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Abstract 

There is much interest in targeting neuropeptide signaling for the development of new 

and environmentally friendly insect control chemicals. In this study we have focused 

attention on the peptidergic control of the adult crop of Delia radicum (cabbage root 

fly), an important pest of brassicas in European agriculture. The dipteran crop is a 

muscular organ formed from the foregut of the digestive tract and plays a vital role in 

the processing of food in adult flies.  We have shown using direct tissue profiling by 

MALDI-TOF mass spectrometry that the decapeptide myosuppressin 

(TDVDHVFLRFamide ) is present in the crop nerve bundle and that application of 

this peptide to the crop potently inhibits the spontaneous contractions of the muscular 

lobes with an IC50 of 4.4 x 10-8 M.  The delivery of myosuppressin either by oral 

administration or by injection had no significant detrimental effect on the adult fly. 

This failure to elicit a response is possibly due to the susceptibility of the peptide to 

degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, 

we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and 

amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist 

of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. 

radicum. Current results are indicative of a key role for myosuppressin in the 

regulation of crop physiology and the results achieved during this project provide the 
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basis for subsequent studies aimed at developing insecticidal molecules targeting the  

peptidergic control of feeding and food digestion in this pest species.  

 

Keywords: Delia radicum, myosuppressin, neuropeptide, crop, mass spectrometry, 

myoinhibition. 

 

Abbreviations: 

FMRFamide-related peptides, FLPs; crop nerve bundle, CNB; matrix assisted laser 

desorption ionization time of flight mass spectrometry, MALDI-TOF  MS; 

benzethonium chloride, Bztc; 7-amino-4-methylcoumarin , AMC;   phosphate buffered 

saline, PBS; Triton X-100 in phosphate buffer saline, PBST; Į-cyano-4-

hydroxycinnammic acid, HCCA 

 

 

1. Introduction 

The cabbage root fly, Delia radicum (L.) (Diptera: Anthomyiidae), is a pest of brassicas 

in Europe and North America and poses a major and chronic threat to the commercial 

production of brassica crops (Blackshaw et al., 2012). The flies overwinter as pupae 

and in the spring the emerging females lay their eggs on the soil close to the base of 

cruciferous plants. Following egg hatch, the larvae feed on the host plant’s root system 

and it is this life stage that is the most damaging (Biron et al., 1998). Insecticide options 

for controlling D. radicum in brassica crops are now limited, and there is a need to 

develop  alternatives that may replace or at least extend the useful life of conventional 

insecticides (Myrand et al., 2015). Insect neuropeptides and their receptors are 

considered important targets for the development of novel pesticides because of their 

role in the regulation of diverse physiological and behavioural processes (Audsley and 

Down, 2015; Gäde and Goldsworthy, 2003; Scherkenbeck and Zdobinsky, 2009). One 

group of peptides that potentially could be utilized is the FMRFamide-like peptides 

(FLPs), which all share the common RFamide (Arg-Phe-NH2) C-terminal moiety. In 

particular, myosuppressins are FLPs with important roles in visceral muscle motility 

(e.g. heart, gut) in a wide range of insects. The first myosuppressin identified was 

leucomyosuppressin, isolated from the cockroach Leucophaea maderae showing a 

digestive enzyme regulatory role in gut of several insects (Holman et al., 1991; 
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Nachman et al., 1997). This peptide inhibits contractions of the foregut and hindgut in 

several cockroach species (Periplaneta americana, Leucopheae maderaea and Blatella 

germanica) and inhibits midgut contractions in Diploptera punctata (reviewed by 

Orchard et al. 2001). Leucomyosuppressin  has also been shown to inhibit foregut 

peristalsis in vitro in Lepidoptera larvae. When injected into 5th instar Lacanobia 

oleracea and Spodoptera littoralis it suppresses feeding and reduces survival, which 

was most likely due to the inhibitory actions on the gut (Matthews et al., 2009).  

The dipteran myosuppressin peptides identified to date are structurally very similar to 

leucomyosuppressin (pEDVDHVFLRFamide) except for one amino acid substitution 

(T or S) at the N- terminus (S/TDVDHVFLRFamide). An antibody specific for the N-

terminal region of myosuppressin has been used to identify and localize the peptide to 

neuronal cell bodies and processes in adult Drosophila melanogaster , while 

myosuppressin-like material was reported in the house fly, Musca domestica, blow flies 

Phormia regina and Protophormia terraenovae, and the horse fly Tabanus 

nigrovittatus, (Angioy et al., 2007; Haselton et al., 2008, 2004; McCormick and 

Nichols, 1993). In addition,  myosuppressin has been identified by matrix assisted laser 

desorption ionization time of flight mass spectrometry (MALDI-TOF  MS)  in the brain 

and retrocerebral complex, comprising the endocrine glands corpus allatum and corpus 

cardiacum, from a range of dipteran species (Caers et al., 2015; Hauser et al., 2010; 

Predel et al., 2010; Rahman et al., 2013; Wegener et al., 2006), including both larval 

and adult stages of Delia radicum (Audsley et al., 2011; Zoephel et al., 2012). Mass 

spectrometry has also identified myosuppressin in the crop nerve bundle (CNB) of adult 

D. radicum and Drosophila suzukii (Audsley et al., 2015).   

The crop is present in almost all adult dipterans and has a critical role in the 

transfer of food to the midgut.  Dysfunctionality of the crop can result in profound 

reductions in survival of the adult fly (Peller et al., 2009; Ren et al., 2014) and 

therefore targeting the neuronal control of the crop is an attractive strategy in the 

search for new insect control chemicals.  

The crop is an anterior section of the alimentary canal formed by an impermeable 

cuticle that is shaped into the form of expandable bi-lobed sac connected to the foregut 

by the crop duct (Imms, 1957). Muscles in the wall of the crop allow it to expand and 

collapse, and peristaltic waves of contractions of the crop and crop duct allows 

movement of material from the crop to the midgut through various pumps and 
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sphincters (Stoffolano et al., 2013; Thomson, 1975) . The crop nerve bundle extends 

from the retrocerebral complex and branches out over the muscle of the crop lobes. 

Myosuppressin immunoreactivity has been localised to the adult crop nerve and 

processes that cover the external surface of the crop of M. domestica, P. regina, D. 

melanogaster and D. suzukii and the peptide has been shown to reduce the spontaneous 

contractions of the crop in these insects (Duttlinger et al., 2002; Gough et al., 2017; 

Haselton et al., 2004; Richer et al., 2000). Interfering with myosuppressin signaling that 

regulates crop contractions is expected to disrupt the movement and digestion of food, 

which could potentially lead to the development of more targeted and environmentally 

safe control measures.  

In this study we have investigated the role of FLPs in regulating crop motility 

of D. radicum.  We confirm that myosuppressin is the dominant peptide in the crop 

nerve bundle and that this FLP is a potent inhibitor of crop muscle contractions. We 

have also undertaken experiments to assess the potential of myosuppressin and the 

myosuppresin receptor agonist benzethonium chloride (Bztc) to disrupt gut function in 

this important pest of brassica crops in our efforts to identify targets for the 

development of new insect control chemicals. 

2. Materials and methods 

2.1.   Insect maintenance 

Delia radicum were reared at 20 °C, a photoperiod of 16L: 8D and 65 % R.H and adults 

were maintained on a diet consisting of dry yeast powder, sugar, dried skimmed milk 

powder as previously described (Finch and Coaker, 1969).  

2.2.   Peptides and chemicals 

Myosuppressin (TDVDHVFLRFamide) and truncated short neuropeptide F (sNPF4-11, 

SPSLRLRFamide) were custom synthesized by Biomatik, Cambridge, Ontario, 

Canada). 7-Amino-4-methylcoumarin (AMC), Dulbecco’s Phosphate Buffered Saline 

(PBS) and Benzethonium chloride (Bztc) were all purchased from Sigma-Aldrich 

Company Ltd., Gillingham, U.K.  AMC-RPPGFSAFK(DNP) and L-Threonine 7-

amido-4-methylcoumarin (Thr-AMC) were purchased from Enzo Life Sciences (UK) 

Ltd, Exeter, U.K. and Insight Biotechnology Ltd., Wembley, U.K., respectively. 

 

2.3.   Indirect Immunohistochemistry  
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Adult flies were anaesthetized with CO2 and chilled on ice before being dissected in 

Phormia fly saline (Chen and Friedman, 1975). Samples were fixed in 4% (wt/v) 

paraformaldehyde at 4°C overnight. Tissues were then permeabilized in 0.3% (v/v) 

Triton X-100 in phosphate buffer saline (PBST), and blocked by 10% (v/v) goat serum 

in PBST for 1h at room temperature to reduce non-specific binding. Samples were then 

incubated with a primary rabbit cross-reactive anti-FMRFamide antibody (1:1000, 

Peninsula, California) made up in 5% PBST for 48 hours at 4°C. Following incubation, 

tissues were rinsed five times in PBST, and further incubated in secondary antibody 

solution containing goat anti-rabbit IgGAlexa Fluor 594 (1:500, Invitrogen) in 

corresponding blocking buffer overnight at 4 °C. Excess reagent was washed away with 

PBST and samples were mounted in Dapi-Fluorount-G mounting media (2BScientific, 

UK) on microscope slides and sealed with nail varnish. Slides were stored in the dark 

at 4 °C. Immunolabeled samples were analyzed with Zen 2011 viewing software (Zeiss) 

and pictures taken by Zeiss confocal laser inverted microscope LSM700 (Carl Zeiss, 

Germany). One set of control samples omitted primary antibody whereas secondary 

controls were incubated with blocking peptide consisting of primary antibody pre-

absorbed with myosuppressin peptide (100 ȝg/ml).   

 

2.4.   Mass analysis of crop nerve bundle (CNB) 

The CNB from D. radicum were directly transferred onto MALDI-TOF MS plate into 

1 ȝl of HPLC-grade water. Blotting with filter paper removed excess water and 0.5 ȝl 

matrix solution (Į-Cyano-4-hydroxycinnammic acid (HCCA), Sigma-Aldrich; 

10mg/ml in 70% acetonitrile 0.1% trifluoroacetic acid (TFA)) was added and allowed 

to dry at room temperature. Samples were analyzed using a Voyager DE STR MALDI 

TOF MS (Applied Biosystems, Warrington, UK). Settings for laser intensity and the 

number of sub-spectra were adjusted to individual sample. The measured monoisotopic 

masses ([M+H]+) were compared to the monoisotopic masses of reference peptides 

calculated using the Applied Biosystems Data Explorer software. A calibration of the 

Voyager was performed with an external calibration mixture containing des-Arg-

bradykinin, angiotensin 1, Glu-fibrinopeptide B and neurotensin (Applied Biosystems) 

or angiotensin I, angiotensin II, substance P, bombesin, ACTH clip 1-17, ACTH clip 

18-39, and somatostatin 28 (Bruker Daltronic) (Audsley et al 2015).  

2.5.   Metabolism of myosuppressin by crop enzymes 
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Twenty crops were dissected under Phormia saline and disrupted using a glass 

homogenizer (0.1 ml glass Wheaton Micro Tissue Grinder, Fisher Scientific) in 100 ȝl 

of 0.1 M HEPES buffer (pH 7.5, 10 ȝM Zn) with 20 upward down strokes.  The 

homogenate was stored in aliquots at 4 °C until required.  To study the degradation of 

myosuppressin, 10 µl of the crop homogenate diluted 5-fold was added to 200 µl of 

100 ȝM myosuppressin in 0.1 M HEPES buffer, pH 7.5 and incubated at 24 OC. At 

different time points 20 ȝl aliquots were removed and added to 5 ȝl 8% (v/v) TFA to 

terminate enzyme activity.   Each reaction was performed in quadruplicate. Acidified 

samples were  centrifuged (4°C, 12,000 x g for 20 min) and the supernatant was diluted 

10-fold with 0.1% TFA prior to reversed-phase high-performance liquid 

chromatography (Beckman gold chromatography system, Beckman Coulter, U.K. Ltd) 

using a 150 x 4.6 mm Kinetex reverse phase column (Phenomenex, Macclesfield, U.K.), 

eluted with a 10-60% acetonitrile 0.1% TFA gradient at a flow rate at 1mL/min over 

25 min. HPLC fractions (1 ml) of were collected and concentrated using a Savant Speed 

Vac concentrator (Thermo Electron, U.K.) to less than 10 ȝl. The mass of HPLC-

purified metabolic breakdown products was determined by MALDI-TOF mass 

spectrometry using a Voyager DE STR MALDI TOF mass spectrometer.  A single 0.5 

ȝl droplet of sample from HPLC fractions was mixed with 0.5 ȝl of matrix (HCCA) 

and spotted onto a MALDI-TOF plate. The collected mass spectra fragmentation 

patterns were compared with those generated by Protein Prospector software 

(University of California, U.S.A.).  The UV (214 nm) peak area (uVmin) of 

myosuppressin in samples were measured and the reduction in peak area after 

incubation with crop homogenate at different time periods was used to determine the 

half-life (t1/2) of myosuppressin.  Under the separation conditions described above, 

myosuppressin eluted at 9.6 min. 

2.6. Detection of membrane and soluble crop peptidases  

To prepare a high-speed membrane and supernatant preparation homogenizing, 15 

crops were homogenised in 0.5 ml of PBS,) using a glass homogeniser (Jencons, East 

Grinstead, U.K.) and 20 up and down strokes of the pestle. The resulting homogenate 

was centrifuged at 55,000 g for 1 h at 4oC using a Beckman Optima™ MAX bench-top 

ultracentrifuge and TLA110 rotor (Beckman Instruments Inc, Palo Alto, Ca, U.S.A.).  

The pellet was re-suspended in 0.5 ml of PBS and both the pellet and supernatant were 

stored frozen until required.  Endopeptidase assays were conducted by measuring the 
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initial rate of increase in fluorescence from cleavage of the quenched substrate 1.6 µM 

AMC-RPPGFSAFK(DNP) by 10µl of enzyme in 100µl of MES buffer, pH 6.5 in a 96-

well black plastic plate (Corning Life Sciences, High Wycombe, U.K.) using a 

FLUOstar Omega (BMG LABTECH GmbH, Offenburg, Germany) with the excitation 

Ȝ set at 330nm and emission Ȝ set at 410nm.  The same assay conditions were used for 

detecting aminopeptidase activity using 1.6 µM Thr-AMC, except that the initial rate 

of increase in fluorescence was determined with the excitation Ȝ set at 355nm and 

emission Ȝ set at 460nm.  The amount released was calculated from a standard curve of 

AMC.  Activities for both enzymes are expressed as pmol of substrate cleaved/h/crop 

equivalent. 

 

 2.7.   Crop Bioassay 

Three-day old adult females were deprived of food and water for a 24 h period prior to 

use to ensure that their crop was devoid of food. Flies were then fed with a 4 ul droplet 

of blue-colored 1M sucrose mixture (Natural Blue Food Colouring, Ocado). As soon 

as each fly has stopped feeding, it was anesthetized with CO2 and the crop was exposed 

under a drop of Phormia physiological saline. The crop duct was cut from the 

proventriculus (cardia) and transferred immediately into 40 ȝl of saline in a cavity slide 

for viewing  using a stereo dissecting microscope (GXM-XTL, GT Vision Ltd, 

Stansfield, Suffolk, U.K.). For routine assays, contractions were counted by direct 

observation using the following protocol.  After allowing 1 min for acclimatization, to 

determine the basal rate, the saline was replaced by test solutions using the ‘two-pipette 

transfer system’ which limits disturbance to the crop tissue (Stoffolano et al., 2013). 

After a 1 min adjustment period, contractions were counted for the following minute 

and compared to the basal contraction rate for each tissue. Test solutions were washed 

out with physiological saline to observe the recovery of muscle activity. A further 

procedural control was performed where saline was substituted with carrier saline only. 

Each crop was used only once. Dose-response plots were generated and analyzed using 

Prism version 7 (Prism Software Corporation, U.S.A.). The graphic presented in Fig. 

4b was generated by video recording the experiment using a GXCAM camera attached 

to the microscope (see supplementary Fig. 3 and videos in the supplementary section).  

Crop movement in the video was determined by adding a vector that crossed the crop 
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and using AviLine software (http://biolpc22.york.ac.uk/avianal/avi_line/) to record 

changes in pixel brightness in successive frames as described by Norville et al., (2010).  

2.8. Survival and food intake assays 

Adult females (3-5 days post eclosion) were transferred to 25 x 95 mm vials containing 

either 6 ml of 5% sucrose (wt /vol) and 2% agar (wt/vol) (control diet) or the same 

sucrose/agar mixture containing 5 mM Bztc (treatment diet). For both control and 

treatment groups, the diet was replenished weekly until all flies were dead.  For 

measuring food intake, 0.5% bromophenol blue (wt/vol, Sigma-Aldrich) was included 

in both the control and the treatment (5 mM Bztc) sucrose/agar diet.  Flies were allowed 

to feed for 24 h before pairs of females were transferred to 6 mm diameter glass tubes 

and fed from a drop (10 ȝl) of 5% (wt/vol) sucrose solution without added dye.  After 

24h, the flies were removed and the empty tubes were washed with 300 ȝl of distilled 

water. Pooled washes from three tubes, containing excreta from six flies, were 

measured at the absorbance of 595 nm wavelength using a SpectraMax 340PC 

Microplate Reader Spectrophotometer (n=6) 

All flies were 3-5 days post-eclosion and were maintained at 26°C, 12:12 light regime 

and 65% relative humidity. 

2.9 Injection of adult D. radicum with myosuppressin  

Females (2 days post-eclosion) were anaesthetized under CO2 and injected with either 

1 µl of PBS (controls) or 1ul PBS containing 6.4 ȝg of myosuppressin. Flies were 

monitored twice daily until all flies had died.  

2.10. Statistical analysis 

All graphs and statistical analyses were performed using GraphPad Prism 7 for 

Windows. Survival curves were compared by the Kaplan-Meier log-rank survival 

analysis for each treatment group. 

 

3.   Results 

3.1. Peptidergic innervation of the D. radicum crop 

Immuno-staining of a whole mount preparation of the crop of adult D. radicum using 

antibodies recognizing the RFamide epitope of myosuppressin revealed prominent 

http://biolpc22.york.ac.uk/avianal/avi_line/
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innervation by a network of immunoreactive fibres extending over the central region of 

the crop sac with individual projections reaching towards the lobes (Fig. 1). These 

immuno-reactive fibres originate from two axons emanating from the retrocerebral 

complex (Fig. 2A) that travel along the lateral sides of the crop duct (Fig. 2B) towards 

the crop sac. Reaching the base of the crop, they undergo prominent division (Fig. 1A). 

Figure 2C shows stained cells of the retrocerebral complex as well as processes that 

project over the proventriculus (Fig. 2D) and terminate on the surface of the anterior 

midgut. No differences were noted between male and female crop preparations. The 

antibody specificity was confirmed when tissues were incubated either with secondary 

antibody alone or with antibody pre-absorbed with peptide, which abolished the 

immuno-reactivity (supplementary Figure 1).  The staining in the midgut is the result 

of cross-reactivity to FLPs present in the enteroendocrine cells.  

3.2. Mass analysis of crop nerve bundle (CNB) peptides 

In the mass range of 500-2500 Da two prominent monoisotopic mass ion peaks m/z, 

974.7 and 1247.8 were present in the mass spectra obtained from single tissue extracts 

of the CNB (Fig. 3). These signals correspond to the monoisotopic masses of 

myosuppressin (TDVDHVFLRFamide) and sNPF4-11 (SPSLRFamide), respectively. 

The sodium adduct of the myosuppressin ion (m/z, 1269.8) was also present (Fig. 3).  

3.3. Inhibition of crop muscle contractions by myosuppressin and Bztc  

 Myosuppressin inhibited spontaneous contractions of semi-isolated preparations of 

adult D. radicum crop in a dose-dependent manner (Fig. 4) with an apparent EC50 of 

4.4 x10-8 M. Spontaneous contractions were recovered when the peptide solution was 

removed and washed from crop preparations with physiological saline (Fig. 4B).  The 

application of the non-peptide agonist Bztc to the isolated crop tissue also reduced the 

frequency of spontaneous contractions, but was less potent (EC50 7.2 x10-6 M) than 

myosuppressin (Fig. 4A). Importantly, the crop tissues recovered from inhibitory effect 

of 1 and 10 µM Bztc, but not 100 µM Bztc, when washed with fresh saline. sNPF4-11 

had no significant effect on spontaneous contractions of the crop even at high 

concentrations (10-4 M) (Fig. 4A). 

3.4. In vivo effect of peptides and Bztc 

Injection of myosuppressin into adult female D. radicum had no effect on survival 

compared to control (saline injected) flies (Kaplan-Meier log-rank survival analysis, 
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P=0.667, 0.416) (supplementary Fig. 2). In contrast, there was a significant difference 

in the survivorship between the controls and flies maintained on 5 mM Bztc/agar diet 

(Log-rank test, P<0.0001) (Fig. 5A). The survival median was 5 days for Bztc-fed flies, 

whereas control flies lived for up to 12 days. All the flies fed with Bztc died by day 10, 

whereas it took 27 days for all the control flies to die.  When Bztc was included in the 

diet containing a food dye, the amount of colored food passing into the faeces was much 

less than that occurring in the absence of the agonist, suggesting reduced consumption 

of food (Fig. 5B).  

 

3.5. Degradation of myosuppressin by crop peptidases 

HPLC with uv detection was used to monitor the reduction in 2 nmoles myosuppressin 

when incubated with crop homogenate.  Myosuppressin degradation by the crop 

peptidases was rapid with an estimated half-life of c. 2 min (R2= 0.9398). MALDI-TOF 

mass analysis of HPLC fractions identified a number of degradation products (Table 1, 

Fig. 6), five of which retained the amino terminus (N-terminus) and six had Phe-amide 

at the carboxy terminus (C-terminus). One peptide fragment (DVDHVFLR) was 

truncated at both termini. The mass spectrometric data indicated the involvement of 

crop aminopeptidases as well as endopeptidase activity capable of cleaving the Arg-

Phe peptide bond.  In support of this hypothesis, we used fluorogenic aminopeptidase 

and endopeptidase substrates to show that the crop possessed both peptidase activities 

(Fig. 6). These enzyme activities were measured in both a soluble and a membrane 

fraction separated from each other by high-speed centrifugation. Around 85% of the 

endopeptidase (85 ± 2 pmoles/h) and 68% of the aminopeptidase activity (3.11 ± 0.08 

pmole/h) were located in the soluble fraction. 

 

4. Discussion 

The release of regulatory peptides in response to external and internal cues is well 

known to have direct impact on feeding activity from the control of levels of digestive 

enzymes in response to food stimuli to effectively maneuvering a food bolus through 

the gut via coordinated muscle contractions (reviewed by Audsley and Weaver, 2009, 

Spit et al., 2012). Previous studies have demonstrated that myosuppressins have a role 

in the regulation of feeding in several insect species. Leucomyosuppressin increased 
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food intake in the cockroach Blattella germanica (Aguilar et al., 2004), while injection 

of myosuppressin into Spodoptera littoralis resulted in anti-feeding behavior 

(Vilaplana et al., 2008). In the pea aphid, Acyrthosiphon pisum, myosuppressin 

suppressed feeding resulting in mortality, most likely due to the inhibition of gut 

motility preventing the movement of food (Down et al., 2011). Feeding the non-peptide            

myosuppressin agonist Bztc to adult M. domestica and D. suzukii resulted in early 

mortality suggesting that myosuppressin signaling has potential as an insecticide target 

(Gough et al., 2017; Haselton et al., 2004). 

In the present study we established the presence of myosuppressin and sNPF4-11 

within the CNB of D. radicum and provide several pieces of evidence in support of 

myosuppressin, but not sNPF4-11
, as an important regulator of crop function in this 

pest species. Myosuppressin was demonstrated in the CNB of D. radicum by direct 

peptide profiling using the same approach used by Audsley and colleagues (2015) to 

show the presence of myosuppressin in the CNB of D. suzukii. The current findings 

however differ from the previous study by the co-occurrence of myosuppressin and 

sNPF4-11. Our identification of these two peptides were based on monoisotopic peaks 

(M+H]+) that are in accordance with the peptide sequences and masses reported by 

Zoephel et al. (2012) and Audsley et al. (2011) in their peptidomics studies of the 

larval and adult central nervous system of D. radicum, respectively. Commercially 

available antiserum recognizing the C-terminus of FMRFamide was used to support 

the claim that myosuppressin/ sNPF4-11 neurons extend to the crop muscle of flies 

(Gough et al. 2017).  Myosuppressin and sNPF4-11, as well as other insect FLPs, share 

the Arg-Phe-amide sequence with FMRFamide and are expected to cross-react with 

FMRFamide antibodies. Consistent with this expectation, pre-incubation of the 

antiserum with synthetic myosuppressin blocked the staining of the D. radicum 

nervous system. The immuno-staining of the axons in the crop nerve that project from 

the retrocerebral complex to the crop muscle and spread over the surface of the crop is 

consistent with previous reports on the spatial distribution of FLPs in other dipteran 

species including the housefly M. domestica (Haselton et al., 2004), the fruitfly D. 

melanogaster (Dickerson et al., 2012), blowfly P. regina (Richer et al., 2000), horn 

fly H. irritans and stable fly Stomoxys calcitrans (Meola et al., 1996). The widespread 

occurrence of FMRFamide-like immunoreactive material in the central and 

stomatogastric nervous system and enteroendocrine cells of dipterans suggests a 
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general regulatory role for FLPs in regulating feeding and digestion in this group of 

insects.  

Consistent with an important role for myosuppressin in regulating crop 

function, the synthetic peptide powerfully inhibited the spontaneous contractions of 

the D. radicum crop musculature. Myoinhibition was observed with nM doses of 

peptide (EC50, 44 nM) and the effect was immediate and long lasting, but reversible. 

Such potency is typical of insect peptide receptors and compares well with the 

potency (EC50, 40 nM) of myosuppressin at activating two cloned G protein-coupled 

receptor genes (DmsR-1 and DmsR-2 ) from D. melanogaster expressed in 

mammalian cell lines (Egerod et al., 2003a; Johnson et al., 2003). Both DmsR1 and 

DmsR-2 are expressed in the crop of D. melanogaster, but DmsR-1 appears to be 

more important for myosuppressin signal transduction in the crop of this fruit fly (P. 

Bell, unpublished data, Chintapalli et al., 2007).  In contrast, sNPF4-11 failed to elicit a 

myoinhibitory response when applied to the crop at concentrations even as high as 0.1 

mM leading us to conclude that myosuppressin probably works alone to inhibit D. 

radicum crop contractions.  At present we have no functional information for the 

CNB sNPF4-11
. 

When fed or injected into adult D. radicum, myosuppressin had no measurable 

effect on feeding behaviour or mortality.  This lack of a response could have resulted 

from a failure to reach target gut tissues and/or rapid inactivation. Myosuppressin was 

rapidly degraded (t1/2< 2min) when incubated with a homogenate of the D. radicum 

crop. MALDI-MS revealed a complex mixture of myosuppressin fragments that 

suggested multiple initial attacks by aminopeptidase and endopeptidase enzymes. 

Indeed, we confirmed the presence of both aminopeptidase and endopeptidase activities 

predominantly in a soluble fraction of the crop homogenate.  A very similar pattern of 

rapid degradation was reported for leucomyosuppressin (pEDVDHVFLRF-NH2) by 

gut juices of two moths, Lacanobia oleracea and Spodoptera littoralis (Matthew et al., 

2009; Down et al., 2011). A structure-activity study of the inhibitory activity of N-

terminally truncated myosuppressin peptides on adult D. melanogaster crop 

contractions showed that removal of the N-terminal tripeptide resulted in loss of activity 

(Dickerson et al., 2012). When tested the same peptides were tested on larval gut, only 

the parent 10-mer peptide gave a full inhibitory response.  A similar study of 

leucomyosuppressin inhibition of the cockroach (Leucophaea maderae) hindgut 
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identified VFLRFamide as the core fragment, although this activity was at least two 

orders of magnitude below that of the intact peptide (Nachman et al., 1993). In 

conclusion, myosuppressin is susceptible to rapid breakdown by gut peptidases present 

in the crop.  Many of the fragments generated are expected to have weak or no agonist 

activity on the D. radicum crop. These studies emphasise the need for myosuppressin 

analogues that are resistant to degradation by gut peptidases when testing as oral 

activity.  

Benzethonium chloride (Bztc), a quaternary ammonium salt, was the first non-

peptide compound to be described as a myosuppressin  analogue capable of 

mimicking the myoinhibitory actions of myosuppressin on heart, visceral and skeletal 

muscle from different a variety of insect species, including the crop of dipterans such 

as M. domestica, P. regina, or D. melanogaster and D.suzukii (Duttlinger et al., 2002; 

Gough et al., 2017; Haselton et al., 2004; Lange et al., 1995; Richer et al., 2000). The 

evidence for Bztc being a myosuppressin agonist included shared structural features 

and the competitive displacement of radioactively labelled myosuppressin from both 

high- and low-affinity myosuppressin receptors in locust oviduct membranes (Lange 

et al., 1995) .  In the present study, the inhibitory effect of Bztc was 100-fold less 

potent compared to myosuppressin and the recovery of spontaneous contractions after 

the Bztc was replaced with saline was noticeably slower compared to the peptide. Our 

results are in accordance with findings reported by Stoffolano et al., (2013) and Lange 

et al., (1995), where in both instances Bztc reversibly inhibited muscle contractions. 

Furthermore, Richer (et al., 2000) described Bztc action in mM range to be equivalent 

to myosuppressin peptide, terminating spontaneous crop contractions in the blowfly 

P. regina.  However, it remains unclear how Bztc mimics the effect of myosuppressin 

on muscle contractions. Egerod et al., (2003) could not demonstrate that 

heterologously expressed Dms-R1 and Dms-R2 of D. melanogaster were activated by 

Bztc in a specific manner and it is possible that some of the physiological effects of 

this quaternary ammonium salt results from its weak surfactant properties. Using dye-

labelled food to follow food ingestion and excretion in adult D. radicum, we showed 

that Bztc had a significant effect on food intake which probably contributed to the 

toxicity of the chemical as revealed by a strong reduction in life-span.  A fuller 

understanding of the mechanisms leading to this toxicity is required before we can 

conclude that myosuppressin signalling is being targeted.  
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Table 1 

Monoisotopic masses ([M+H]+) and sequences of myosuppressin and hydrolysis products 
identified in HPLC fractions after incubation with peptidases from the crop of adult Delia 
radicum.  

 

 

 

  

Myosuppressin 

fragment 

Amino acid sequences [M+H] + 

1-10 (intact) 

1-9 

1-8 

1-7 

1-6 

1-5 

2-10 

3-10 

4-10 

5-10 

6-10 

7-10 

2-9 

TDVDHVFLRFNH2 

TDVDHVFLR             

TDVDHVFL  

TDVDHVF  

TDVDHV  

TDVDH    

DVDHVFLRFNH2  

VDHVFLRFNH2 

DHVFLRFNH2 

HVFLRFNH2 

VFLRFNH2 

FLRFNH2  

DVDHVFLR  

1247.6 

1101.5 

945.4 

832.3 

685.3 

586.2 

1146.6 

1031.5 

932.5 

817.4 

680.4 

581.3 

1000.5 
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Figure legends 

 Fig.1. Immunostaining of the crop of D. radicum using an antibody recognising the 

RFamide epitope. A) Whole mount showing FLP material in a network of filaments 

covering the central region. Enteroendocrine cells of the midgut are also visible with 

this antiserum. B) Higher magnification view of the region highlighted by the square 

box in (A).   

Fig. 2. Immunostaining of neuronal FLP peptides in whole mounts of the foregut, 

retrocerebral complex and crop duct of adult D. radicum. A) Axons on the surface of 

the oesophagus enter the retrocerebral complex. Stained axons run across the 

proventriculus surface where they divide passing over the anterior midgut (A) and 

along crop duct surface (B) to the crop lobes. C and D) Confocal z-stack images of 

the retrocerebral complex showing prominently stained. D) Immunostained axons 

(arrow) originating in the retrocerebral complex cover the proventriculus. 

Fig.3. Mass spectrum of direct analysis of a single tissue of the D. radicum crop. 

Fig. 4. Inhibition of crop contractions.  A) The effect of myosuppressin, sNPF4-11 and 

Bztc on the spontaneous contractions of the crop. Data are expressed as the % 

inhibition of the contractions counted in a 1 min period after the addition of the 

agonist as described in the methods section.  Values are the mean of 5 determinations 

using fresh tissues for each determination.  Non-linear regression analysis (GraphPad 

Prism 7.01) was performed to calculate EC50 values. B) Graphical representation of 

the inhibition of crop contractions by 10 µM myosuppressin and recovery after 

washing with fresh saline.  Muscle contractions generated tissue movement that was 

video recorded (see supplementary Fig.3 and videos) and analysed as described by 

Norville et al., (2010). 

Fig. 5. The effect of feeding Bztc to adult D. radicum.  A) 5 mM Bztc in the diet 

increases mortality rate. B) Bztc reduces ingestion and excretion of sucrose/food dye. 

The amount of dye in the faeces after 24 h of feeding was determined 

spectrophotometrically (595 nm) and the results are expressed as the mean ± SEM (n 

= 6). Differences in the means values are statistically significant (t-test, P <0.001). 

Fig.6. Predicted scissile peptide bonds of myosuppressin and the structures of 

substrates used to measure endopeptidase and aminopeptidase activities of the crop. 

Arrows indicate aminopeptidase (1) and endopeptidase (2) cleavages. 
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Figure 6
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