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KUROKAWA-MIZUMOTO CONGRUENCES AND DEGREE-8

L-VALUES

NEIL DUMMIGAN, BERNHARD HEIM, AND ANGELO RENDINA

Abstract. Let f be a Hecke eigenform of weight k, level 1, genus 1. Let

Ek
2,1(f) be its genus-2 Klingen-Eisenstein series. Let F be a genus-2 cusp form

whose Hecke eigenvalues are congruent modulo q to those of Ek
2,1(f), where q

is a “large” prime divisor of the algebraic part of the rightmost critical value
of the symmetric square L-function of f . We explain how the Bloch-Kato
conjecture leads one to believe that q should also appear in the denominator
of the “algebraic part” of the rightmost critical value of the tensor product
L-function L(s, f ⊗F ), i.e. in an algebraic ratio obtained from the quotient of
this with another critical value. Using pullback of a genus-5 Siegel-Eisenstein
series, we prove this, under weak conditions.

1. Introduction

The situation described in the abstract is analogous to the following. The large

prime 691, which divides the numerator of ζ(12)
π12 , is the modulus of Ramanujan’s

congruence between the Hecke eigenvalues of the weight-12 cusp form ∆ and the
weight-12 Eisenstein series. But it also occurs in the denominator of the “algebraic
part” of the rightmost critical value L(11,∆). (A discussion and proof of this, in a
slightly more general setting, may be found in [Du2].) In terms of the Bloch-Kato
conjecture on special values of motivic L-functions, the 691 in the numerator is the
order of an element in a Selmer group, while the 691 in the denominator is the order
of an element in a global torsion group. Here we replace ζ(12) by L(2k−2, Sym2f),
691 by q, and L(11,∆) by L(2k − 3, f ⊗ F ).

After introducing some notation in the remainder of this introduction, and some
basic notions about critical values of tensor product L-functions in §2, §3 gives a
rough reason to expect the q in the denominator, while §4 explains it as a con-
sequence of the Bloch-Kato conjecture. In §5 we apply a pullback formula of the
second-named author, to obtain an expression which we can show to have q in the
denominator, but is also a product of L(2k − 3, f ⊗ F ) and other factors. A holo-
morphic Siegel-Eisenstein series of genus 5 is restricted to H2 × H1 × H2, and the
formula involves f , F and also a certain Saito-Kurokawa lift of weight k and genus
2. The analysis for this rightmost critical value is complicated by the presence of
non-cuspidal terms, though the appearance of the factor q in the denominator is a
consequence of the presence of the non-cuspidal term Ek

2,1(f): Mizumoto’s formula

for its Fourier coefficients has a factor L(2k− 2, Sym2f) in the denominator. In §6
we apply the pullback formula again, obtaining an expression that is integral at q
and includes L(2k− 7, f ⊗F ), with other factors. This time the Eisenstein series is
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non-holomorphic. This introduces some technicalities concerning nearly holomor-
phic modular forms, Shimura-Maass operators and holomorphic projection, which
are dealt with in §7. We follow the same steps in outline as Böcherer and Heim
[BH2], but here we are concerned with integrality rather than just algebraicity. The
main theorem is proved in §6, by dividing one expression by the other to cancel

unwanted factors and isolate the ratio L(2k−3,f⊗F )
π16L(2k−7,f⊗F ) . It is followed by a numerical

example, to demonstrate that the conditions of the theorem are not prohibitively
strong, and can be checked in principle.

1.1. Definitions and notation. Let Hn be the Siegel upper half space of n-by-
n complex symmetric matrices with positive-definite imaginary part. Let Γn :=

Sp(n,Z) = Sp2n(Z) = {M ∈ GL2n(Z) : tMJM = J}, where J =

(

0n In
−In 0n

)

.

For γ =

[

A B
C D

]

∈ Γn and Z ∈ Hn, let γ(Z) := (AZ + B)(CZ + D)−1 and

j(γ, Z) := det(CZ +D). A holomorphic function F : Hn → C is said to belong to
the space Mk

n of Siegel modular forms of genus n and (scalar) weight k, for Γn, if

F (γ(Z)) = j(γ, Z)kF (Z) ∀γ ∈ Γn, Z ∈ Hn.

In other words, F |γ = F for all γ ∈ Γn, where (F |γ)(Z) := j(γ, Z)−kF (γ(Z)) for
γ ∈ Γn. Such an F has a Fourier expansion

F (Z) =
∑

S≥0

a(S)e(Tr(SZ)) =
∑

S≥0

a(S, F )e(Tr(SZ)),

where the sum is over all positive semi-definite half-integral matrices, and e(z) :=

e2πiz. We define F (Z) :=
∑

S≥0 a(S)e(Tr(SZ)).

Denote by Sk
n the subspace of cusp forms, those killed by the Siegel operator

Φn := Φn,n−1 (see below). They are also characterised by the condition that
a(S, F ) = 0 unless S is positive-definite. The Petersson inner product on Sk

n is
given by

〈F,G〉 :=
∫

Γn\Hn

F (Z)G(Z)(det(Y ))k−(n+1) dX dY,

where Z = X + iY , dX =
∏

j≤lXjl and dY =
∏

j≤l Yjl.
For 0 ≤ r ≤ n, given Z ∈ Hn, let Z∗ ∈ Hr be its bottom right r-by-r block, and

Pn,r the parabolic subgroup of Γn comprising elements of the form

(

∗ ∗
0n+r,n−r ∗

)

.

For F ∈ Sk
r , define its Klingen-Eisenstein series

Ek
n,r(F )(Z) :=

∑

γ∈Pn,r\Γn

F ((γ(Z))∗)j(γ, Z)
−k.

Then for k > n + r + 1 the series converges absolutely to a holomorphic function
Ek

n,r(F ) ∈Mk
n , and Φn,r(E

k
n,r(F )) = F , where Φn,r is the Siegel operator, given by

Φn,r(G)(W ) = limt→∞G(diag(W, itIn−r)), with Im the m-by-m identity matrix.
For r = n, Ek

n,n(F ) = F , and for r = 0, F = 1 we get the holomorphic Siegel
Eisenstein series

Ek
n(Z) =

∑

γ∈Pn,0\Γn

j(γ, Z)−k.
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More generally, for 2ℜ(s) + k > n+ 1 we have

Ek
n(Z, s) := det(Y )s

∑

γ∈Pn,0\Γn

j(γ, Z)−k|j(γ, Z)|−2s,

in general non-holomorphic.

2. GL2 ×GSp2 L-functions

Let f ∈ Sk
1 be a normalised cuspidal Hecke eigenform. Then f(τ) =

∑∞
n=1 an(f)q

n,
with q = e2πiτ and a1(f) = 1. The Fourier coefficients are also the eigenvalues of
Hecke operators. The L-function

L(s, f) :=
∏

p prime

(1− ap(f)p
−s + pk−1−2s)−1.

Let 1− ap(f)X + pk−1X2 =: (1− αp,1X)(1− αp,2X).
Let F ∈ Sk

2 (same weight) be a cuspidal Hecke eigenform. Let the elements
T (p), T (p2) of the genus-2 Hecke algebra be as in [vdG, §16] (with the scaling as
following Definition 8). Let λF (p), λF (p

2) be the respective eigenvalues for these
operators acting on F . The spinor L-function of F is

L(s, F, Spin) =
∏

p prime

Lp(s, F, Spin),

where Lp(s, F, Spin)
−1

= 1− λF (p)p
−s + (λF (p)

2 − λF (p
2)− p2k−4)p−2s − λF (p)p

2k−3−3s + p4k−6−4s.

Let Lp(s, F, Spin) =:
∏4

j=1(1− βp,jp
−s).

Now we define L(s, f ⊗ F ) :=
∏

p prime Lp(s, f ⊗ F ), where Lp(s, f ⊗ F )−1 :=
∏2

i=1

∏4
j=1(1 − αp,iβp,jp

−s). To understand the conjectured functional equation
and critical values for this L-function, it is convenient to introduce the motive
Mf attached to f , and the conjectured motive MF attached to F , of ranks 2 and
4 respectively. The Betti realisations have Hodge decompositions Mf,B ⊗ C ≃
H0,k−1⊕Hk−1,0 and MF,B ⊗C ≃ H0,2k−3⊕H2k−3,0⊕Hk−2,k−1⊕Hk−1,k−2, with
each Hp,q 1-dimensional. The L-functions associated to (q-adic realisations of) Mf

and MF are L(s, f) and L(s, F, Spin) respectively. The L-function L(s, f ⊗ F ) is
associated to the rank-8 motive M := Mf ⊗MF , which has Hodge decomposition
MB ⊗ C ≃ ⊕(Hp,q ⊕Hq,p), where p+ q = 3k − 4 and p = 0, k − 2, k − 1, k − 1 =:
p1, p2, p3, p4. According to [De1, Table 5.3], each (p, q) contributes iq−p+1 to the
sign in the conjectural functional equation, and one checks easily that the sign
should be +1. Following the recipe in [Se] (or see again [De1, Table 5.3]), the

product of gamma factors is γ(s) =
∏4

i=1 ΓC(s − pi), where ΓC(s) := (2π)−sΓ(s).
Note that, following [BH1, Remark 6.2], it makes no difference to replace any pi by
qi = 3k−4−pi. Anyway, the conjectured functional equation is Λ(3k−3−s) = Λ(s),
where Λ(s) := γ(s)L(s, f ⊗ F ). The meromorphic continuation and functional
equation have been proved by Furusawa [Fu], and extended to the case of unequal
weights by Böcherer and Heim [BH1].

The critical values are L(t, f ⊗ F ) for integers t such that neither γ(s) nor
γ(3k − 3− s) has a pole at s = t, which is for k − 1 < t ≤ 2k − 3. Let us suppose
for convenience that the coefficient field of Mf and MF (hence of M) is Q. (Then
MB and MdR are Q-vector spaces.) For each critical t, there is a Deligne period
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c+(M(t)) defined as in [De1], up to Q× multiples. (It is the determinant, with
respect to bases of 4-dimensional Q-vector spaces MB(t)

+ and MdR(t)/Fil
0, of an

isomorphism betweenMB(t)
+⊗C and (MdR(t)/Fil

0)⊗C.) Deligne’s conjecture (in
this instance) is that L(s, f ⊗ F )/c+(M(t)) ∈ Q×. Later we shall sometimes make
a special choice of c+(M(t)), and define Lalg(t, f ⊗ F ) = L(t, f ⊗ F )/c+(M(t)). If

t, t′ are critical points with t ≡ t′ (mod 2), then c+(M(t′)) = (2πi)4(t
′−t)c+(M(t)),

because MB(t
′) = MB(t)(2πi)

t′−t while MdR(t)/Fil
0 does not change for t within

the critical range. So the ratio
Lalg(t

′,f⊗F )
Lalg(t,f⊗F ) = L(t′,f⊗F )

(2πi)4(t′−t)L(t,f⊗F )
, which should be a

rational number, is independent of any choices.
Remark. Yoshida has shown that in fact (up to Q×), c+(M(t)) would be

(2πi)4t+4−3k〈f, f〉 〈F, F 〉, independent of the parity of t. See [Y, (4.14)]. Moreover,
Böcherer and Heim have proved (assuming non-vanishing of the first Fourier-Jacobi

coefficient of F ) that L(t,f⊗F )
(2πi)4t+4−3k〈f,f〉 〈F,F 〉

is algebraic [BH2, Theorem 5.1].

3. Expected consequences of Kurokawa-Mizumoto type congruences:
the rough version

Let f ∈ Sk
1 be as above. Sometimes it is possible to prove a congruence (mod q)

of Hecke eigenvalues between the Klingen-Eisenstein series Ek
2,1(f) ∈Mk

2 and some

cuspidal Hecke eigenform F ∈ Sk
2 . Here q > 2k is a prime divisor of the numerator

of Lalg(2k − 2, Sym2f), which we can take to be L(2k − 2, Sym2f)/π3k−3〈f, f〉,
where L(s, Sym2f) =

∏

p prime((1−α2
1,pp

−s)(1−α1,pα2,pp
−s)(1−α2

2,pp
−s))−1. The

first examples were proved by Kurokawa and Mizumoto [K1, Mi1], and they can be
viewed as instances of Eisenstein congruences for the Klingen parabolic subgroup
of GSp4 [BD, §6].

Note that Ek
2,1(f) is a Hecke eigenform, and the eigenvalue of T (p) is ap(f)(1 +

pk−2), in fact its spinor L-function (defined in terms of Hecke eigenvalues just
as for the cuspidal case) is L(s, Ek

2,1(f), Spin) = L(s, f)L(s − (k − 2), f). Then

L(s, f ⊗Ek
2,1(f)) = L(s, f ⊗ f)L(s− (k− 2), f ⊗ f). Since L(s, f ⊗ f) = ζ(s− (k−

1))L(s, Sym2f), we find that

L(s, f ⊗Ek
2,1(f)) = ζ(s− (k− 1))ζ(s− (2k− 3))L(s, Sym2f)L(s− (k− 2), Sym2f).

Because of the factor ζ(s − (k − 1)) on the right hand side, L(s, f ⊗ Ek
2,1(f)) has

a pole at s = k. The mod q congruence of Hecke eigenvalues between Ek
2,1(f)

and F , hence between coefficients of the Dirichlet series for L(s, f ⊗ Ek
2,1(f)) and

L(s, f ⊗ F ), might lead one roughly to expect that the pole of L(s, f ⊗ Ek
2,1(f))

at the leftmost critical point s = k (for L(s, f ⊗ F )) should cause a pole mod q
of Lalg(k, f ⊗ F ), i.e. a factor of q in its denominator, hence by the functional
equation also in the denominator of the rightmost critical value Lalg(2k−3, f ⊗F ).
As noted already, the exact meaning of algebraic part is ambiguous, but we should

detect the factor q in the denominator of L(2k−3,f⊗F )
π8L(2k−5,f⊗F ) .

The observant reader may have noticed that strictly-speaking, the claim in the
previous paragraph about ords=kL(s, E

k
2,1(f)) is incorrect. At s = k the factor

L(s− (k− 2), Sym2f) actually has a “trivial” zero (because 2 is even, in the range
1 ≤ t ≤ k − 1, not a critical point), which cancels the pole of ζ(s − (k − 1)) in
the product expression for L(s, Ek

2,1(f), Spin). But at s = k + 4, ζ(s− (k − 1)) no

longer has a pole, while L(s− (k − 2), Sym2f) still has a zero to cancel the one at
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s = k (when dividing L(k, f ⊗ F ) by L(k + 4, f ⊗ F )), so we can still argue that

maybe we should see a factor q in the denominator of L(2k−3,f⊗F )
π16L(2k−7,f⊗F ) . (We consider

L(2k−7, f⊗F ) rather than L(2k−5, f⊗F ) for a technical reason that will emerge
in §7.)

4. Expected consequences of congruences revisited: the Bloch-Kato
conjecture

4.1. Statement of the conjecture. Recall the rank-8 motiveM =Mf⊗MF such
that L(M, s) = L(f ⊗F, s). (We shall assume at least the existence of a premotivic
structure comprising realisations and comparison isomorphisms, as defined in [DFG,
1.1.1].) For simplicity suppose that the coefficient field is Q. Let q > 3k − 3 be a
prime number. Choose a Z(q)-lattice TB in the Betti realisation MB in such a way

that Tq := TB ⊗ Zq is a Gal(Q/Q)-invariant lattice in the q-adic realisation Mq.
Then choose a Z(q)-lattice TdR in the de Rham realisation MdR in such a way that

V(TdR ⊗ Zq) = Tq

as Gal(Qq/Qq)-representations, where V is the version of the Fontaine-Lafaille func-
tor used in [DFG]. Since V only applies to filtered φ-modules, where φ is the
crystalline Frobenius, TdR must be φ-stable. Anyway, this choice ensures that the
q-part of the Tamagawa factor at q is trivial (by [BK, Theorem 4.1(iii)]), thus sim-
plifying the Bloch-Kato conjecture below. The condition q > 3k − 3 ensures that
the condition (*) in [BK, Theorem 4.1(iii)] holds.

Let t be a critical point at which we evaluate the L-function. Let M(t) be
the corresponding Tate twist of the motive. Let Ω(t) be a Deligne period scaled
according to the above choice, i.e. the determinant of the isomorphism

M(t)+B ⊗ C ≃ (M(t)dR/Fil
0)⊗ C,

calculated with respect to bases of (2πi)tT
(−1)t

B and TdR/Fil
t, so well-defined up to

Z×
(q).

The following formulation of the (q-part of the) Bloch-Kato conjecture, as applied
to this situation, is based on [DFG, (59)] (where however there is a non-empty finite
set Σ of “bad” primes), using the exact sequence in their Lemma 2.1.

Conjecture 4.1 (Bloch-Kato).

ordq

(

L(M, t)

Ω(t)

)

= ordq

(

#H1
f (Q, T

∗
q (1− t)⊗ (Qq/Zq))

#H0(Q, T ∗
q (1− t)⊗ (Qq/Zq))#H0(Q, Tq(t)⊗ (Qq/Zq))

)

.

Here, T ∗
q = HomZq

(Tq,Zq), with the dual action of Gal(Q/Q). This is an invari-
ant Zq-lattice in M∗

q ≃Mq(3k − 4), so T ∗
q (1− t) is a lattice in Mq(3k − 3− t). On

the right hand side, in the numerator, is a Bloch-Kato Selmer group, the subscript
“f” denoting conditions on the local restrictions to H1(Qp, T

∗
q (1 − t) ⊗ (Qq/Zq))

(unramified at p 6= q, crystalline at p = q) for all finite primes p (since for us Σ is
empty).
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4.2. Global torsion and Kurokawa-Mizumoto type congruences. We revisit
the situation of §3. Recall that λF (p) denotes the eigenvalue of the genus-2 Hecke
operator T (p) acting on the cuspidal eigenform F . The q-adic realisations Mf,q

and MF,q should be 2-and 4-dimensional Qq vector spaces with continuous linear

actions ρf , ρF of Gal(Q/Q), crystalline at q, unramified at all primes p 6= q. For
primes p 6= q, we should have

ap(f) = Tr(ρf (Frob
−1
p )) and λF (p) = Tr(ρF (Frob

−1
p )).

Galois representations with these properties are known to exist, by theorems of
Deligne and Weissauer [De2, We]. By Poincaré duality, M∗

f,q ≃ Mf,q(k − 1) and

M∗
F,q ≃MF,q(2k− 3). Choosing Gal(Q/Q)-invariant Zq-lattices in Mf,q and MF,q,

then reducing mod q, we obtain residual representations ρf and ρF . We suppose
that (as in Example 1) ρf is irreducible, in which case it is independent of the
choice of lattice in Mf,q. The congruence

λF (p) ≡ ap(f)(1 + pk−2) (mod q),

interpreted as a congruence of traces of Frobenius, implies that the composition
factors of ρF are ρf and ρf (2− k). Which is a submodule and which is a quotient
will depend on the choice of lattice in MF,q.

Looking at the denominator of the Bloch-Kato formula, with Tq the tensor prod-

uct of the Zq-lattices referred to above, on which Gal(Q/Q) acts by ρf⊗ρF ≃ ρ∗f (1−
k)⊗ρF , the q-torsion in H0(Q, Tq(t)⊗(Qq/Zq)) is (ρ

∗
f⊗ρF (t+1−k))Gal(Q/Q), which

is HomFq [Gal(Q/Q)](ρf , ρF (t + 1 − k)). This is the same as HomFq [Gal(Q/Q)](ρf (2 −
k), ρF (t+3−2k)). This can be non-trivial only for t ≡ k−1 (mod q−1) (if ρf is a
submodule of ρF ) or for t ≡ 2k−3 (mod q−1) (if ρf (2−k) is a submodule of ρF ).
The only such t in the critical range k ≤ t ≤ 2k − 3 (using q > 2k) is t = 2k − 3.
So, with a suitable choice of lattice, and t = 2k − 3, we can have a factor of q in

the denominator of the conjectural formula for L(M,t)
Ω(t) , which leads us to expect a

q in the denominator of L(2k−3,f⊗F )
π16L(2k−7,f⊗F ) .

This expectation is based upon the supposition that there is “no particular rea-
son” for H1

f (Q, T
∗
q (1− t)⊗ (Qq/Zq)) to be non-trivial when t = 2k− 3. One might

ask, what if we had chosen an unsuitable lattice, so that ρf (rather than ρf (2−k)) is
a submodule of ρF ? To account for the q in the denominator of L(2k−3,f⊗F )

π16L(2k−7,f⊗F ) , we

had better have some particular reason for H1
f (Q, T

∗
q (1− t)⊗ (Qq/Zq)) to be non-

trivial when t = 2k− 7. Indeed there is one. Since ρf ⊗ρF (k− 1) ≃ HomFq
(ρf , ρF )

has a trivial submodule Fq, ρf ⊗ ρF (k + 4) has a submodule isomorphic to Fq(5).

Now H1
f (Q,Zq(5)) is non-trivial, more-or-less by a construction of Soulé [So]. The

same would be true with q replaced by any other prime, and 5 by any odd integer
greater than 1. By reduction mod q we get an element of H1(Q,Fq(5)), which
maps to an element of H1(Q, ρf ⊗ ρF (k + 4)). But ρf ⊗ ρF (k + 4) is the q-torsion
in T ∗

q (1− t)⊗ (Qq/Zq) for t = 2k − 7 (since (k + 4) + (2k − 7) = 3k − 3), and one

ought thereby to get a non-zero element of H1
f (Q, T

∗
q (1− t)⊗ (Qq/Zq)).
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5. Pullback of a genus-5 Siegel Eisenstein series

Let dkn := dim(Sk
n) and let {h1, . . . , hdk

1
}, {H1, . . . , Hdk

2
} be orthogonal bases of

Hecke eigenforms for Sk
1 and Sk

2 respectively, the hj normalised. For basics on the
Saito-Kurokawa lift, see [vdG, §21].
Lemma 5.1. Let G ∈ Sk

2 be a Saito-Kurokawa lift of g ∈ S2k−2
1 (with k even).

For (τ, τ ′) ∈ H1 × H1, let Gτ (τ
′) := G(diag(τ, τ ′)), viewed as an element of Sk

1

depending on the parameter τ . Then for Z ′ ∈ H2,

Ek
2,1(Gτ )(Z

′) =

dk
1
∑

j=1

χj hj(τ)E
k
2,1(hj)(Z

′),

where the χj are defined by

G(diag(τ, τ ′)) =

dk
1
∑

j=1

χj hj(τ)hj(τ
′).

Proof. That G |H1×H1
has to be of the form

∑

χj hj ⊗ hj , with no hi ⊗ hj terms
for i 6= j, follows from [He2, Theorem 1.3]. Now one simply applies the Klingen-

Eisenstein lifting to both sides of Gτ (τ
′) =

∑dk
1

j=1 χj hj(τ)hj(τ
′) as functions of

τ ′. �

Remark. A theorem of Ichino [I, Theorem 2.1] expresses the central value of
the L-function L(Sym2(hj)⊗g, s) in terms of χj , as predicted by Gross and Prasad.

Lemma 5.2. Let G and Ek
2,1(Gτ ) be as in Lemma 5.1. Then for (τ, Z ′) ∈ H1×H2,

Ek
3,2(G)(diag(τ, Z

′))

= Ek
1 (τ)G(Z

′) +

dk
1
∑

j=1

χj hj(τ)E
k
2,1(hj)(Z

′) +

dk
1
∑

j=1

dk
2
∑

i=1

µijhj(τ)Hi(Z
′),

for certain coefficients µij.

Proof. From [He1, Theorem 2.3] we get

Ek
3,2(G)(diag(τ, Z

′)) = Ek
1 (τ)G(Z

′) + Ek
2,1(Gτ )(Z

′) +

dk
1
∑

j=1

dk
2
∑

i=1

µijhj(τ)Hi(Z
′).

Now substitute for Ek
2,1(Gτ )(Z

′), using Lemma 5.1. �

Lemma 5.3. For Z ∈ H2, W ∈ H3, E
k
5 (diag(Z,W )) = Ek

2 (Z)E
k
3 (W )

+Ck,1

dk
1
∑

j=1

Λ(hj)E
k
2,1(hj)(Z)E3,1(hj)(W ) + Ck,2

dk
2
∑

i=1

Λ(Hi)Hi(Z)E
k
3,2(Hi)(W ),

where Λ(hj) =
L(2k−2,Sym2hj)

ζ(k)ζ(2k−2)〈hj ,hj〉
, Λ(Hi) =

L(k−2,Hi,st)
ζ(k)ζ(2k−2)ζ(2k−4)〈Hi,Hi〉

, Ck,1 = 23−kikπ
(k−1) ,

Ck,2 = 28−2kπ3

(k−1) , and Hi is obtained from Hi by conjugating the Fourier coefficients.

This is due to Garrett and Böcherer. We use [G, §5 Theorem], getting the
coefficients (constants and “standard” L-values) from [BSY, Proposition 4.4] by
setting l = 0.
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Lemma 5.4. Let g,G be as in Lemma 5.1.

〈〈〈Ek
5 (diag(Z, τ, Z

′)), G(Z)〉hj(τ)〉Hi(Z
′)〉

=
214−6kπ6−2k((k − 3)!)2

(k − 1)(2k − 3)
〈ΦG

1 ,Φ
Hi

1 〉J
L(2k − 4, g)L(2k − 3, hj ⊗Hi)

ζ(k)ζ(2k − 2)ζ(2k − 4)
,

where ΦG
1 and ΦHi

1 are first Fourier-Jacobi coefficients, and 〈ΦG
1 ,Φ

Hi

1 〉J is their
inner product as Jacobi forms.

This is [He1, Theorem 5.1], with s = 0. Note that the condition k > 6 is
necessarily satisfied.

Lemma 5.5. In Lemma 5.2,

µij =
26−4kπ3−2k((k − 3)!)2〈ΦG

1 ,Φ
Hi

1 〉J L(2k − 3, hj ⊗Hi)

(2k − 3)ζ(k − 2)L(2k − 3, g)〈hj , hj〉 〈Hi, Hi〉
.

Proof. Using Lemma 5.3,

〈Ek
5 (diag(Z,W )), G(Z)〉 = Ck,2Λ(G)〈G,G〉Ek

3,2(G)(W )

(using G = G, which follows from the fact that the Fourier coefficients of g are
real). Using L(s,G, st) = ζ(s)L(s+ (k − 1), g)L(s+ (k − 2), g), this becomes

〈Ek
5 (diag(Z,W )), G(Z)〉 = Ck,2

ζ(k − 2)L(2k − 3, g)L(2k − 4, g)

ζ(k)ζ(2k − 2)ζ(2k − 4)
Ek

3,2(G)(W ).

Now restrictingW to (τ, Z ′) ∈ H1×H2, using Lemma 5.2 to substitute for Ek
3,2(G)(diag(τ, Z

′)),
and plugging it all into Lemma 5.4, we get

Ck,2
ζ(k − 2)L(2k − 3, g)L(2k − 4, g)

ζ(k)ζ(2k − 2)ζ(2k − 4)
µij〈hj , hj〉 〈Hi, Hi〉

=
214−6kπ6−2k((k − 3)!)2

(k − 1)(2k − 3)
〈ΦG

1 ,Φ
Hi

1 〉J
L(2k − 4, g)L(2k − 3, hj ⊗Hi)

ζ(k)ζ(2k − 2)ζ(2k − 4)
.

Recalling that Ck,2 = 28−2kπ3

(k−1) gives the desired result. �

Let T be the algebra generated over Z by all the operators T (p) and T (p2) on
Mk

2 . Given T ∈ T and a Hecke eigenform F ∈ Mk
2 , let λF (T ) be the eigenvalue of

T acting on F .

Lemma 5.6. Suppose that q > 2k is a prime number, q a divisor of q in a suffi-
ciently large coefficient field. Suppose that

(1) q ∤ BkB2k−2B2k−4;
(2) there is no Hecke eigenform Hi 6= G in Sk

2 such that λHi
(T ) ≡ λG(T )

(mod q) for all T ∈ T;
(3) there exist Hecke eigenforms h ∈ Sk

1 , H ∈ Sk
2 such that λEk

2,1(h)
(T ) ≡ λH(T )

(mod q) for all T ∈ T;
(4) there is no Hecke eigenform hj 6= h in Sk

1 such that ap(hj) ≡ ap(h) (mod q)
for all primes p;

(5) there is no Hecke eigenform Hi 6= H in Sk
2 such that λHi

(T ) ≡ λH(T )
(mod q) for all T ∈ T.

Then the Fourier coefficients of Λ(G)G(Z)(χh(τ)E2,1(h)(Z
′) + µh(τ)H(Z ′)) are

(up to a power of π) integral at q, where if h = hj0 and H = Hi0 then χ := χj0 and
µ := µi0j0 .
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Proof. Start with Ek
5 (diag(Z,W ))

= Ck,1

dk
1
∑

j=1

Λ(hj)E
k
2,1(hj)(Z)E3,1(hj)(W ) + Ck,2

dk
2
∑

i=1

Λ(Hi)Hi(Z)E
k
3,2(Hi)(W ),

from Lemma 5.3. It follows from [Ha, Theorem 4.14] and from [B, (5.3)–(5.5),
Proposition 3.4], given q > 2k and q ∤ BkB2k−2B2k−4, that the Fourier coefficients
of Ek

5 (which Siegel proved are rational) are integral at q. This remains true after
restriction to the diagonal.

Now we apply elements of Hecke algebras to kill unwanted terms on the right
while preserving integrality at q on the left. For any prime p, λEk

2,1(hj)(p) =

ap(hj)(1 + pk−2). Reading this (mod q), it is the trace of a Frobenius element

Frob−1
p on a Galois representation with irreducible composition factors ρhj

and

ρhj
(2 − k) (both 2-dimensional), where ρhj

is the representation in characteris-

tic q attached to hj . This ρhj
is irreducible since q > k and q ∤ Bk. On the

other hand, λG(p) = ap(g) + pk−1 + pk−2 is a trace of Frobenius on a representa-
tion with composition factors of dimensions 2, 1, 1. So we cannot have a (mod q)
congruence of Hecke eigenvalues between G and any E2,1(hj). For each j choose
Tj ∈ T such that cj := λG(Tj) − λEk

2,1(hj)(Tj) is not divisible by q. Now applying
∏dk

1
j=1(Tj − λEk

2,1(hj)(Tj)) to both sides (in the variable Z) maintains q-integrality

on the left (by [An, (2.1.11)]), and kills all the terms in the first sum on the

right, while multiplying the term Λ(G)G(Z)Ek
3,2(G) by

∏dk
1

j=1 cj , which is not di-

visible by q. Similarly, by (2) we may choose T ′
i ∈ T for each i 6= i0, such that

ei := λG(T
′
i )−λHi

(T ′
i ) is not divisible by q, then apply

∏dk
2

i=1,i 6=i0
(T ′

i −λHi
(T ′

i )) (in

the variable Z) to kill all the Hi(Z) terms for Hi 6= G.
What remains on the right hand side is Ck,2

∏

cj
∏

ei Λ(G)G(Z)E
k
3,2(G). We

may divide out the factor Ck,2

∏

cj
∏

ei without disturbing integrality at q. Thus
Λ(G)G(Z)Ek

3,2(G) has Fourier coefficients which are (up to a power of π) integral

at q. Lemma 5.2 says that Ek
3,2(G)(diag(τ, Z

′))

= Ek
1 (τ)G(Z

′) +

dk
1
∑

j=1

χj hj(τ)E
k
2,1(hj)(Z

′) +

dk
1
∑

j=1

dk
2
∑

i=1

µijhj(τ)Hi(Z
′).

Now similarly using (4) and (5) we may apply elements of Hecke algebras to func-
tions of τ and functions of Z ′ to kill all the hj 6= h and Hi 6= H terms, without
introducing any factor divisible by q, and using q ∤ Bk we know that h 6≡ Ek

(mod q), so may likewise kill the Ek
1 term. The lemma follows. �

As in [DIK], we define, for each 1 ≤ t ≤ 2k − 3, Lalg(t, g) =
L(t,g)

(2πi)tΩ(−1)t
, where

Ω± are certain carefully scaled Deligne periods. We also define Lalg(k− 1, g, χD) =
L(k−1,g,χD)

τ(χD)(2πi)k−1Ω−
, where D is any negative fundamental discriminant, χD =

(

D
·

)

the associated quadratic Dirichlet character, L(s, g, χD) the twisted L-function,
and τ(χD) a Gauss sum.

Proposition 5.7. Suppose that the prime q satisfies all the conditions of Lemma
5.6, and that G and H as above are scaled to have all their Fourier coefficients
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integral at q, but not all divisible by q. (These scalings determine those of χ and
µ.) Suppose that then (neglecting powers of π)

(1) ordq(χ) = 0;
(2) ordq(Bk−2) = 0;
(3) ordqLalg(t, g) ≥ 0 for all 1 ≤ t ≤ 2k − 3;
(4) there exists a fundamental discriminant D < 0 with

ordq(|D|k−1Lalg(k − 1, g, χD)) = 0;

(5) there exists a fundamental discriminant D′ < 0 with q ∤ D′ and

ordq(L(2− k, χD′)L(k − 1, h)L(k − 1, h, χD′)/〈h, h〉) = 0;

(6) ordq

(

Lalg(2k−2,Sym2h)
〈h,h〉

)

> 0.

Then ordq(µ) < 0, where

µ =
26−4kπ3−2k((k − 3)!)2〈ΦG

1 ,Φ
H
1 〉J L(2k − 3, h⊗H)

(2k − 3)ζ(k − 2)L(2k − 3, g)〈h, h〉 〈H,H〉 .

Note in particular that this implies that 〈ΦG
1 ,Φ

H
1 〉J 6= 0, an instance of something

in general not known to be true.

Proof. Using results of Kohnen, Skoruppa and Zagier [KS, KZ], as in [DIK, (5)],

Λ(G) =
π4k−7ζ(k − 2)Lalg(2k − 3, g)Lalg(2k − 4, g) |D|k−1 Lalg(k − 1, g, χD)

ζ(k)ζ(2k − 2)ζ(2k − 4)c(|D|)2 Lalg(k, g)c(g)
.

Here c(g) is a certain integral “congruence ideal” which, thanks to condition (4)
in Lemma 5.6, is not divisible by q. Though D < 0 could be any fundamental
discriminant, we choose it as in condition (4). The coefficient c(|D|) comes from
g̃ =

∑

c(n)qn ∈ Sk−1/2(Γ0(4))
+, a Hecke eigenform in the Kohnen plus space,

corresponding to g under the Kohnen-Shimura correspondence. This g̃ is only
defined up to scalar multiples, and its scaling determines that of the Saito-Kurokawa
lift G. As in [DIK, Lemma 6.2] we may scale it so that all the Fourier coefficients
lie in the number field generated by those of g, and they are integral at q, with
ordq(c(|D|)) = 0. Moreover then all the Fourier coefficients of G are integral at q,
and if we choose S = SD so that −4 det(SD) = D then ordq(a(SD, G)) = 0, so G
is now scaled as in the statement of the proposition. We have used conditions (3)
and (4). Using also condition (2), and condition (1) from Lemma 5.6, we have

ordq(π
3Λ(G) a(SD, G)) = 0.

Now [Mi2, Theorem 1] tells us that a(SD′ , E2,1(h)) =

(−1)k/2
(k − 1)!

(2k − 2)!
(2π)k−1 |D′|k−3/2 L(k − 1, χD′)

L(2k − 2, Sym2 h)
L(k − 1, h)L(k − 1, h, χD′).

Using conditions (5) and (6), it follows that

ordq(a(SD′ , E2,1(h))) < 0.

Combining this with the result of the previous paragraph, and (1), we see that
the coefficient of e(Tr(SDZ) + τ + Tr(SD′Z ′)) in Λ(G)G(Z)χh(τ)E2,1(h)(Z

′) is
not integral at q. It follows from Lemma 5.6 that the coefficient of e(Tr(SDZ) +
τ + Tr(SD′Z ′)) in Λ(G)G(Z)µh(τ)H(Z ′)) is not integral at q either, hence that
ordq(µ) < 0, as required. �
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We found above that ordq(π
3Λ(G)) = 0. Putting µ̃ := π3Λ(G)µ and substituting

Λ(G) = ζ(k−2)L(2k−3,g)L(2k−4,g)
ζ(k)ζ(2k−2)ζ(2k−4)〈G,G〉 , we obtain

Corollary 5.8. ordq(µ̃) < 0, where

µ̃ =
26−4kπ6−2k((k − 3)!)2〈ΦG

1 ,Φ
H
1 〉J L(2k − 4, g)L(2k − 3, h⊗H)

(2k − 3)ζ(k)ζ(2k − 2)ζ(2k − 4)〈G,G〉 〈h, h〉 〈H,H〉 .

6. A non-rightmost critical value

Lemma 6.1. Let g,G be as in Lemma 5.1, and k > 14. Then

〈〈〈Ek
5 (diag(Z, τ, Z

′),−4), G(Z)〉h(τ)〉H(Z ′)〉

=
239−6kπ10−2k((k − 7)!)2(2k − 9)(2k − 8)〈ΦG

1 ,Φ
H
1 〉J L(2k − 12, g)L(2k − 7, h⊗H)

ζ(k − 8)ζ(2k − 18)ζ(2k − 20)

This is [He1, Theorem 5.1], with s = −4, and is the essential ingredient in the
proof of the following proposition.

Proposition 6.2. With notation and assumptions as above, suppose also that q ∤
Bk−8B2k−18B2k−20. Then ordq(κ) ≥ 0, where κ

=
239−6kπ10−2k((k − 7)!)2(2k − 9)(2k − 8)〈ΦG

1 ,Φ
H
1 〉J L(2k − 12, g)L(2k − 7, h⊗H)

ζ(k − 8)ζ(2k − 18)ζ(2k − 20)〈G,G〉 〈h, h〉 〈H,H〉 .

To actually prove the proposition is somewhat technical, since Ek
5 (Z,−4) is only

a nearly holomorphic modular form. We will deal with this in the last section,
below. Here, assuming the truth of the proposition, we deduce the main theorem
of the paper.

Theorem 6.3. Suppose that q > 2k is a prime number, k > 14, q a divisor of q in
a sufficiently large coefficient field. Suppose that

(1) there exist Hecke eigenforms h ∈ Sk
1 , H ∈ Sk

2 such that

ordq

(

L(2k − 2, Sym2h)

〈h, h〉

)

> 0

and λEk
2,1(h)

(T ) ≡ λH(T ) (mod q) for all T ∈ T;

(2) there is no Hecke eigenform hj 6= h in Sk
1 such that ap(hj) ≡ ap(h) (mod q)

for all primes p;
(3) there is no Hecke eigenform Hi 6= H in Sk

2 such that λHi
(T ) ≡ λH(T )

(mod q) for all T ∈ T;
(4) q ∤ Bk−8Bk−2BkB2k−20B2k−18B2k−4B2k−2;
(5) there exists a fundamental discriminant D′ < 0 with q ∤ D′ and

ordq(L(2− k, χD′)L(k − 1, h)L(k − 1, h, χD′)/〈h, h〉) = 0;

Suppose also that there exist a Hecke eigenform g ∈ S2k−2
1 and its Saito-

Kurokawa lift G ∈ Sk
2 , such that

(6) there is no Hecke eigenform Hi 6= G in Sk
2 such that λHi

(T ) ≡ λG(T )
(mod q) for all T ∈ T;

(7) ordqLalg(t, g) ≥ 0 for all 1 ≤ t ≤ 2k − 3, with ordqLalg(2k − 4, g) = 0;
(8) there exists a fundamental discriminant D < 0 with

ordq(|D|k−1Lalg(k − 1, g, χD)) = 0;
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(9) ordq(χ) = 0, with χ as in Lemma 5.6 and Proposition 5.7 (ultimately from
Lemma 5.1).

Then ordq

(

L(2k−3,h⊗H)
π16L(2k−7,h⊗H)

)

< 0.

Proof. Dividing Corollary 5.8 by Proposition 6.2 makes several unwanted factors
cancel, and using q > 2k to eliminate the linear factors in k leaves us with

ordq

(

22k−33π−4ζ(k − 8)ζ(2k − 18)ζ(2k − 20)L(2k − 4, g)L(2k − 3, h⊗H)

ζ(k)ζ(2k − 2)ζ(2k − 4)L(2k − 12, g)L(2k − 7, h⊗H)

)

< 0.

Now using the conditions (4) and (7), we may ignore most of the other factors too,
yielding the theorem. �

6.1. A numerical example. Let k = 20, so 2k − 2 = 38, and let q = 71. We
check the conditions of Theorem 6.3. Certainly q > 2k and k > 14.

We take h = q + 456q2 + 50652q3 + . . ., the normalised generator of the 1-

dimensional space S20
1 . The value

Lalg(2k−2,Sym2h)
〈h,h〉 may be computed by a method

of Zagier [Z], and is 232.712

318.59.73.112.132.172.19.23.29.31.37.283.617 , as in [Du1]. Kurokawa

[K2] computed a basis of Hecke eigenforms {χ(1)
20 , χ

(2)
20 , χ

(3)
20 } for S20

2 , where χ
(1)
20 , χ

(2)
20

are Saito-Kurokawa lifts. Letting H = χ
(3)
20 , he proved a congruence λE20

2,1(h)
(T ) ≡

λH(T ) (mod 712) for all T ∈ T [K1]. Condition (2) is automatically satisfied, since
dimS20

1 = 1, and (3) is easily checked using Kurokawa’s computations of Hecke
eigenvalues. For (4), one may check, using a computer package such as Maple, that
none of B12, B18, B20, B22, B36 or B38 is divisible by 71.

Using the command LRatio in the computer package Magma, Lalg(19, h) =
22·35·5·72·11·13·17

283·617 and Lalg(19, h, χ−3) = 26·5·73·11·13·17·19
3 . Computing in Maple,

L(−18, χ−3) = −B19,χ−3
/19 = −318

19 (B19(1/3)−B19(2/3)) =
−2·7·19·7691·8609

3 . Con-
dition (5) follows.

The space S38
1 is spanned by Hecke eigenforms

g1 = q + (−97200 + 48
√
63737521)q2 + . . . ,

g2 = q + (−97200− 48
√
63737521)q2 + . . . ,

let’s say g = g1. From computations in [K2], G := χ
(1)
20 and χ

(2)
20 are Saito-Kurokawa

lifts of g1, g2 respectively. Condition (6) may be checked using Kurokawa’s results.
The odd part of the norm of Lalg(t, g), for 1 ≤ t ≤ 37 may be computed in Magma
using LRatio, hence (7) may be verified. Similarly, the odd part of the norm of

Lalg(19, g, χ−3) is 3
37 · 52 · 7 · 11 · 132 · 172 · 192, hence (8). Finally G = χ

(1)
20 is scaled

the right way (Fourier coefficients integral and not all divisible by 71). Recalling
the formula

G(diag(τ, τ ′)) =

dk
1
∑

j=1

χj hj(τ)hj(τ
′),

where here d201 = 1, and noting that χ is then the coefficient of e2πiτe2πiτ
′

in
G(diag(τ, τ ′)), we find that

χ = a(A0, G) + a(A1, G),
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where A0 =

(

1 0
0 1

)

and A1 =

(

1 1/2
1/2 1

)

. By calculations of Katsurada [Ka, §4],

if θ = (−2025 +
√
63737521)/2 then a(A0, G) = −5092 − θ = −8159 −

√
63737521

and a(A1, G) = −20(4816 + θ) = −76070 − 10
√
63737521. Hence χ = −84589 −

11
√
63737521, an algebraic integer with norm −26 · 3 · 5 · 59 · 9833, which is not

divisible by 71. Hence (9) is satisfied. We have confirmed that Theorem 6.3 is
applicable to this example.

7. Proof of Proposition 6.2

7.1. Nearly holomorphic modular forms.

Definition 7.1. A C∞ function f : Hn → C is said to be a nearly holomorphic
modular form of weight k and degree d (for Γn) if

(1) f is a polynomial of degree d in the entries of Y −1, with coefficients holo-
morphic functions on Hn;

(2) f | γ = f , for all γ ∈ Γn.
(3) If n = 1 then the Fourier expansion of f is as below, i.e. with only non-

negative A occurring.

For a fixed, n, k and d, the set of all such f is a finite-dimensional space, denoted
N k,d

n . We have

Mk
n = N k,0

n ⊆ N k,1
n ⊆ N k,2

n ⊆ . . .

Let N k
n := ∪d≥0N k,d

n . Any f ∈ N k,d
n has a Fourier expansion

f(Z) = (det(πY ))−d
∑

A≥0

pA(πY )qA,

where qA := e(Tr(AZ)), and pA(Y ) ∈ C[Y ] := C[Y11, Y12, . . . , Ynn]. Given p(Y ) ∈
C[Y ], p(Y ) =

∑

α cαY
α where α = (α11, α12, . . . , αnn) ∈ Nn2

and Y α =
∏

i,j Y
αij

ij ;

we also use |α| =∑i,j αij .

Definition 7.2. Given f ∈ N k,d
n with Fourier expansion as above, if all the

pA(Y ) ∈ R[Y ], for R some subring of C, we write f ∈ N k,d
n,R. If q is a prime

number and R = Z(q) (localisation), we say that f is q-integral.

7.2. Shimura-Maass operators.

Definition 7.3. Let
∂

∂Zab
=

1

2

∂

∂Xab
− i

2

∂

∂Yab
∂

∂Zab

=
1

2

∂

∂Xab
+
i

2

∂

∂Yab

Definition 7.4. Let ∂n,k be the Shimura-Maass differential operator

∂n,k = (2πi)−n(det(Y ))
n−1
2 −k

∣

∣

∣

∣

d

dZ

∣

∣

∣

∣

(det(Y ))k−
n−1
2

where
∣

∣

d
dZ

∣

∣ = det

(

(

1+δba
2

∂
∂Zab

)

1≤a,b≤n

)

. Further, put

∂µn,k = ∂n,k+2µ−2 ◦ . . . ∂n,k+2 ◦ ∂n,k
Proposition 7.5. (1) ∂µn,k(N k,d

n ) ⊆ N k+2µ,d+nµ
n ;
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(2) If Z[1/2] ⊆ R then ∂µn,k(N
k,d
n,R) ⊆ N k+2µ,d+nµ

n,R .

Proof. (1) The statement about weights was proved by Maass[Ma, §19]. Böcherer
and Heim [BH2, p.490] indicate how the statement about degrees may be
deduced from results of Shimura [Sh]. Alternatively, it is a direct conse-
quence of an explicit formula of Courtieu and Panchishkin for the action of
∂n,k on Fourier expansions [CP, Theorem 3.14].

(2) This may be proved by an elementary computation of the effect of each
constituent ∂

∂Zab
on a term of the form (det(πY ))−d−vrA(πY )qA, noting

that the entries of A lie in Z[1/2].
�

Proposition 7.6. Let k > n+ 1 be even and 0 ≤ v < k
2 − n+1

2 an integer. Then

Ek
n(Z,−v) = (−4π)nv





v
∏

j=1

n−1
∏

l=0

(

k − v − j − l

2

)





−1

∂vn,k−2vE
k−2v
n (Z, 0).

This follows from work of Maass [Ma, §19]. As already noted during the proof
of Lemma 5.6, if q > 2k and q ∤ BkB2k−2B2k−4 then Ek

5 is integral at q.

Corollary 7.7. With k, v as above, π−nvEk
n(Z,−v) ∈ N k,nv

n . Suppose further that
q ∤ Bk−2vB2k−4v−2B2k−4v−4 and that q > 2k− 4v. Then π−5vEk

5 (Z,−v) is integral
at q.

7.3. Diagonal restriction. The following is no doubt well-known to experts, but
we include a proof.

Lemma 7.8. Let n = n1 + n2. Suppose that f ∈ N k,d
n . Then, restricting to the

block diagonal,
f |Hn1×Hn2

∈ N k,d
n1

⊗N k,d
n2
.

Proof. If we fix W ∈ Hn2 then Z 7→ f(Z,W ) is an element of N k,d
n1

. Since this
space is finite dimensional, we can find a finite basis (φi)i≤l and

f(Z,W ) =

l
∑

i=1

ci(W )φi(Z)

for some coefficients ci(W ) not depending on Z. Fix some Z1, . . . , Zl ∈ Hn1 and
write the system







f(Z1,W )
...

f(Zl,W )






=







φ1(Z1) . . . φl(Z1)
...

...
φ1(Zl) . . . φl(Zl)













c1(W )
...

cl(W )







If the central matrix is invertible, we can multiple by its inverse and read (from the
q-th line)

cq(W ) =

l
∑

i=1

di(Z1, . . . , Zl)f(Zi,W )

where di(Z1, . . . , Zl) are complex coefficients (depending on the choice of Zi), show-
ing that each W 7→ cq(W ) is an element of N k,d

n2
, as required.

We can prove by an inductive process that it is possible to choose Z1, . . . , Zl in
such a way that the matrix is invertible. First, since φ1 6= 0 we can choose Z1 so
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that φ1(Z1) 6= 0. For the last step, supposing that







φ1(Z1) . . . φl−1(Z1)
...

...
φ1(Zl−1) . . . φl−1(Zl−1)







is invertible, its columns {c1, . . . , cl−1} form a basis for Cl−1, so






φl(Z1)
...

φl(Zl−1)






=

l−1
∑

j=1

αjcj , for some c1, . . . , cl−1 ∈ C.

Since {φ1, . . . , φl} is linearly independent, we may choose some Zl such that φl(Zl) 6=
∑l−1

j=1 αjφj(Zl), then the l-by-l matrix is invertible. �

7.4. Holomorphic projection.

Definition 7.9. For n ∈ N>0 and s ∈ C, let Γn(s) be the generalized Γ function

Γn(s) = π
n(n−1)

4

n−1
∏

j=0

Γ

(

s− j

2

)

For n = 1 we have Γ1(s) = Γ(s).

Let ΩY
n be the space of positive-definite real symmetric n-by-n matrices, i.e. the

space of imaginary parts of elements of Hn. Let Ω
X
n be the space of real symmetric

n-by-n matrices, each of whose entries is strictly less than 1
2 in absolute value.

Proposition 7.10. The generalized Γ function admits the integral formula

Γn

(

v +
n+ 1

2

)

= det(A)−v−n+1
2

∫

ΩY
n

e−tr(AY ) det(Y )vdY.

For a proof, see [Kl, §6 Lemma 2].

Definition 7.11. f ∈ N k
n is said to be of bounded growth if, for every ε > 0,

∫

ΩX
n

∫

ΩY
n

|f(Z)|e−ε tr(Y ) det(Y )k−1−n dY dX <∞.

The following proposition is due to Sturm [St, Theorem 1].

Proposition 7.12. Suppose that f ∈ N k
n is of bounded growth, with k > 2n. If

f(Z) =
∑

A≥0

fA(Y )qA,

define

Hol f :=
∑

A>0

f̃Aq
A,

where

f̃A =
πn(k−n+1

2 )

Γn(k − n+1
2 )

det(4A)k−
n+1
2

∫

ΩY
n

fA(Y )e−4πtr(AY ) det(Y )k−n−1 dY.

Then Hol f ∈ Sk
n and

〈Hol f, g〉 = 〈f, g〉 ∀g ∈ Sk
n.
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Lemma 7.13. If fA(Y ) = (det(πY ))−d
∑

α c(A,α)(πY )α then f̃A =
∑

α c(A,α)M(A,α),
where

M(A,α) =
πn(k−n+1

2 −d)

Γn(k − n+1
2 )

det(4A)k−
n+1
2

∫

ΩY
n

(πY )αe−4πtr(AY ) det(Y )k−n−d−1 dY

is integral at q for any odd prime q > 2k − (n+ 4).

Proof. Let
(

− d

dA

)α

=
∏

l≤j

(−1)αjl
∂αjl

∂A
αjl

jl

,

so clearly
(

− d

dA

)α

e−tr(AY ) = Y αe−tr(AY ).

Hence
∫

ΩY
n

Y αe−tr(AY ) det(Y )k−n−d−1 dY =

∫

ΩY
n

(

− d

dA

)α

e−tr(AY ) det(Y )k−n−d−1 dY

=

(

− d

dA

)α
(

det(A)k−n−d−1+n+1
2

)

Γn

(

k − n− d− 1 +
n+ 1

2

)

= cΓn

(

k − n− d− 1 +
n+ 1

2

)

, with c ∈ Z[1/2].

Making a change of variable Y 7→ 4πY , we get

M(A,α) = c 4−|α|−n(k−d−(n+1)/2) det(4A)k−
n+1
2

Γn(k − d− (n+ 1)/2)

Γn(k − (n+ 1)/2)
,

which is integral at q for any odd prime q > 2k − (n + 4), using Γ(s + 1) = sΓ(s)
and Definition 7.9. �

7.5. Completion of the proof. Putting n = 5, v = 4 in Corollary 7.7, and using

q ∤ Bk−8B2k−18B2k−20, we find that π−20Ek
5 (Z,−4) ∈ N k,20

5 , and is integral at q.
By repeated use of Lemma 7.8,

π−20Ek
5 (diag(Z, τ, Z

′),−4) =
∑

r,i,j

cr,i,jφr(Z)ψi(τ)φj(Z
′)

for some coefficients cr,i,j ∈ C, where {φr} and {ψi} are bases for N k,20
2 and N k,20

1

respectively. On the left hand side, the coefficient of each

(det(πY ))−20(πy)−20(det(πY ′))−20(πY )α(πy)a(πY ′))βe(Tr(AZ) +mτ +Tr(BZ ′))

is some C(A,α,m, a,B, β) ∈ Z(q).
We claim that each φr and ψi is of bounded growth, so has a holomorphic pro-

jection. We explain the argument for the φr. Replacing each term in the series by
its absolute value we find that |Ek

5 (Z,−4)| ≤ |H(Z, k,−4)|, where H(Z, k, b) is as in

[St, Corollary 1], which gives an upper bound |H(Z, k, b)| ≤ c1
∏5

j=1(λ
b
j + λ−b−k

j ),
with b = −4 and the λj the eigenvalues of Y . As in the proof of Lemma 7.8, each
φr(Z) can be expressed as a linear combination of the form

∑

p,q dp,qE
k
5 (Z, τp, Z

′
q,−4).

Fixing τ and Z ′ amounts to fixing λ3, λ4, λ5 (with a natural labelling). Hence in the
integral in Definition 7.11, the absolute value of the integrand is bounded above by
some c2 e

−ε(λ1+λ2)
∏2

j=1((λ
b
j + λ−b−k

j )λk−1−n
j ), with b = −4 and n = 2. As in the

proof of [St, Corollary 1], to get convergence of the integral we need both exponents
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of the λj , namely k+ b− n− 1 and −b− n− 1, to be strictly greater than −1. For
us n = 2, which is why b = −2 is not enough but b = −4 is sufficiently far to the
left, making the exponents k − 7 and 1.

Now we know that holomorphic projection is justified, by Proposition 7.12, let
Ξ(Z, τ, Z ′) :=

∑

r,i,j cr,i,jHolφr(Z)Holψi(τ)Holφj(Z
′). The coefficient of e(Tr(AZ)+

mτ +Tr(BZ ′)) in Ξ(Z, τ, Z ′) is
∑

α,a,β

M(A,α)M(m, a)M(B, β)C(A,α,m, a,B, β),

where M(A,α) etc. are given by Lemma 7.13. It follows that Ξ(Z, τ, Z ′) is in-
tegral at q. We may now proceed as in the proof of Lemma 5.6, but it is sim-
pler here because there are no non-cuspidal terms to deal with. We may expand
Ξ(Z, τ, Z ′) in terms of the Hr(Z)hi(τ)Hj(Z

′). Then, using elements of T to kill
all the other terms, we see that the coefficient of G(Z)h(τ)H(Z ′) is integral at
q. Since (up to a power of π) 〈〈〈Ξ(diag(Z, τ, Z ′), G(Z)〉h(τ)〉H(Z ′)〉 is the same
as 〈〈〈Ek

5 (diag(Z, τ, Z
′),−4), G(Z)〉h(τ)〉H(Z ′)〉, it follows from Lemma 6.1 that

ordq(κ) ≥ 0, as required.
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