it also exhibits a slightly lower rate of power draw.
This translates to a four orders of magnitude difference in their Etn values.
Adding a single second to the runtime of TeaLeaf would further increase its
FoM by 8613 times the total Etn of HPCCG.

Another thing to note is that despite large variations in values, all metrics
assign the same efficiency ordering to these codes. As previously mentioned, the
limits of single-node power draw limit the scope for metrics to disagree.

For our second test we measured the runtime and energy consumption of
MiniMD running at scale. The results for this test are presented in Table 2.

These results show how biased Etn metrics are in favour of massive paral-
lelism. The efficiency of MiniMD according to Etn improves as the node count
increases to 18. It is only at the point when adding nodes delivers little or no
reduction in runtime that this trend reverses.

EDS identifies 4 nodes as the optimal node count. This configuration delivers
roughly twice the runtime performance of a single node at the cost of doubling
the energy consumption. Adding nodes beyond this point results in energy costs
increasing faster than runtime performance improves.

EDD identifies 1 node as the optimal node count. This corresponds to the
intuition that parallelism introduces overhead. As the parallel overhead grows,
so too does inefficiency as measured by this metric.

Et3 gives the impression that below-linear speed-ups coupled with above-
linear rises in energy consumption represent efficiency gains. Conversely, our



Table 2: MiniMD Multi-Node Costs

Nodes Runtime (s) Energy (J) Et3 EDS EDD

1 125.5 31,162.4 61,597,424,000 144,112 31,388
2 94.2 44,999.0 37,614,512,300 129,779 45,086
4 66.8 63,166.0 18,828,375,900 123,286 63,190
6 55.2 76,400.0 12,850,216,400 126,080 76,412
8 54.0 99,032.6 15,594,067,100 147,633 99,043

12 44.0 119,008.9 10,137,658,200 158,609 119,011
16 39.8 145,198.3 9,154,006,200 181,018 145,197
18 37.8 152,380.5 8,230,099,000 186,401 152,376
24 36.0 191,056.9 8,913,951,100 223,457 191,046
28 37.2 231,525.5 11,918,663,500 265,006 231,516
32 37.5 258,054.5 13,608,342,900 291,805 258,041
64 39.4 518,748.6 31,728,187,600 554,209 518,713

128 46.2 1,203,476.1 118,676,068,000 1,245,056 1,203,410

EDS and EDD metrics conform to a more conventional understanding of energy
efficiency. They identify optimal configurations which can be justified intiutively.

7 Conclusion

In this paper we argue that the Etn family of metrics are not appropriate for
energy-aware software engineering. We propose alternative metrics which can be
used to measure the cost of applications and guide their optimisation. Finally,
we compare the performance of our metrics against established techniques by
studying codes taken from the Mantevo mini-application suite.

We began by showing how Etn metrics are unable to provide meaningful
values for individual experiments, cannot be compared between experiments
and do not support optimisation efforts. Improving the Etn FoM of a section of
code can degrade overall performance. Etn metrics drive optimisation efforts in
counterproductive directions, encouraging developers to speed up already fast
code and seek energy efficiency gains in energy efficient codes. Finally, these
metrics provide no meaningful definition of an optimisation. In total, Etn was
able to fulfil only one of our seven criteria for software optimisation metrics.

We then proposed EDS and EDD, novel metrics which outperform Etn

against all of our assessment criteria. EDS is appropriate for measuring the
cost of applications, while EDD is well suited to guiding application optimisa-
tion. Both our metrics fulfil the majority of our criteria, and EDS fulfils the
maximum number possible.

Our paper finishes with a study into the energy-efficiency costs of several
popular applications. This study shows how the flaws of Etn have managed
to remain hidden in small-scale optimisation studies. It also demonstrates that
these flaws will prevent Etn from being employed at scale. As a result, new
metrics like EDS and EDD will be required to support performance engineers as
interest in energy optimisation continues to grow.



7.1 Future Work

The properties of our metrics makes them particularly well suited to compar-
ing codes running at different scales and on different architectures. We intend
to use EDS and EDD to investigate the power optimisation characteristics of
various codes running on accelerator-based technologies. Our ultimate aim is to
demonstrate how the correct metric can facilitate the discovery of energy-aware
software optimisations. In our ongoing work we focus our search towards GPU
and FPGA platforms as promising candidates for energy optimisation.
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