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Temporal activity patterns of predators and prey across 1 

broad geographic scales 2 

Running title: Activity patterns of predator and prey 3 

Lay summary 4 

Predators align their hunting effort with the daily activity patterns of prey. Using large citizen-5 

science datasets, we show that bird-eating raptors hunt more at times when songbirds are active 6 

rather than when they are vulnerable. This behaviour is consistent over broader scales, with the 7 

same patterns observed for closely-related predators across two continents. Our finding provides 8 

insight into the ongoing arms race between predators and their prey. 9 

Abstract 10 

Predators and prey are locked in an evolutionary arms race that shapes their behaviour and life 11 

history. Predators target prey vulnerabilities to maximise hunting success, while prey trade-off 12 

foraging against predation avoidance. Though studies have demonstrated how predation risk 13 

can alter how prey allocate daily foraging effort, little work has considered the implications of 14 

this temporal component of behaviour from a predator’s perspective, or assessed its influence 15 

on broad-scale predator-prey interactions. We develop a method to compare daily activity 16 

patterns of avian predators and prey using data from two large citizen science datasets collected 17 

on different continents. Our analyses reveal evidence for convergent daily hunting strategies 18 

across avian predators, with distinct differences according to prey type. By comparing predator 19 

data with correspondent data from songbirds, our study suggests that predators (Accipiters) 20 

specialised to hunt songbirds match the activity patterns of their prey species. These results 21 

indicate predators have evolved common temporal hunting strategies to exploit temporal 22 

patterns in prey behaviour. 23 

Keywords: Hunting strategies, foraging behaviour, activity patterns, predator-prey interactions 24 
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 25 

Introduction 26 

Predators are a major selective force shaping the morphology, behaviour and life history of prey 27 

(Clements et al., 2016; Lima and Dill, 1990; Reznick and Endler, 1982; Sih, 1980). Through the 28 

act of foraging (hunting), predators themselves also drive prey adaptations – including changes 29 

in behaviour, that can subsequently make hunting more challenging (Gosler et al., 1995; 30 

Palkovacs and Post, 2008; Sih, 1984; Tambling et al., 2015). We therefore expect that predators 31 

should exploit fundamental limitations in their prey – such as to target opportunities where prey 32 

have limited ability to evolve counter-adaptations. Though predator-prey dynamics have been 33 

extensively studied for decades (Abrams, 2000), there is still little information available about 34 

foraging strategies of predators (Lima, 2002). For example, we don’t fully know when predators 35 

invest most effort in hunting. Characterising predator hunting behaviour, such as when they 36 

allocate effort, and linking this to prey behaviour, is an important step towards gaining a better 37 

understanding of predator-prey co-evolution (Dawkins and Krebs, 1979). 38 

 39 

Prey behavioural responses to predation have been widely explored from both theoretical and 40 

empirical perspectives (Lima, 1998; Lima and Dill, 1990; Sih, 1984; Sih and McCarthy, 2002). 41 

Studies have demonstrated how prey can trade-off predation risk against other benefits when 42 

making behavioural decisions (Lima and Dill, 1990), and adjust behaviour according to the 43 

level of risk (Helfman, 1989; Kotler et al., 2010). As predator-prey systems universally show 44 

temporal variation in predation risk (over daily (Metcalfe and Ure, 1995), lunar (Prugh and 45 

Golden, 2014) or seasonal (Sperry et al., 2008) cycles), many investigations of prey responses 46 

to predation risk have sought to understand the temporal aspect of anti-predator behaviour 47 

(Lima and Bednekoff, 1999b; Mirza et al., 2006). For example, theoretical studies have 48 

modelled the temporal strategies that songbirds can use to balance predation against starvation 49 

risk (Houston and Mcnamara, 1993; Lima, 1986; Mcnamara et al., 1994) (reviewed by Brodin 50 
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(2007)). These models predict that prey should use a bimodal feeding routine, with temporal 51 

peaks in feeding activity at dawn (to counter loss of energy stores overnight) and dusk (to avoid 52 

starving the following night). Empirical studies of wild songbirds partly support the prediction 53 

of models on bimodal feeding routines, showing that prey use temporally dynamic feeding 54 

strategies to (presumably) minimise predation risk (Macleod et al., 2005a; van der Veen, 1999)  55 

(though work by Bonter et al. (2013) refutes bimodal feeding). Recent empirical evidence 56 

points to the presence of a two-part foraging strategy; prey feed less and move more for the first 57 

half of the day whilst searching for food patches (Farine and Lang, 2013), then shift to 58 

exploiting (higher feeding rates) discovered patches later in the day (Bonter et al., 2013; 59 

Macleod et al., 2005b). Results from optimal sampling experiments support the presence of this 60 

two-part behaviour, as a discovery-exploitation strategy would function to find and consume the 61 

most profitable food patches (Krebs et al., 1978). Together, these findings demonstrate that prey 62 

species can change their foraging behaviour over the course of a day based on the presence of 63 

predators and starvation risk, and highlights the importance of the temporal component of their 64 

behaviour (Ferrari and Chivers, 2009; Lima and Bednekoff, 1999b; Matassa and Trussell, 65 

2014).  66 

 67 

Despite being well studied in avian prey (Ferrari et al., 2010; Kronfeld-Schor and Dayan, 2003; 68 

Matassa and Trussell, 2014; Mirza et al., 2006), our understanding of the temporal component 69 

of behaviour for their predators remain incomplete (Ferrari and Chivers, 2009). Two previous 70 

studies have qualitatively investigated temporal patterns of predator behaviour by using data 71 

from individually radio-tagged hawks in Europe (Newton, 2010) and North America (Roth II 72 

and Lima, 2007). The results of these studies differ; Newton (2010) reports that Eurasian 73 

sparrowhawk, Accipiter nisus, show a morning peak of activity, while Roth II and Lima (2007) 74 

found that Cooper’s hawk, Accipiter cooperii, exhibited bimodal peaks of activity at sunrise and 75 

sunset, and Sharp-shinned hawk, Accipiter striatus had low morning activity, higher activity 76 

during the day, and a pre-sunset peak. In both studies however, the apparent consensus was that 77 
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timing of predator behaviour appeared to be matched to the activity of prey. Though these 78 

tracking studies have improved our understanding of the temporal component of predator 79 

behaviour, the effort required for each capture of an individual for tagging limits the sample size 80 

(and thus spatial range) available to draw from. As a result, research has not fully explored the 81 

temporal behaviour of predators on wider population levels. Without a large-scale 82 

methodological technique for collecting directly comparable data across species and geographic 83 

ranges, we are unable to fully assess broad-scale interactions between predators and prey, 84 

limiting our ability to generate and test hypotheses about predator temporal hunting strategies. 85 

 86 

Here, we develop a broad-scale approach to quantify the temporal activity profile of predators, 87 

and to relate these patterns to the temporal profiles of prey activity. We utilise two large citizen-88 

science datasets of bird observations across the continental United States (herein North 89 

America) and Great Britain/Ireland to assess when avian predators allocate time to hunting. 90 

These datasets comprise ‘checklists’ of all the bird species observed during a timed observation 91 

period. We simplify checklists to focus on 16 species, chosen as the most common avian 92 

predators in each region, and their common avian prey species. As focal predators, we included 93 

species from three genera (Accipiter, Falco and Buteo), which characterise three functionally 94 

different predator groups. Accipiters are specialised in hunting almost exclusively birds 95 

(Gotmark and Post, 1996), whereas Falco and Buteo species have different primary prey types 96 

(predominantly mammals (Graham et al., 1995) and insects (Korpimäki, 1985)), and are 97 

included for comparative purposes. We then estimate the activity profiles of predator species 98 

alongside those of their prey.  99 

 100 

We hypothesise that diurnal predators could employ one of three hunting strategies for 101 

allocating hunting effort to exploit the temporal limitations of prey. Their strategies could target 102 

the times of the day when prey are most vulnerable due to (i) movement activity (when having 103 

to search for new food resources), (ii) feeding (when they have to accumulate fat), or (iii) the 104 
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environment (when they are least able to detect predators). Under a strategy that matches prey 105 

activity (i), predators should intensify hunting effort at times when prey are searching for new 106 

food resources, as the increased movement of prey increases the chance of encounter (Banks et 107 

al., 2000). Under a strategy that matches prey feeding (ii), predators should hunt more at times 108 

when prey are least vigilant, or least able to escape predators. Higher feeding rates result in 109 

decreased vigilance (Lima and Bednekoff, 1999a), and decreased manoeuvrability as a result of 110 

fat accumulation. From previous studies of songbirds, such feeding rates are usually observed to 111 

be constant or slowly increasing following dawn, sometimes with peaks shortly before sunset 112 

(Bonter et al., 2013; Brittingham and Temple, 1992), while body mass steadily increases over 113 

the day (and is thus greatest in the late afternoon) (Macleod et al., 2005b; Moiron et al., 2018). 114 

Finally, under a strategy that matches the environment (iii), predators should hunt most when 115 

the environment increases the chances of hunting success. Specifically, we hypothesise that low 116 

light conditions (during dusk or dawn) could impair the ability of prey to detect distant 117 

predators, thereby reducing the effectiveness of prey vigilance, whilst increasing the success 118 

rate of ambushes by diurnal predators that possess greater visual acuity (Heurich et al., 2016; 119 

Klinka and Reimchen, 2009; Lima, 1988). These three hypotheses represent quite different 120 

potential behavioural patterns that should have distinct temporal profiles. By identifying 121 

common temporal patterns within taxa and across countries on two different continents, and 122 

contrasting patterns between predator species according to prey type, we generate new insights 123 

into behavioural strategies of the predator-prey arms race. 124 

!125 

Methods 126 

Data Collection 127 

To source behavioural data for our analyses, we compiled datasets from two large publicly-128 

accessible databases: BirdTrack (Ireland/SOC/WOS, 2017. Available at: www.birdtrack.net) 129 

(collected across Great Britain/Ireland); and eBird (Sullivan et al., 2009) (collected globally but 130 
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here using data from the continental United States – herein North America). Both are citizen 131 

science projects where volunteers submit observations (in the form of checklists) of bird 132 

species, which are saved to a central database. In order to be able to account for varying hourly 133 

observer effort across the day, we only included records that were submitted with a start and 134 

stop time (i.e. had a checklist period). This start and stop time of each record was used to 135 

determine its observation period, and calculate hourly observation rates. 136 

 137 

We created unique datasets for each focal species (Table 1). First, we generated a complete list 138 

of all checklists available in the databases (BirdTrack: 2004 to 2016, eBird: 2002 to 2012). We 139 

then created a record that summarised each checklist in terms of the presence or absence of the 140 

focal species. Duplicate checklist records from a group of observers were excluded, retaining 141 

only the primary observer. Checklist count data per species was reduced to 1 for presence and 0 142 

for absence because we aimed to test activity, and the probability of observing the species as 143 

active was more informative than the number of individuals observed. We then trimmed each 144 

dataset to omit records with exceptionally long (>3 hours) or short (identical start/stop times) 145 

observation periods. Because we were interested in resolving temporal activity patterns, long 146 

observation periods were uninformative as our binning procedure (detailed below) means they 147 

contribute equally to most hours and therefore even out to have no effect on the results. 148 

Conversely, observations with the same start/stop time were likely to have been submitted as 149 

anecdotal sightings, which might be more likely to occur for uncommon species and thus could 150 

introduce a positively-biased observation probability for predator species. Species were selected 151 

based on being widespread across the majority of each continent and being predominantly 152 

present year-round. Equal geographic distribution of all predator and prey species across study 153 

areas was verified by plotting the location of all observations used in the analyses. 154 

 155 

Time Correction 156 
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To account for latitudinal differences in sunrise and sunset times, we modified the data to 157 

represent the time relative to the local sunrise and sunset times. Using the ‘suncalc’ function in 158 

the RAtmosphere package (Biavati, 2014) in R, we computed accurate local sunrise and sunset 159 

times at the location and date each observation. Using these location-specific sunrise/sunset 160 

times, we then calculated the mean monthly sunrise and sunset times across all observations, 161 

yielding a single value for the dawn and dusk of every month (separately for each data set). We 162 

then shifted all of the observation start and end times to have a common sunrise (for morning 163 

observations) and sunset (for afternoon observations) time, and avoiding situations where an 164 

observation that, at a given location, was made after sunrise (e.g. at 6:15am where sunrise at 165 

that location was 6am) ended up being modelled as occurring before sunrise (e.g. if the mean 166 

sunrise time was 6:30am, then the observation was shifted to 6:45am). That is, the start and end 167 

times were shifted to be correct relative to the mean monthly sunrise and sunset times, rather 168 

than using the raw observation time (which is only correct relative to the local sunrise and 169 

sunset times). 170 

 171 

Hourly Binning 172 

Because records represented the binary presence of the focal species, but could span more than 173 

one hourly period, we assigned sightings proportionately to the amount of time the observation 174 

period fell in each hourly period. For example, a record containing a sparrowhawk that started at 175 

09h40 and finished at 11h00 would contribute 0.25 of a sighting for the hour 09h00 (09h40-176 

10h00 – or one quarter of the total observation period), and 0.75 for the hour 10h00 (10h00-177 

11h00, three quarters of the total observation period). We then calculated the sum of these 178 

(fractional) observations from each hour. This hourly partitioning was conducted independently 179 

for each record of each species in the datasets. 180 

 181 

The number of sightings of a species in each hour is likely to be a function of not only that 182 

species’ activity profile, but also observer effort, which could vary across the time of day. In 183 
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order to correct for this, we used the complete set of trimmed records for the focal species, 184 

including both presence and absence records to generate a measure of total observer effort 185 

across time. First, we calculated how much of each hour the observer was active. For example, a 186 

(time-corrected) record from 09h40 to 11h00 would yield an effort value of 0.33 for 09h00 187 

(09h40-10h00 – one third of the hour), and an effort value of 1.0 for 10h00 (10h00-11h00 – the 188 

full hour). We then divided the hourly sum of the number of observations by the hourly sum of 189 

the observer effort to generate the probability of sighting the focal species per hour of observer 190 

effort (see sample of this methodological process in Figure S1 of Supplementary information). 191 

We interpret this probability as akin to an activity profile, as species have a higher/lower 192 

probability of being observed at higher/lower levels of movement activity – this has been shown 193 

in previous work where individual movement between sites correlates with higher detection 194 

rates (Farine and Lang, 2013). Because our hypotheses are based on time of day, which changes 195 

over the year, we calculated these probabilities separately for each month of the year.  196 

 197 

Permutation Test  198 

We used a permutation test to identify times of day in which observations of the focal species 199 

differed from the expectation by chance. Because our measure of interest was the probability of 200 

observing the focal species in a given hour, our aim was to generate a null distribution of the 201 

hourly probability of observation. We constructed the permutation test by randomly allocating 202 

the presence records for the focal species across all records in the dataset. That is, our input 203 

dataset contained one row representing each unique observation record, with a column 204 

containing the information on whether the focal species was observed in that record or not (a 205 

binary 0 or 1). Our permutation test shuffled this ‘observed’ column (thus maintaining both the 206 

number of observations of the focal species and the observer effort in time constant). After 207 

performing this re-allocation of presence data, we re-calculated the probability of sighting the 208 

focal species per hour of observation effort (as above) for each hour. We repeated this process 209 

1000 times for each focal species, and extracted the 95% range of the distribution for each hour. 210 
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This 95% range of random sampling data is shown by the grey polygons in Figure 1, and 211 

Figures S2-S17. 212 

 213 

Log-Ratio Differences from Random  214 

To make the non-random patterns in the activity profiles of species more directly comparable, 215 

we extracted the hours of the day (for each month) in which the observed probability was 216 

outside the range of permuted data. When the observed probability was above the 97.5% 217 

quantile, we plotted the area using a red polygon. When below the 2.5% quantile, we plotted the 218 

area as a blue polygon. We then generated a figure by plotting these monthly polygons overlaid 219 

in a stack per species. Because the ability for observations to differ from random changes at 220 

different baseline probabilities (i.e. the largest differences are possible at 0.5), we plotted these 221 

values on the y-axis as the log of the ratio between the observed and upper (for above) or lower 222 

(for below) 95% quantile. Because of seasonal changes in the mean sunrise and sunset times, 223 

we plotted all of the data relative to the mean sunrise and sunset time across the entire data 224 

(using the same procedure as described above to shift each month’s polygons). This allowed us 225 

to combine the observation probability curves for each species of predators and prey in North 226 

America (Figure 2a) and Great Britain/Ireland (Figure 2b) plotted on a common temporal axis 227 

without any effects of geographical or seasonal differences in day length, and removing any 228 

effects of seasonal differences in observability of species arising due to their migration outside 229 

of the area covered by our datasets. 230 

 231 

Predictive Modelling 232 

To test our ‘prey activity-matching’ hypothesis – how closely the daily activity pattern of 233 

different predators matches the daily activity pattern of prey, we developed a predictive model 234 

using a Gaussian process framework (Mann et al., 2011; Rasmussen, 2006). The predictive 235 

model enables us to quantitatively test how well the inferred activity profile for prey species 236 

predicts the inferred activity profile for predator species. We used all but one prey species from 237 
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each continent as training data to fit a Gaussian process model describing the activity profiles 238 

(the non-included species was chosen by selecting a species with a large geographical range; the 239 

results of our analyses were not affected by this choice). The fitted model describes a 240 

probability distribution over possible activity profiles, and is specified by a mean profile (the 241 

average amount of activity at each time) and a covariance matrix (the temporal correlations in 242 

activity). The mean profile was estimated by the sample mean of the training data, while the 243 

covariance matrix was estimated using shrinkage estimation (Schäfer and Strimmer, 2005). We 244 

then evaluated how well this model predicted the activity profile of each predator found on the 245 

same continent (the predictive probability of the predator profiles). We also evaluated the 246 

predictive probability for the remaining prey species as a baseline for each dataset (i.e. how well 247 

do prey species predict other prey species). To determine how much this prediction can be 248 

attributed to the precise temporal pattern of the activity profile, we compared the predictive 249 

power of the model trained on real data (using the original activity profiles) with a model 250 

trained on a set of all 18 possible time-shifted copies of the original training data (where the 251 

temporal position was shifted in time by 0 to 17 hours, preserving the overall shape of each 252 

activity profile and maintaining the same temporal autocorrelation in both datasets). We then 253 

plotted the resulting difference (reported as Log2 information gain). This difference shows how 254 

much more or less informative real data was than the shifted data. If predators match the activity 255 

of prey, then we expect that the prey patterns of activity should predict the activity patterns of 256 

their predators. Using bootstrap resampling on the 12 months of activity profiles for each test 257 

species and recalculating the information gain from these resampled data, we created 95% 258 

confidence intervals on the values of the information gain (using the 0.025 and 0.975 quantiles). 259 

Bootstrap resampling also provides an estimate of the p-value for each information gain, on the 260 

null hypothesis that information gain is 0. We report the information gain for each species 261 

separately, providing a quantitative test of the temporal difference in the activity profiles of 262 

predators and prey (Figure 3). We further explored how predictive power varied with the 263 

amount of shift, by plotting the increase/decrease in information for every possible iteration of 264 
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hourly shift used (Figures S18-S19). All analyses were carried out using R (R Development 265 

Core team, 2010). 266 

 267 

Results 268 

Our primary aim was to determine when avian predators allocate time to hunting, and how these 269 

activity patterns relate to the behavioural patterns of prey species. Hourly binning and 270 

permutation test analyses revealed consistent temporal variation in the probability of sighting 271 

focal species over the course of the day (black line, Figure 1, Figures S1-S17). We found that all 272 

analysed prey bird species from both North America (Figure 2a) and Great Britain/Ireland 273 

(Figure 2b) showed similar daily patterns of activity. These are marked by higher than random 274 

activity in the morning period (dawn to midday), peaking at approximately 08h00, and often 275 

declining in the afternoon onwards – consistent with empirical data collected by Farine & Lang 276 

(2013). While the above/below random patterns were consistent among all prey from each 277 

continent, the overall observation probability for prey species reflected variations in abundance, 278 

being higher for common species such great tit, chaffinch, house sparrow and American 279 

goldfinch, but lower for less common species like nuthatch and dark-eyed junco. There was also 280 

variance in the monthly observability of many prey species, with less pronounced daily patterns 281 

observed from May to August for North American species (notably during the autumn 282 

migration of dark-eyed junco – Figure S9), and from November to February for species from 283 

Great Britain/Ireland (detailed monthly prey results can be found in Figures S6-S9 and S13-284 

S17). Migration is apparent by the reduction in the probability of observations across the entire 285 

daytime period in months when the species has migrated. 286 

 287 

For predators, daily patterns of behaviour appeared to vary according to the type of prey 288 

specialisation, with species’ activity profiles differing more across genera than between 289 

continents (Figure 2). Accipiter species (A. nisus, A. cooperii and A. striatus) showed a higher 290 
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than random period of activity in the late morning. Buteo species (B. buteo and B. jamaicensis) 291 

showed a later and more extended period of higher than random activity, with a sharp increase 292 

before the peak, and a gradual decrease after it. Both Falco species (F. sparverius and F. 293 

tinnunculus) – much like the Buteo species – showed an extended period of higher than random 294 

activity around midday, but with a bimodal pattern: with one peak occurring in the middle of 295 

the day and another in the mid-afternoon. The general activity patterns of predators remained 296 

consistent between months. A. striatus, which is less abundant in North America throughout its  297 

migration period, showed less pronounced activity patterns during Autumn, but still retained 298 

consistent activity patterns for the rest of the year (detailed monthly predator results can be 299 

found in Figures S2-S5 and S10-S12). Overall, the daily activity profiles of Accipiter species on 300 

both continents appeared closely time-matched to the morning activity peak of their prey 301 

(Figure 2). In contrast, the activity of Falco and Buteo species appeared to be less closely 302 

matched to that of the prey bird species, as their activity peaked closer to the middle of the day. 303 

 304 

Our predictive modelling statistically showed how closely predator behaviour is matched to 305 

prey. Prey bird species had the greatest power when predicting the daily activity profile of the 306 

one remaining prey species per continent not included in the training data, P. domesticus 307 

(P≤0.001) and F. coelebs (P≤0.001), suggesting that prey species have generally similar daily 308 

patterns of activity. In line with our initial results of Figure 2, the prey bird species were 309 

significantly better than the shifted data in predicting the daily activity profiles of two of the 310 

Accipiter predators, A. nisus (P=0.004) and A. cooperii (P=0.007). An additional posthoc 311 

analysis examining the effect of each hour of timeshift suggested that Accipiter predators 312 

foraged predominantly at the same time as prey, but also up to two hours after the peak in prey 313 

activity (Figures S18-19). Comparatively, the activity profiles of three out of four Falco and 314 

Buteo predator species were significantly less predicted by the prey bird species than by the 315 

shifted data; B. jamaicensis (P≤0.001), F. tinnunculus (P≤0.001) and B. buteo (P≤0.001). Our 316 
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analysis suggests that the pattern of similarities between specialist avian predators and their 317 

avian prey is unlikely to have arisen simply by chance.  318 

 319 

Discussion 320 

We found that predators exhibit clear peaks in their activity over the course of a day. These 321 

activity patterns varied according to predator ecology. Accipiter species, which primarily hunt 322 

birds, were most active during the mid-morning, whilst all prey bird species analysed were also 323 

most active in the morning period. By contrast, Falco and Buteo species (largely mammal and 324 

insect hunters) were most active during the middle of the day. While these results cannot 325 

conclusively demonstrate the directionality of the relationship, our findings strongly suggest 326 

that predators which are most specialised to hunt birds (Accipiter spp.) closely align their 327 

activity profile with the time of day that their prey are most active. By contrast, we find little 328 

evidence to support the hypotheses that predators are targeting periods of the day in which prey 329 

birds may be more vulnerable due to the environment (e.g. low light levels at dawn and dusk) or 330 

alternatively are hunting when prey birds are most vulnerable due to their foraging needs (in the 331 

evening). The similarity of activity profiles from data collected on two continents, and across a 332 

broad range of species, suggests that patterns of highest activity during the morning could 333 

represent a convergent equilibrium between predator and prey behaviour.  334 

 335 

Our ‘prey activity-matching’ hypothesis posits that predators should allocate their hunting effort 336 

to times of the day when their prey are most active. From our results on the temporal behaviour 337 

of prey birds from both continents, this period of highest prey activity is in the early-to-mid 338 

morning period. This finding is supported by previous studies on prey species, which show that 339 

prey exhibit the highest movement activity in the first half of the day (Farine and Lang, 2013). 340 

For the prey bird species we studied, the higher rates of movement in the morning could be 341 

because they are acquiring information about the state of their environment, such as where the 342 
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best food sources are (Farine and Lang, 2013; Krebs et al., 1978). Further, searching in the 343 

morning incurs less starvation risk than later in the day (Bonter et al., 2013) (because a bird that 344 

fails to find food in the morning still has time to find food later in the day). For predators, 345 

hunting when prey are on the move should be more efficient because prey individuals are more 346 

likely to arrive in the target area of the predator with no information about its presence. 347 

Predators also likely benefit from improved prey detection, as they can eavesdrop on 348 

vocalisations used by searching prey (such as recruitment calls - Suzuki, 2012)). The observed 349 

temporal pattern of morning activity in accipiters is consistent with the results of a qualitative 350 

study by Newton (2010) where radio-tracked A. nisus individuals were found to have a higher 351 

mean number of flight movements in the first half of the day. Our results are also in line with 352 

theoretical work on foraging games, which indicate that the foraging strategies of prey shape 353 

their basic activity pattern, and the evolutionarily stable strategy for activity patterns of 354 

predators should match that of prey (Kotler et al., 2002). By contrast, predators that are less 355 

specialised to hunt avian prey (such as Buteo and Falco species) appear to be less closely 356 

aligned to temporal activity of songbirds. We note that while F. sparverius do occasionally hunt 357 

birds (potentially more in northerly populations during winter), these represent a small fraction 358 

(<10%) of the total number of prey items in their diet (Sherrod, 1978). Instead, Buteo and Falco 359 

species tended to hunt most around midday, which is when key prey such as small mammals 360 

and insects are likely to be most active (Rijnsdorp et al., 1981).   361 

 362 

Our results (Figure 2) give no apparent support to two alternative hypotheses relating to how 363 

predators might hunt when their prey are most vulnerable as a result of other prey behavioural 364 

strategies, or as result of the environment. The first of these is perhaps best linked to a 365 

‘behavioural vulnerability’ that has been hypothesised elsewhere and relates to feeding; prey are 366 

more at risk of being captured by predators when they have high levels of body fat (Metcalfe 367 

and Ure, 1995; van der Veen, 1999). Studies have shown that when A. nisus became re-368 

established in the UK, resident prey species decreased the body mass they carried (Gosler et al., 369 
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1995). Further studies have since shown that when predators are present, prey will also alter 370 

their feeding strategies to delay carrying body fat until later in the day (Macleod et al., 2005b). 371 

Models have assumed that prey species have decreased manoeuvrability due to higher mass or 372 

decreased vigilance as a consequence of having to increase feeding rates as the day progresses, 373 

which accipiters could target by hunting in the afternoon. However, our results suggest that 374 

these predators are actually less likely to be observed in the afternoon and evening than 375 

expected by chance. This could be because foraging strategies of prey make them less 376 

vulnerable in the evening (e.g. they can increase vigilance if at less risk of starving) or more 377 

vulnerable in the morning (e.g. if they have higher rates of movement and reduced vigilance 378 

while replenishing energy reserves lost overnight) than previously thought.  379 

 380 

The second vulnerability that predators could target is the reduced visibility in the morning and 381 

evening. With their high visual acuity, predators could presumably spot and target prey in low 382 

light conditions, whilst making themselves more difficult to detect. Under this ‘environmental 383 

vulnerability’ hypothesis, predators should allocate the most hunting effort during dawn and 384 

dusk. This hypothesis is supported by evidence that indicates prey species are responsive to 385 

indirect cues of higher predation risk. For example, prey species will often be more alert for 386 

nocturnal predators on nights with low visibility (e.g. a new moon - Fanson, 2010). Our results 387 

(Figure 2), however, suggest that avian predators do not exclusively target times of low light: 388 

out of all predators assessed in our study, no species ever exhibited its highest hunting activity 389 

in both dawn and dusk. Though A. cooperii was occasionally observed before sunrise (which 390 

could signify some low light hunting), in general, rather than being earlier, the morning activity 391 

pattern of accipiters was slightly delayed relative to prey species (Figure 2, Figures S18-19). 392 

This broad-scale delay in activity mirrors the findings of a fine scale tracking study of North 393 

American accipiters, where the lag in activity was longer for A. striatus than A. cooperii (Roth 394 

II and Lima, 2007). Roth and Lima (2007) suggest that the smaller-bodied A. striatus are at high 395 

risk of intraguild predation risk from owls around sunrise and sunset, and the lag they observed 396 
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signals the avoidance of overlap with such superpredators. One alternative reason for this delay 397 

could be that the avian predators we studied are actually unable to detect prey in low light 398 

conditions (or are less capable of detecting prey than prey are at detecting predators), and 399 

therefore do not benefit from hunting during this time. The morphological differences between 400 

the eyes of nocturnal and diurnal predators have recently been well described (Jones et al., 401 

2007). Many prey bird species have eyes adapted for visual sensitivity (the ability to spot 402 

movement) in twilight conditions. By contrast, predators are faced with a trade-off between 403 

visual sensitivity in twilight and visual acuity (the ability to differentiate objects) in daylight 404 

(Mitkus, 2015), and appear to have not countered the twilight adaptations of their prey.  While 405 

the reduced predator activity in twilight could alternatively be explained by observers 406 

themselves having reduced acuity (and thus reduced detection range) in near-darkness, recent 407 

research suggests that humans have cognitive adaptations that improve perception during 408 

twilight hours (Cordani et al., 2018). From these studies, we can assume that if light levels are 409 

sufficient for diurnal predators to hunt, then they are also sufficient for observers and for prey to 410 

see them. Work on nocturnal animals highlights how variation in acuity impacts predator-prey 411 

dynamics (Prugh and Golden, 2014), but as of yet, the absolute ability for diurnal predators to 412 

detect prey in low light is unknown. There is much that could be learnt by quantifying in detail 413 

the sensitivity and acuity of predators, prey, and human observers under different light 414 

conditions, and using these data to model some of the evolutionary trade-offs faced by predators 415 

(e.g. increasing visual sensitivity versus maximising visual acuity).  416 

 417 

A prominent feature of our results is the similarities of activity profiles of species with similar 418 

life histories across two continents. These patterns are detectable thanks to the large amounts of 419 

data made available by birdwatchers recording their observations. These observational datasets 420 

allow us to take a large-scale approach, complementing fine-scale studies of predator behaviour 421 

(Roth II and Lima, 2007). While fine-scale tracking studies can inform us about individual 422 

variation and between-sex/age differences (Newton, 2010), large scale approaches provide 423 
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insight into behavioural dynamics at the population-level. However, observational data also 424 

have some limitations. Chiefly, our analyses rest upon the assumption that predators are more 425 

likely to be sighted when they are more active in hunting. An antagonistic interpretation of our 426 

results is that predators might actually be least active in hunting when sighted most commonly, 427 

which could be the case for ‘sit-and-wait’ predators that hunt by remaining in a fixed position to 428 

ambush prey (Jaksić and Carothers, 1985). These ambush predators would instead be observed 429 

most often when moving between ambush sites (and not when actually hunting). If this were the 430 

case, it could support the hypothesis that predators are indeed hunting when prey are most 431 

vulnerable (for example in the afternoon when carrying the most body fat). However, our 432 

assumed link between observability and hunting is supported by the similar result reported in a 433 

smaller-scale study of real predator hunting activity based on tracking individual birds (Newton, 434 

2010). Moreover, several empirical studies have found no evidence for decreased 435 

manoeuvrability (and increased vulnerability) of avian prey species carrying higher levels of 436 

body fat (Kullberg, 1998; Veasey et al., 1998), which, alongside our findings, suggests that prey 437 

mass cycles are unlikely to solely govern the daily hunting strategies of raptors. Greater insight 438 

could be gained by comparing ambush and non-ambush predators of common prey, and 439 

modelling the economic value of different predator strategies as a function of prey behaviour – 440 

for example, by testing if the chance of a predator being spotted by prey while moving is higher 441 

or lower when prey species also move more. We posit that such hunting costs will be lower 442 

when prey are on the move, as the information and certainty of the predators’ location (from the 443 

perspective of the prey individuals) becomes outdated more quickly (Sih, 1984). Finally, a 444 

limitation of studies that use methodologies such as ours is that the results are based on 445 

correlational data. We hope that natural experiments, such as the return of sparrowhawks into 446 

the UK after being nearly extirpated by DDT (Gosler et al., 1995), will provide conclusive 447 

support for our data, and allow for further empirical tests of our findings. 448 

 449 
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Conclusion 450 

While predator-prey dynamics are thought to be reciprocally driven by continuously evolving 451 

behaviours, we have found consistent patterns of behaviour in species from different continents. 452 

Our results suggest a possible convergent state of equilibrium in the temporal behaviour of 453 

predators and their key prey. As increasing quantities of observational data are collected by 454 

citizen scientists in the coming years, this method for calculating activity could prove to be a 455 

powerful way to further assess the dynamics of behavioural interactions between predator and 456 

prey, and link these processes across different temporal scales (Estes et al., 2018). Further 457 

studies could also explore whether patterns change over years, differ across habitats, vary 458 

according to climatic conditions, or even change depending on the relative abundance of 459 

predator species. While distinct peaks in non-random activity in predators are detectable, we 460 

still don’t fully understand the finer level dynamics that might be occurring within these high-461 

activity periods. A key additional element to hunting strategies is how predators invest hunting 462 

effort spatially across their home-range. We hypothesise that predators with a large home range 463 

would be much less predictable in terms of where they might occur, and therefore could afford a 464 

more relaxed temporal strategy. More research is needed to explore the temporal and spatial 465 

dynamics of behavioural feedback cascades triggered by hunting activity of predators, 466 

particularly at the within-day level of the individual.  467 

 468 

  469 
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 626 

Tables 627 

 628 

Table 1: Details of data on the 16 focal species (including both predators and prey) used in the 629 

analyses. The table includes the source and number of records after subsetting by duration. The 630 

total number of checklists used (including absent records) from eBird was 2.8 million, and from 631 

BirdTrack was 0.8 million. 632 

Common name Latin name Main prey type Data source # ‘present’ records 

 
North American predators 

 Cooper’s hawk Accipiter cooperii Birds eBird 141,362 

 Sharp-shinned hawk Accipiter striatus Birds eBird 69,364 

 American kestrel Falco sparverius Mammals eBird 193,629 

 Red-tailed hawk Buteo jamaicensis Mammals/other eBird 401,878 

North American prey 

 House sparrow Passer domesticus - eBird 549,662 

 American goldfinch Spinus tristis - eBird 739,952 

 Housefinch Haemorhous mexicanus - eBird 630,384 

 Dark-eyed junco Junco hyemalis - eBird 288,887 

GB/IRE predators 

 Sparrowhawk Accipiter nisus Birds BirdTrack 69,998 

 Kestrel Falco tinnunculus Mammals BirdTrack 136,749 

 Buzzard Buteo buteo Mammals/other BirdTrack 190,790 

GB/IRE prey 

 Great tit Parus major - BirdTrack 408,732 

 Blue tit Cyanistes caeruleus - BirdTrack 469,748 

 Robin Erithacus rubecula - BirdTrack 498,765 

 Chaffinch Fringilla coelebs - BirdTrack 443,698 

 Nuthatch Sitta europaea - BirdTrack 78,425 

 633 

  634 
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Figure legends 635 

 636 

Figure 1: The probability of sighting a Cooper’s hawk (Accipiter cooperii) is significantly 637 

higher in the morning than in the afternoon. Solid black line denotes observed hourly 638 

sighting probability for each calendar month. The grey-shaded polygon indicates the 95% range 639 

of the distribution of random sampling. Coloured polygons highlight where the observed 640 

probability is above (red) or below (blue) the probability of observing that species if they were 641 

observed randomly throughout the day. Vertical dashed grey lines represent the mean sunrise 642 

(left) and sunset (right) times across all of the data for each month. This plot is replicated 643 

alongside similar plots for all other focal species in Figures S2-S17. 644 

 645 

Figure 2: Predator activity profiles match the profile of their prey, and are consistent 646 

within genus across continents. Plots of log ratio of the observed versus the upper (red) and 647 

lower (blue) quantiles of the 95% range expected by chance (see Figure 1). Each subpanel 648 

represents the data from one species, and each transparent polygon is the data from one month 649 

(thus each subpanel contains 12 red and 12 blue polygons). Dotted lines indicate mean sunrise 650 

and sunset times for dataset against which all data are plotted. Data are shown for both predators 651 

(upper rows) and prey (lower rows) for a) North American species (eBird), and b) Species from 652 

Great Britain/Ireland (BirdTrack). Predator species genera are illustrated by black outlines. 653 

 654 

Figure 3: Predictive power of prey activity profiles is greatest when predicting the activity 655 

profile of specialist avian predators and other avian prey. Bar plot showing predictive power 656 

(Log2 information gain) of prey species on the activity profile of one prey species and each 657 

predator species from the same continent (only species from the same datasets were used for 658 

comparisons). For North American species (a) the training data comprised S. tristus, J. hyemalis 659 
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and H. mexicanus. For species from Great Britain/Ireland, (b) the training data comprised P. 660 

major, C. caeruleus, E. rubecula and S. europaea. Grey bars show predictive power as 661 

information gained by using real training data compared to shifted training data (where overall 662 

shape of activity profile was maintained, but shifted in time by 0- 17 hours). Positive numbers 663 

show how much more informative real training data is compared to shifted data, when 664 

predicting the activity of the focal species (activity occurs at similar times). Negative numbers 665 

show the real training data is less informative than shifted training data (activity occurs at 666 

different times). Bootstrapping was used to create 95% confidence intervals on the values of the 667 

information gain by resampling the monthly activity profiles for each test species. P-values 668 

estimated from bootstrap evaluations denote whether the information gain was significantly 669 

different from zero (two-tailed test).  670 

  671 
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Figures 672 
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Temporal activity patterns of predators and prey across broad 

geographic scales 

––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 

 

METHODOLOGY FOR NORMALISING OBSERVATION DATA 

 

 

Figure S1: Example of methodology to normalise results – using all eBird data for Cooper’s hawk 

(Accipiter cooperii) collected in the month of August. a) dashed line shows the binned frequency of 

all observations. b) dashed line shows the binned frequency of observations that sighted a Cooper’s 

hawk. c) solid line shows the final probability of observing a Cooper’s hawk (presence divided by 

effort).  
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MONTHLY PLOTS PER SPECIES 

 

Species from North America (eBird data) 

 

 
Figure S2: Probability of sighting predator (Cooper’s hawk, Accipiter cooperii). Observed 

probability is shown by the black line, and the red polygon shows the 95% range of the distribution 

of 1000 randomised permutation tests on all observation data (presence and absence records). Dotted 

vertical lines denote average sunrise and sunset times from plotted data. 
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Figure S3: Probability of sighting predator (Sharp-shinned hawk, Accipiter striatus). Observed 

probability is shown by the black line, and the red polygon shows the 95% range of the distribution 

of 1000 randomised permutation tests on all observation data (presence and absence records). Dotted 

vertical lines denote average sunrise and sunset times from plotted data. 
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Figure S4: Probability of sighting predator (American kestrel, Falco sparverius). Observed 

probability is shown by the black line, and the red polygon shows the 95% range of the distribution 

of 1000 randomised permutation tests on all observation data (presence and absence records). Dotted 

vertical lines denote average sunrise and sunset times from plotted data. 
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Figure S5: Probability of sighting predator (Red-tailed hawk, Buteo jamaicensis). Observed 

probability is shown by the black line, and the red polygon shows the 95% range of the distribution 

of 1000 randomised permutation tests on all observation data (presence and absence records). Dotted 

vertical lines denote average sunrise and sunset times from plotted data. 
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Figure S6: Probability of sighting prey (House sparrow, Passer domesticus). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S7: Probability of sighting prey (American goldfinch, Spinus tristis). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S8: Probability of sighting prey (Housefinch, Haemorhous mexicanus). Observed probability 

is shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S9: Probability of sighting prey (Dark-eyed junco, Junco hyemalis). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Species from Great Britain/Ireland (BirdTrack data) 

 

 
Figure S10: Probability of sighting predator (Sparrowhawk, Accipiter nisus). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S11: Probability of sighting predator (Kestrel, Falco tinniculus). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S12: Probability of sighting predator (Buzzard, Buteo buteo). Observed probability is shown 

by the black line, and the red polygon shows the 95% range of the distribution of 1000 randomised 

permutation tests on all observation data (presence and absence records). Dotted vertical lines denote 

average sunrise and sunset times from plotted data. 
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Figure S13: Probability of sighting prey (Great tit, Parus major). Observed probability is shown by 

the black line, and the red polygon shows the 95% range of the distribution of 1000 randomised 

permutation tests on all observation data (presence and absence records). Dotted vertical lines denote 

average sunrise and sunset times from plotted data. 
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Figure S14: Probability of sighting prey (Blue tit, Cyanistes caeruleus). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S15: Probability of sighting prey (Chaffinch, Fringilla coelebs). Observed probability is 

shown by the black line, and the red polygon shows the 95% range of the distribution of 1000 

randomised permutation tests on all observation data (presence and absence records). Dotted vertical 

lines denote average sunrise and sunset times from plotted data. 
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Figure S16: Probability of sighting prey (Robin, Erithacus rubecula). Observed probability is shown 

by the black line, and the red polygon shows the 95% range of the distribution of 1000 randomised 

permutation tests on all observation data (presence and absence records). Dotted vertical lines denote 

average sunrise and sunset times from plotted data. 
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Figure S17: Probability of sighting prey (Nuthatch, Sitta europaea). Observed probability is shown 

by the black line, and the red polygon shows the 95% range of the distribution of 1000 randomised 

permutation tests on all observation data (presence and absence records). Dotted vertical lines denote 

average sunrise and sunset times from plotted data. 
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Figure S18: Predictive log-likelihood using shifted training data from 0 to 17 hours for species with 

predictive power greater than 0 (A) P. domesticus, and (B) A. cooperii. Due to the cyclical nature of 

the data pattern, 17 hours of forward shift is equal to 1 hour of backward shift, and thus to improve 

interpretation, 0 (marked in red) is mapped to the centre of the scale. The red points denote the 

predictive log-likelihood for zero shift (raw data), the level of which is shown across the figure by 

the horizontal dashed line. Comparing the profile of the predator (B) with the prey (A) species 

highlights the higher level of information when in negative predator time-shifted data (i.e. when the 

predator’s data was shifted to be 1-2 hours earlier in the day) relative to the same amount of time 

shift of the prey species’ data. 
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Figure S19: Predictive log-likelihood using shifted training data from 0 to 17 hours for species with 

predictive power greater than 0 (A) F. coelebs and (B) A. nisus. Due to the cyclical nature of the data 

pattern, 17 hours of forward shift is equal to 1 hour of backward shift, and thus to improve 

interpretation, 0 (marked in red) is mapped to the centre of the scale. The red points denote the 

predictive log-likelihood for zero shift (raw data), the level of which is shown across the figure by 

the horizontal dashed line. Comparing the profile of the predator (B) with the prey (A) species 

highlights the higher level of information when in negative predator time-shifted data (i.e. when the 

predator’s data was shifted to approximately 1 hour earlier in the day) relative to the same amount of 

time shift of the prey species’ data. 
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