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Abstract

Research on risky and inter–temporal decision–making often focuses on de-
scriptive models of choice. This class of models sometimes lack a psycholog-
ical process account of how different cognitive processes give rise to choice
behavior. Here, we attempt to decompose these processes using sequential
accumulator modeling (i.e., the Linear Ballistic Accumulator model; LBA).
Participants were presented with pairs of gambles that either involve differ-
ent levels of probability or delay (Experiment 1) or a combination of these
dimensions (both probability and delay; Experiment 2). Response times
(RTs) were recorded as a measure of preferential strength. We then com-
bined choice data and response times, and utilized variants of the LBA to
explore different assumptions about how preferences are formed. Specifically
we show that a model which allows for the subjective evaluation of a fixed
now/certain option to change as a function of the delayed/risky option with
which it is paired provides the best account of the combined choice and RT
data. The work highlights the advantages of using cognitive process models
in risky and inter–temporal choice, and points towards a common framework
for understanding how people evaluate time and probability.

Keywords: Inter–temporal Choice; Risky Choice; Evidence Accumulation;
Cognitive Modeling; Linear Ballistic Accumulator

Introduction

You have just won the lottery and the prize is $10,000. Do you use your money now, or do

you put it in a bank account, for one year, and then take out $11,500? This choice is an example of

an inter–temporal choice, it involves tradeoffs between sooner–smaller (SS) and larger–later (LL)

options. Consider a second dilemma. You can either choose to keep the prize money in a savings
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account for a certain (probability of 1) return of $1,500 or you can take a trip to the casino and

put the $10,000 on your lucky number 17 on the roulette table. This is an example of a risky

choice, it involves tradeoffs between certain and risky but more valuable options. Most studies of

inter–temporal and risky choice have employed context-free monetary choice dyads between SS and

LL options on the one hand, for example, a choice between $10 now or $15 in two months (e.g.,

Chapman & Weber, 2006; Loewenstein & Prelec, 1992), and between certain and risky options on

the other hand, for example, a choice between $30 for sure or $40 with 80% chance or nothing

otherwise (e.g., Kahneman & Tversky, 1979).

Two hallmarks of traditional research on inter–temporal and risky choice are i) examination

of the two types of choice in isolation, and ii) evaluation of preferences in terms of their coherence

(or lack thereof) with normative economic principles. This large body of work has revealed key

insights into the types of factors that affect risky or inter-temporal choice, but “the interaction

between risk and delay is complex and not easily understood” (B. J. Weber & Chapman, 2005, p.

104).

In the domain of inter–temporal choice, the dominant approach is to examine whether choices

across time adhere to Discounted Utility Theory (DUT; Samuelson, 1937). DUT implies that

decision makers maximize a weighted sum of utilities with exponentially declining discount weights.

In the domain of risky choice, research has focused on Expected Utility Theory (EUT). EUT views

decision makers as maximizing a weighted sum of utilities with their probabilities of occurrence

(e.g., Epper, Fehr-Duda, & Bruhin, 2011; Prelec & Loewenstein, 1991).

DUT and EUT are normative models of choice; they provide principles according to which

rational decision makers should behave (Newell, Lagnado, & Shanks, 2015). However, extensive

research has documented several violations of these principles (e.g., Allais, 1953; Thaler, 1981).

The standard approach to account for these violations is to modify the theories but to retain their

core constituents. Thus for inter–temporal choice, hyperbolic functions which allow decreasing

discount rates rather than constant (i.e., exponential) rates are used to capture observed choice

“anomalies” (e.g., Green & Myerson, 2004). For risky choice, allowing a non–linear probability

weighting function provides explanations of commonly observed behavioral effects and preference

reversals (e.g., Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).

These modified models are descriptive: they provide a description not of how decision makers

should behave but how they appear to behave when confronted with such choices (at least at the
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aggregate level, cf. Epper et al., 2011). Such models (e.g., Cumulative Prospect Theory for risky

choice and Hyperbolic Discounting for inter–temporal choice) are utility–based models: a utility

(or subjective value) is calculated for each option, and the option with the highest utility is chosen.

However, what these models lack is a psychological process account of why choices are better fit

by hyperbolic than exponential functions, or by non–linear than linear weighting functions (cf.

Stewart, Chater, & Brown, 2006). In other words, these models do not explain how the utility

of each option is estimated and the psychological processes that are involved. To answer this

“how” question requires the development of cognitive process models which specify the components

and relations between the (thought) processes engaged when making such choices (e.g., Appelt,

Hardisty, & Weber, 2011; Brandstätter, Gigerenzer, & Hertwig, 2006; Shafir, Simonson, & Tversky,

1993; Vlaev, Chater, Stewart, & Brown, 2011; E. U. Weber et al., 2007).

In the field of speeded multi–alternative forced choice decision–making, such cognitive process

models have been in use for almost four decades (e.g., Ratcliff, 1978; Brown & Heathcote, 2008).

The cognitive models of choice in the field of response time (RT) research are called sequential ac-

cumulator models. Among others, these models have been successfully applied to experiments on

perceptual discrimination, letter identification, lexical decision, categorization, recognition memory,

and signal detection (e.g., Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thapar, &

McKoon, 2006, 2010; van Ravenzwaaij, Dutilh, & Wagenmakers, 2012; van Ravenzwaaij, van der

Maas, & Wagenmakers, 2011; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Evidence accu-

mulation models such as decision field theory (DFT; Busemeyer & Townsend, 1993) and the leaky

competing accumulator (LCA; Usher & McClelland, 2001) have been applied in the domain of risky

choice, and the domain of inter–temporal choice (see Dai & Busemeyer, 2014; Rodriguez, Turner,

& McClure, 2014).

One of the advantages of such a modeling approach is that it allows researchers to decompose

observed RTs and choice proportions into latent psychological processes such as speed of cognitive

processing, response caution, and non–decision time. More traditional analyses make no attempt

to explain the observed data by means of a psychologically plausible process model.

One key difference between inter–temporal and risky choice on the one hand and traditional

RT research on the other is that in the former field, decisions are rarely timed (but see e.g., Dai &

Busemeyer, 2014; Rodriguez et al., 2014). Response times could potentially teach us a lot about

people’s preferences. For instance, consider on the one hand the choice between receiving $100 now

or $10,000 in two months and on the other hand the choice between receiving $100 now or $150 in

two months. In both instances, you might prefer the larger–later option. As a result, your choice

preference will look the same. However, the first choice was most likely a much easier one to make

than the second one. Your strength of preference in the first choice in favor of the larger–later

option was likely much larger. This strength of preference would likely be reflected in a lower RT

compared to the RT associated with your decision for the second choice.

Another difference between inter–temporal and risky choice and traditional RT research is

that the response options are about preference and as such, there are no correct answers. This
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presents a difference on the conceptual level, but on the model level, there are no obstacles as evident

by some recent applications of sequential accumulator models to preference data (see e.g., Dai &

Busemeyer, 2014; Hawkins et al., 2014; Rodriguez et al., 2014; Trueblood, Brown, & Heathcote,

2014).

In this paper, we present data from two experiments that contained both inter–temporal and

risky choices. In Experiment 1 participants had to make a choice between a small-sooner (“now”)

and a larger-later option for the inter–temporal choice trials, and a choice between a certain-smaller

and a risky-larger option for the risky choice trials. In Experiment 2 the inter–temporal and risky

components were combined within trials: participants had to make a choice between a certain-

now-smaller and a risky-later-larger option. In both experiments the now/certain options remained

constant across choice trials: $100 with certainty, right now. We pressed our participants to make

their responses as quickly as possible while still being able to show their true preferences. We then

applied a cognitive process model to the data.

One of the main objectives of the present analysis is to uncover the potential for a shared com-

ponent that drives decision–making in both inter–temporal and risky choices. Previous research has

identified several parallels and similarities between probability and delay. For example, Chapman

and Weber (2006) examined whether two well-documented biases in risky and inter–temporal choice

(the common ratio effect, and the common difference effect, respectively) can be accounted for by

the same underlying mechanism. Other studies have found evidence for psychological equivalence

between probability and delay, suggesting that probability can be translated or treated as delay

(e.g., Rachlin, Raineri, & Cross, 1991; Yi, de la Piedad, & Bickel, 2006), and vice-versa, that delay

can be treated as uncertainty (e.g., Baucells & Heukamp, 2010; Keren & Roelofsma, 1995). In

addition, recent theoretical and modeling attempts have assumed similar functional forms for delay

discounting (i.e., decrease of a reward value with increases in delay) and probability discounting

(i.e., decrease of a reward value with decreases in probability). For instance, Vanderveldt, Green,

and Myerson (2015) observed that a hyperboloid function of delay and probability discounting can

describe discounting patterns in both domains. While their hyperboloid model provides an excel-

lent fit to the choice data, it is a descriptive “as–if” model, in the sense that it does not account for

the underlying thought processes that drive preferential choice. With our cognitive process model

and the simultaneous examination of choices and RTs (i.e., strength of preference), we take the idea

of parallelism in delay and probability discounting one step further by exploring the potential for

a unifying psychological process that governs preferences in both inter–temporal and risky choices.

The model also allowed us to test to what extent the absolute attractiveness of the

now/certain options (which was always an immediate $100 with certainty in our experiments)

change with variations in the delayed/risky choice options with which it was paired. Such a test is

difficult with behavioral data or descriptive models of choice that typically only provide insight into

the relative attractiveness of two presented choice options.1 Following this, our model constitutes

1Descriptive models also provide measures of absolute attractiveness for each option, i.e., the subjective utility,
but it is the relative attractiveness that defines preferences and choice.
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a natural test of integrative expected and subjective expected utility-based models which assume

an overall fixed utility for each option irrespective of the context or the alternative to which it is

compared (see also Brandstätter et al., 2006).

The remainder of this paper is organized as follows: In the next section, we will introduce our

sequential accumulator model of choice: the Linear Ballistic Accumulator model (LBA; Brown &

Heathcote, 2008). We will then describe our experiments in detail. Next, we discuss the behavioral

results and then the modeling results. We conclude with a discussion of the gains of our cognitive

modeling approach and the lessons learned about the shared nature of delay and probability.

The Linear Ballistic Accumulator model

In the LBA for multi–alternative RT tasks (Brown & Heathcote, 2008), the decision–making

process is conceptualized as the accumulation of information over time. A response is initiated when

the accumulated evidence reaches a predefined threshold. An illustration for an inter–temporal

choice with two response options is given in Figure 1.

B

Figure 1 . The LBA and its parameters for an inter–temporal choice with two response options.
Evidence accumulation begins at start point k, drawn randomly from a uniform distribution with
interval [0, A]. Evidence accumulation is governed by drift rate d, drawn across trials from a normal
distribution with mean ν and standard deviation s. A response is given as soon as one accumulator
reaches threshold B. Observed RT is an additive combination of the time during which evidence
is accumulated and non–decision time t0.

The LBA assumes that the decision process starts from a random point between 0 and A,

after which information is accumulated linearly for each response option. The rate of this evidence

accumulation is determined by drift rates d1 and d2, normally distributed over trials with means ν1

and ν2, and standard deviation s, which we assume here to be equal for both accumulators. For this

application, drift rates are truncated at zero to prevent negative accumulation rates. Threshold b

determines the speed–accuracy tradeoff; lowering b leads to faster RTs at the cost of a higher error

rate (but see Rae, Heathcote, Donkin, Averell, & Brown, 2014). The distance between threshold b
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and the maximum start point A is quantified by B, such that b = A + B.

Together, these parameters generate a distribution of decision times DT . The observed

RT, however, also consists of stimulus–nonspecific components such as stimulus encoding, response

preparation and motor execution, which together make up non–decision time t0. The model assumes

that t0 simply shifts the distribution of DT , such that RT = DT + t0 (Luce, 1986). Hence, the

three key components of the LBA are (1) the speed of information processing, quantified by mean

drift rate ν; (2) response caution, quantified by distance from start point to threshold that averages

at b − A/2; and (3) non–decision time, quantified by t0.

The LBA has been applied to a number of perceptual discrimination paradigms (e.g., Cassey,

Gaut, Steyvers, & Brown, 2015; Cassey, Heathcote, & Brown, 2014; Forstmann et al., 2008, 2010;

Ho, Brown, & Serences, 2009; van Ravenzwaaij, Provost, & Brown, 2017). Recently, the LBA

has also been applied to preference data. For instance, Hawkins et al. (2014) applied the LBA

to consumer preference data toward mobile phones. In an adaptation of the LBA developed by

Trueblood et al. (2014), the model was fit to preference data of three kinds of context effects:

similarity, compromise, and attraction. Rodriguez et al. (2014) applied the LBA to inter–temporal

choice data and concluded that “perceptual and value–based decision–making may depend on

similar comparison and selection processes” (p. 7).

The interpretation of the drift rate parameter changes when applying sequential accumulator

models to preference data without an inherent correct answer. Rather than speed of information

processing, drift rate reflects the strength of preference for a choice option. For this application, we

define drift rates as representing a weighted sum of an option’s attribute values (amount, delay, and

probability). In other words, each attribute’s contribution to the strength of preference depends on

the importance or attention placed on each attribute, quantified by scaling parameters (or weights;

see the Model Implementation section for more details). This definition of preferential strength

allows us to test three specific accounts of how choice preferences vary with different levels of delay

and probability.

Specifically, we examine how preferences for the now/certain options are formed in relation to

the values of the choice attributes of the delayed/risky options. The first account (“proportional”)

assumes that the value of the now/certain option changes proportionally to different alternatives for

the delayed/risky option. The choice attributes (amount, delay, and probability) in the now/certain

and delayed/risky options have different weights, suggesting that the importance or attention placed

on each attribute varies between the two options. On the other hand, the “invariant” account simply

assumes that the absolute value (preferential strength) of the now/certain option remains constant

across all choice trials, irrespective of the attribute values of the delayed/risky option. Consequently,

this model suggests that a single absolute value for the now/certain option is estimated (that is,

a single drift rate across all trials – no scaling parameters or weights needed). This “invariant”

account resembles expected utility-based models, which assume a single fixed value for an option

regardless of the context (i.e., alternative options) in which a decision is made. The last account

(“symmetrical”) presents a compromise between the two aforementioned “extreme” accounts: while
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the value of the now/certain option does not remain constant, the choice attribute weights are

identical between the two options. For each model account, we examined linear and non-linear

(i.e., power transformations of each attribute’s values) functional forms for the drift rate ν, and

different assumptions relating to the upper starting point A. We formally describe these variants

of the LBA in the Model Implementation section below.

We fit the LBA to inter–temporal and risky choice data simultaneously. Thus, our work

presents the first attempt to examine the potential for a unifying underlying process that governs

preferences in both inter–temporal and risky choices.

Experiment 1

We set out to model people’s preferences on inter–temporal and risky choices separately.

Participants completed a task with two separate blocks of inter–temporal choice and risky choice

trials. We report the behavioral results of this experiment, as well as the modeling results provided

by fitting the LBA.

Method

Participants. Forty undergraduate students (26 female; Mage = 19.40) at the University

of New South Wales participated in return for course credit. For each participant, one of their

preferences from the risky choice trials was randomly selected. If the participant preferred the

risky option in that specific choice trial, the gamble was played for real (e.g., $200 with 50%

chance). In case of a win, the participant was paid 2% of the amount (e.g., $4 as 2% of $200) and

nothing otherwise. Those who preferred the sure option were paid $2 (i.e., 2% of $100 for sure)2.

Materials. The experiment consisted of 380 inter–temporal choice and 380 risky choice

trials. For the inter–temporal choices, participants had to indicate what they preferred: $100 now

or $X in D months, with $X varying from $120 to $500 in $20 increments (for a total of 20

amounts) and D varying from 2 months to 38 months in 2 month increments (for a total of 19

delays). Thus, every combination of amount and delay was presented to participants once as an

alternative to $100 now (D = 0).

For the risky choices, participants had to indicate what they preferred: $100 for sure or $X

with P% chance, with $X varying from $120 to $500 in $20 increments (for a total of 20 amounts)

and P varying from 5% to 95% in 5% increments (for a total of 19 probabilities). Thus, every

combination of amount and probability was presented to participants once as an alternative to

$100 for sure (P = 100%).

Procedure. Participants completed the experiment in two sessions, of 380 trials each (190

risky choice trials and 190 inter–temporal choice trials). Within a session the order of the trials

was blocked (i.e., all risky together, all inter–temporal together) and counterbalanced. The two

2At the outset, participants were told that one trial from the experiment would be selected and the gamble would
be played for real. To facilitate payment, the (pseudo)randomly selected trial always came from the risky choice
trials, but participants did not know this, thus creating the impression of equal incentives for both phases of the
experiment.



COGNITIVE MODELING OF RISKY INTER–TEMPORAL CHOICE 8

sessions were separated by a minimum of three hours (i.e., some participants completed the sessions

on consecutive days, others in the morning and afternoon of the same day).

Implementation of the Model

We used a hierarchical Bayesian implementation of the LBA (Turner, Sederberg, Brown, &

Steyvers, 2013). Advantages of the hierarchical Bayesian framework include the ability to fit the

LBA to data with relatively few trials, because the model borrows strength from the hierarchical

structure. This advantage is important, as we are working with a task for which we essentially have

only a single trial per participant for each type of choice (one single combination of $X and D for

inter–temporal choices and a combination of $X and P% for risky choices). The Bayesian set–up

allows for using Markov chain Monte-Carlo (MCMC) sampling, which is an efficient way of finding

the optimal set of parameters (Gamerman & Lopes, 2006; Gilks, Richardson, & Spiegelhalter, 1996;

van Ravenzwaaij, Cassey, & Brown, 2018).

We fit three different model accounts that differed on how they model the choice process:

proportional, symmetrical, and invariant. Within each model account we examined four different

assumptions (variants) relating to the starting point parameters and the functional form of the drift

rate. Specifically, the “2A” model-variant assumed two parameters for the upper range of starting

point A for each type of choice (i.e., AI for inter–temporal and AR for risky choices), whereas the

“4A” variant had four starting point parameters for each choice option in the task (i.e., in the

inter–temporal choice task AIN
and AID

for the now and delayed choice options, respectively, and

in the risky choice task ARC
and ARR

for the certain and risky choice options, respectively). The

“4A” variants assume that a response bias is associated with every choice option, indicating that

for some choice options less evidence might be required to reach a decision. For the drift rates,

we examined linear and nonlinear versions. Thus, for each model account we fit 4 model-variants:

linear-2A, linear-4A, nonlinear-2A, and nonlinear-4A. In total we fit 12 models. For all models

we assumed two parameters for threshold B (BI for inter–temporal and BR for risky choices). We

first describe the “proportional” model, then describe the two other model accounts by referring to

changes to the “proportional” model.

For the inter–temporal choice task, the linear “proportional” model (both the 2A and 4A

variants) included drift rates for the “now” and “delayed” options as follows:

νN = νN0
− αNX

× ($X/20 − 6) − αND
× (19 − D/2)

νD = νD0
− αDX

× (25 − $X/20) − αDD
× (D/2 − 1)

(1)

where νN and νD denote drift rates for the now and the delayed choice options, νN0
and νD0

denote

offset parameters for the now and the delayed choice options, $X denotes the amount in dollars for

the delayed choice option, D denotes delay in months for the delayed choice option, αNX
and αDX

are amount scale parameters for the now and the delayed choice options, and αND
and αDD

are

delay scale parameters for the now and the delayed choice options. νN = νN0
if $X = 120 and D =

38 (the option that most favors the “now” choice). νD = νD0
if $X = 500 and D = 2 (the option
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that most favors the “delayed” choice). For the nonlinear version (both the 2A and 4A variants),

we applied a power transformation (β parameters), on the numerical values of amount and delay

of each option, thus adding two extra parameters to be estimated (same β for amount and delay

across the two options).

For the risky choice task, the linear “proportional” model (both the 2A and 4A variants)

included drift rates for the “certain” and “risky” options as follows:

νC = νC0
− αCX

× ($X/20 − 6) − αCP
× (P/5 − 1)

νR = νR0
− αRX

× (25 − $X/20) − αRP
× (19 − P/5)

(2)

where νC and νR denote drift rates for the certain and risky choice options, νC0
and νR0

denote

offset parameters for the certain and risky choice options, $X denotes the amount in dollars for

the risky choice option, P denotes the payout probability for the risky choice option, αCX
and αRX

are amount scale parameters for the certain and the risky choice options, and αCP
and αRP

are

probability scale parameters for the certain and the risky choice options. νC = νC0
if $X = 120

and P% = 5 (the option that most favors the certain option). νR = νR0
if $X = 500 and P% =

95 (the option that most favors the risky option)3. As in the specification for the inter–temporal

choice task, the nonlinear drift rates for the risky choice task included power transformations (β

parameters) of each option’s amount values. Unlike amount and delay, we did not apply a power

transformation for probability (i.e., β = 1).

We fit two other models that test specific assumptions about the underlying choice process.

The first model (“invariant”), estimates a single νN parameter (i.e., drift rate for the now option)

for all inter–temporal choice trials and a single νC parameter (i.e., drift rate for the certain option)

for all risky choice trials. Conceptually, this simpler model assumes that the absolute value of

the now/certain option does not change with different alternatives for the delayed/risky option.

Essentially, the objectively invariant option would also be perceived as invariant by the decision

makers.

The final model (“symmetrical”) presents a compromise between the “proportional” model

and the “invariant”. The model assumes that αNX
= αDX

, αND
= αDD

, αCX
= αRX

, and αCP
=

αRP
. This means that contrary to the “invariant” model, the νN parameter and the νC parameter

are not fixed to a single value. Instead, drift rates for the now/certain option vary symmetrically

(though in the opposite direction) with drift rates for the delayed/risky option. Table 1 presents

the 12 models that we fit (3 model accounts × 4 variants) and their associated parameters.

The comparison of the “proportional”, the “invariant”, and the “symmetrical” models will

teach us something about the change in subjective evaluation of the now/certain choice option. Is

the subjective evaluation of the now/certain choice option fixed irrespective of the delayed/risky

choice option, does the subjective evaluation of the now/certain choice option vary symmetrically

with the delayed/risky choice option, or does the now/certain choice option vary non-symmetrically

but proportionally with the delayed/risky choice option? In addition, is the linear form of the drift

3Note that t0 is fixed to be the same for the inter–temporal and the risky choice task.
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Table 1
Outline of the 12 models (3 model accounts: Proportional, Invariant, and Symmetrical × 4 variants:
Linear–2A, Linear–4A, Nonlinear–2A, and Nonlinear–4A) and their parameters that were fit to the
data of Experiment 1. In addition to the parameters listed below, all models include a single t0 (non–
decision time) and two threshold parameters BI and BR for the inter–temporal and risky choice
tasks, respectively.

Model P Task Parameters

Proportional
Linear–2A 17 I AI , νN0

, αNX
, αND

, νD0
, αDX

, αDD

R AR, νC0
, αCX

, αCP
, νR0

, αRX
, αRP

Nonlinear–2A 20 I AI , νN0
, αNX

, αND
, βIX

, βID
, νD0

, αDX
, αDD

R AR, νC0
, αCX

, αCP
, βRX

, νR0
, αRX

, αRP

Linear–4A 19 I AIN
, AID

, νN0
, αNX

, αND
, νD0

, αDX
, αDD

R ARC
, ARR

, νC0
, αCX

, αCP
, νR0

, αRX
, αRP

Nonlinear–4A 22 I AIN
, AID

, νN0
, αNX

, αND
, βIX

, βID
, νD0

, αDX
, αDD

R ARC
, ARR

, νC0
, αCX

, αCP
, βRX

, νR0
, αRX

, αRP

Invariant
Linear–2A 13 I AI , νN , νD0

, αDX
, αDD

R AR, νC , νR0
, αRX

, αRP

Nonlinear–2A 16 I AI , νN , νD0
, αDX

, αDD
, βDX

, βDD

R AR, νC , νR0
, αRX

, αRP
, βRX

, βRP

Linear–4A 15 I AIN
, AID

, νN , νD0
, αDX

, αDD

R ARC
, ARR

, νC , νR0
, αRX

, αRP

Nonlinear–4A 18 I AIN
, AID

, νN , νD0
, αDX

, αDD
, βDX

, βDD

R ARC
, ARR

, νC , νR0
, αRX

, αRP
, βRX

Symmetrical
Linear–2A 13 I AI , νN0

, νD0
, αIX

, αID

R AR, νC0
, νR0

, αRX
, αRP

Nonlinear–2A 16 I AI , νN0
, νD0

, αIX
, αID

, βIX
, βID

R AR, νC0
, νR0

, αRX
, αRP

, βRX

Linear–4A 15 I AIN
, AID

, νN0
, νD0

, αIX
, αID

R ARC
, ARR

, νC0
, νR0

, αRX
, αRP

Nonlinear–4A 18 I AIN
, AID

, νN0
, νD0

, αIX
, αID

, βIX
, βID

R ARC
, ARR

, νC0
, νR0

, αRX
, αRP

, βRX

Note: P = Number of free parameters per participant; I = Inter–temporal choice task;
R = Risky choice task.
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rate sufficient to explain how preference is accumulated, or can more complex nonlinear relationships

provide a better account for strength of preference? Do we need separate starting points for each

choice option in the task (4A models) to account for a priori biases for either the now/delayed

or the certain/risky options, or two starting points for the inter–temporal choice and risky choice

tasks (2A models)? We will use formal model comparison to find the account best supported by

the data. Details on starting values, prior distributions, and number of iterations may be found in

the Appendix.

Subjective value and discounted utility models. To compare the performance of the

LBA model against standard approaches in risky and inter–temporal choice, we fit a Prospect

Theory model to the risky choice data (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992),

and a hyperbolic discounting model to the inter–temporal choice data (Myerson & Green, 1995).

For the risky choice data, the subjective value V of a risky prospect is given by

V =
∑

w(pi)u(Xi) (3)

where w(pi) is the decision weight (transformed value of objective probability p, as produced by

a probability weighting function; see Equation 5) and u is the utility of receiving reward X. For

utility u, we assume a power utility function

u(X) = Xα (4)

For the probability weighting function, we used the two-parameter version proposed by Gonzalez

and Wu (1999):

w(p) =
δpγ

δpγ + (1 − p)γ
(5)

where γ represents the curvature and δ represents the elevation of the weighting function.

Similarly, for the inter–temporal choice data, the discounted value V of a delayed option is

V =
∑

D(ti)u(Xi) (6)

where D represents the discount function. We used a two-parameter variant of hyperbolic discount-

ing as below:

D(t) =
1

(1 + kt)s
(7)

where k is the discounting rate and s governs the curvature of the hyperbola (Myerson & Green,

1995). For utility, we used the same power function as for the risky choice task (Equation 4).

Both models assume deterministic choice, that is, the choice option with the highest expected

or discounted value is selected. Here we assumed a probabilistic choice rule, where the probability

of choosing the safe option over the risky option (p(S)), or the probability of choosing the now
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option over the delayed (p(N)) is given by the softmax rule:

p(S) =
exp{θV (S)}

exp{θV (S)} + exp{θV (R)}
(8)

where θ denotes the sensitivity (inverse-temperature) parameter, indicating the degree to which

choice probabilities adhere to numerical differences between V (S) and V (R) in risky choice, and

V (N) and V (D) for inter–temporal choice. To find the best fitting parameters, we used maximum

likelihood estimation techniques. We fit both models to the risky and inter–temporal choice data

simultaneously for each participant (6 parameters in total: α, γ, δ, k, s, θ). The procedure was a

combination of grid search (300 different starting points for each set of parameters) and Nelder-

Mead simplex methods (Nelder & Mead, 1965).

Behavioral Results

Choice. All participants completed the experiment4. Two participants were excluded from

analysis: one participant had chosen the “delayed” option for every single choice, and another

participant had seemingly responded randomly, producing responses that seemed largely inconsis-

tent when compared against one another. Also, we excluded extreme RTs that were slower than

7s and faster than 250ms (2.8% of all trials). Preference data for the inter-temporal choice trials

can be found in the top-left panel of Figure 2. The figure shows group average proportion data.

Proportions close to 0, displayed in blue, indicate a uniform preference for the $100 now option.

Proportions close to 1, displayed in yellow, indicate a uniform preference for the delayed option.

The results show that participants prefer the now option when the delayed option does not pay

very well (i.e., amounts not much higher than $120) or when the delay is long (i.e., close to 38

months). In contrast, participants prefer the delayed option when the delayed option pays well

(i.e., amounts close to $500) or when the delay is short (i.e., close to now).

To examine the factors affecting choice of the smaller-sooner (SS; coded 0) or larger-later

options (LL; coded 1) in the inter–temporal choice trials, we performed a mixed–effects logistic

regression with amount and delay of the LL option as fixed effects (centered and scaled) and

participant-specific random intercepts and slopes (for amount and delay). As expected, there was

a significant positive effect of amount (b = 2.13, z = 8.940, p < .001), indicating that as amount

offered by the LL option increased, so did the likelihood of selecting the delayed option. In line

with the observations from Figure 2, as delay increased participants were more likely to select the

SS (“now”) option (b = −3.05, z = −3.06, p < .001).

Preference data for the risky choice trials can be found in the bottom-left panel of Figure 2.

The figure shows group average proportion data. Proportions close to 0, displayed in blue, indicate

a uniform preference for the risk-free option of $100. Proportions close to 1, displayed in yellow,

indicate a uniform preference for the risky option. The results show that participants prefer the

4All data, analyses, and modeling scripts from Experiments 1 and 2 are available on Open Science Framework:
https://osf.io/4dchn/. The analyses reported in this article contain all variables of interest and experimental condi-
tions that we tested.
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Figure 2 . Behavioral data of the inter–temporal and risky choice trials in Experiment 1 averaged
over participants. A) Proportion of preference data for inter–temporal choices. A proportion
of 0 (blue) indicates exclusive preference for the $100 now option, a proportion of 1 (yellow)
indicates exclusive preference for the delayed option. Black boxes represent proportions around
0.50. B) Proportion of preference data for risky choices. A proportion of 0 (blue) indicates exclusive
preference for the $100 certain option, a proportion of 1 (yellow) indicates exclusive preference for
the risky option. Black boxes represent proportions around 0.50. C) RT data for inter–temporal
choices. D) RT data for risky choices. Low RTs are closer to blue on the color spectrum.

certain option when the risky option does not pay very well (i.e., amounts not much higher than

$120) or when the payout probability is low (i.e., close to 5%). In contrast, participants prefer

the risky option when the risky option pays well (i.e., amounts close to $500) or when the payout

probability is high (i.e., close to 95%). We performed the same analysis for the risky choices, with

amount and payout probability of the risky option as fixed effects and participant-specific random

intercepts and slopes, which showed that both payout probability (b = 5.67, z = 12.03, p < .001)

and amount (b = 1.32, z = 8.78, p < .001) are significant predictors of risky choice rates. The

positive sign of both regression coefficients indicates that participants were more likely to select the

risky option when amount and payout probability increased.

Response Times. The choice data indicates, perhaps unsurprisingly, that people prefer

high payout, short delays, and high probability. What can we learn from the RT data? Overall,

higher RTs were associated with inter-temporal choices (M = 1, 862 ms) compared to risky choices
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(M = 1, 420 ms). Also, certain or now options were chosen faster (M = 1, 422 ms) than risky or

delayed options (M = 2, 031 ms). Figure 2C shows group-average RT data for the inter-temporal

choice trials. Low RTs are closer to blue on the color spectrum and high RTs are closer to yellow.

The results show that the more extreme preferences in terms of proportion are accompanied by

lower RTs (see also Dai & Busemeyer, 2014). The choices for which preferences varied among

participants (~50%; the black diagonal in Figure 2A) are accompanied by higher RTs (the yellow

diagonal in Figure 2C), indicating a lower absolute strength of preference.

Figure 2D shows group-average RT data for the risky choice trials. Similar to the inter-

temporal choice RTs, the results show that the more extreme preferences in terms of proportion

are accompanied by lower RTs. The choices for which preferences varied among participants (the

darker axis from the top-left to the mid-right in Figure 2B) are accompanied by higher RTs (the

yellow axis in Figure 2D), indicating a lower absolute strength of preference.

In sum, people prefer high payout, short delays, and high probability. As for response times,

people take less time making risky choices than inter-temporal choices, and take a relatively short

time to make choices for which response options are extreme. In the next section, we turn to the

modeling results. We are looking for two things: 1) Are strengths of preference observed in the

behavioral results reflected in the pattern of drift rates in the models we consider? 2) How do

people weigh delay and probability in their choices?

Modeling Results

Parameter convergence was satisfactory as indicated by the individual chains mixing prop-

erly.5 Numerically, we compare the “proportional”, the “invariant”, and the “symmetrical” models

(and their variants) by calculating the Deviance Information Criterion (DIC; Spiegelhalter, Best,

Carlin, & van der Linde, 2002), a measure which balances goodness of fit against model complex-

ity.6 DIC values for the 12 models can be found in Table 2. The table shows that in terms of the

DIC criterion, the best–fitting model is the linear–4A “proportional” model and the worst model

belongs to the “invariant” account (nonlinear–4A model). This suggests that decision makers’ abso-

lute valuation of the now and certain options in the inter–temporal and risky domains, respectively,

change with different alternatives (different values of delay and probability) for the delayed and

risky options. In addition, the best–fitting model shows that the linear functional form of the drift

rate and separate starting points for the drift process of each choice option provide better fits than

its competitors.

We examined posterior predictive data for the best fitting linear–4A “proportional” model,

and compared these to the behavioral data (posterior predictive data for the other two models –

invariant and symmetrical – can be seen in the Supplemental Materials available online). Figure 3

5The focus of the modeling results is on the LBA and we will refer to the expected and discounted utility models
(Prospect Theory and Hyperbolic Discounting) wherever necessary.

6DIC is similar to the well–known BIC and AIC measures. However, in hierarchical models, the number of free
parameters is not well–defined. As such, DIC quantifies model complexity as across–sample variability in model fit
instead. Lower values of DIC indicate better support for a model from the data.
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Table 2
DIC values summed over participants for all 12 models fit to the Experiment 1 data set. The best
model for these data is the linear–4A proportional model (in bold).

Model P Deviance pD DIC

Proportional
Linear–2A 17 57,459.82 549.43 58,558.68
Nonlinear–2A 20 57,881.67 914.51 59,710.69
Linear–4A 19 57,135.14 651.98 58,439.09

Nonlinear–4A 22 57,885.15 920.59 59,726.34
Invariant

Linear–2A 13 65,653.85 382.53 66,418.90
Nonlinear–2A 16 65,652.03 490.78 66,633.61
Linear–4A 15 64,988.77 388.96 65,766.65
Nonlinear–4A 18 65,053.51 537.21 66,127.92

Symmetrical
Linear–2A 13 60,102.31 407.51 60,917.34
Nonlinear–2A 16 60,074.14 495.70 61,065.56
Linear–4A 15 59,576.31 471.22 60,518.74
Nonlinear–4A 18 59,758.51 555.81 60,870.14

Note: P = Number of free parameters per participant; De-
viance = -2 times the likelihood of the mean parameter es-
timate; pD = -2 times the mean likelihood of the overall
model + 2 times the likelihood of the mean parameter esti-
mate; DIC = Deviance+2pD.

indicates that the model fits the RT and choice data well. It provides good fits for response times

of all choice options, and accounts for observed choice proportions (see Choice panel).7 Figure 3

also shows choice simulations based on the best fitting parameters for the Prospect Theory and

Hyperbolic Discounting models. It can be seen that these models provide a good fit to the data,

almost indistinguishable from the predictions of the LBA model. In other words, accounting for RT

data (in addition to choice data) does not affect the way that the LBA accounts for and predicts

participants’ preferential choices.8

What can we learn from the resulting estimated parameters? Table 3 contains median values

of the group parameters of the best–fitting model (i.e., the linear–4A “proportional”; see Supple-

7It is important to note that every cell in our design contained only a single observation (i.e., any participant
contributed only a single choice for each amount/delay or amount/probability combination). As such, our data are
relatively noisy, and the model fits reflect that noise.

8The Mean Squared Error (MSE) on the simulated choice proportions for each model and choice type,
1

n

∑n

i=1
(Ci − Ĉi)

2 (where n=380: the number of trials for each type of choice; and C: proportion of choices for the
delayed/risky options for each individual choice): LBAI = 0.083, Hyperbolic Discounting = 0.053, LBAR = 0.093,
Prospect Theory = 0.070. However, caution is advised when attempting direct quantitative comparisons between
the two modeling frameworks: 1) the LBA assumes deterministic choice whereas the PT and HD models assume
probabilistic choice (as they were implemented in this paper), 2) Different methodologies were used to estimate the
parameters, and 3) the two modeling frameworks differ in terms of model complexity (e.g., number of free parameters)
and functional form (see Pitt & Myung, 2002).
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Figure 3 . Posterior predictives of the linear–4A proportional model for RTs and choice data in
Experiment 1. For all panels, circles represent mean posterior predictive data (error bars indicate
95% credible intervals of the posterior) and squares represent experimental data. Crossed-out
squares (only for the Choice panel) indicate simulated predictive data for Prospect Theory (risky
choice task) and Hyperbolic Discounting (inter–temporal choice task).

mental Materials for group-level posterior distributions of parameters). Given the particular set

of delays, probabilities, and amounts we used, there are three things that the model parameters

indicate: first, amount factors more in the decision for inter–temporal choices than for risky choices

as evidenced by larger values for αNX
and αDX

than for αCX
and αRX

. Second, risk factors more

in the decision than delay as evidenced by larger values for αCP
and αRP

than for αND
and αDD

.

Finally, decisions are made quicker on average for risky than for inter–temporal choices as evidenced

by higher drift rates and a lower response threshold for risky (BR) than for inter–temporal choices

(BI)9.

In order to delve more deeply into the modeling results, we examine individual drift rates

for each choice and each participant by entering the appropriate parameters into Equation 1 and

Equation 2. The difference between the resulting drift rates for all participants’ inter–temporal

choice data, νN − νD, can be found in Figure 4. A highly positive difference between the now drift

rate and the delayed drift rate, displayed in blue, indicates a strong preference for the now choice

option. A highly negative difference between the now drift rate and the delayed drift rate, displayed

in yellow, indicates a strong preference for the delayed choice option. The results show there are

considerable individual differences in the extent to which participants weigh amount and delay. For

example, P5 is mostly driven by the amount in dollars (as indicated by the predominantly vertical

transition in colors), whereas P1 tends to be driven by the delay (as indicated by the predominantly

horizontal transition in colors). We also see differences in the proportions of choices: participants

for whom yellow dominates generally prefer the “now” option, whereas participants for whom blue

dominates generally prefer the “delayed” option.

The difference between the resulting drift rates for all participants’ risky choice data, νC −

9Results from a parameter recovery analysis are presented in the Supplemental Materials
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Table 3
Estimated parameters of the linear–4A proportional model of the data from Experiment 1. Dis-
played are the median parameter values of the group parameters, with a 50% credible interval of
the posterior presented in parentheses. Rows represent parameters and columns represent the two
group parameters.

Description Parameter µ σ

Inter–temporal Choice

Starting Points (A)
Now AIN

0.90 (0.50, 1.29) 3.27 (2.90, 3.68)
Delayed AID

2.18 (1.66, 2.57) 2.20 (1.75, 2.71)
Threshold BI 0.92 (0.71, 1.11) 1.11 (0.98, 1.28)
Inter–temporal drift rates (νN , νD)

Offset: Now νN0
2.96 (2.83, 3.09) 0.97 (0.87, 1.08)

Offset: Delayed νD0
3.43 (3.29, 3.55) 0.93 (0.81, 1.08)

Amount Scale: Now αNX
0.12 (0.10, 0.13) 0.13 (0.12, 0.15)

Amount Scale: Delayed αDX
0.12 (0.11, 0.13) 0.06 (0.06, 0.07)

Delay Scale: Now αND
0.13 (0.13, 0.14) 0.05 (0.05, 0.06)

Delay Scale: Delayed αDD
0.29 (0.27, 0.32) 0.22 (0.19, 0.24)

Risky Choice

Starting Points (A)
Certain ARC

0.43 (0.21, 0.71) 1.90 (1.68, 2.14)
Risky ARR

2.40 (2.05, 2.66) 1.75 (1.40, 2.22)
Threshold BR 0.91 (0.77, 1.03) 0.72 (0.62, 0.84)
Risky drift rates (νC , νR)

Offset: Certain νC0
3.20 (3.11, 3.29) 0.62 (0.53, 0.75)

Offset: Risky νR0
3.80 (3.69, 3.93) 0.62 (0.46, 0.84)

Amount Scale: Certain αCX
0.03 (0.03, 0.03) 0.03 (0.03, 0.03)

Amount Scale: Risky αRX
0.09 (0.08, 0.09) 0.06 (0.05, 0.07)

Probability Scale: Certain αCP
0.17 (0.16, 0.18) 0.07 (0.06, 0.07)

Probability Scale: Risky αRP
0.48 (0.45, 0.52) 0.27 (0.23, 0.30)

Non-Decision time t0 0.10 (0.07, 0.13) 0.12 (0.10, 0.13)
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Figure 4 . Absolute difference between the drift rates for the now and delayed options (νN − νD)
across choices and participants (i.e., “P” panels) for the inter–temporal choice trials in Experiment
1. Positive drift rates reflect a preference for the now option and are displayed in colors that are
closer to blue on the color spectrum. Negative drift rates reflect a preference for the delayed option
and are displayed in colors that are closer to yellow on the color spectrum.

νR, can be found in Figure 5. Note that participants are location–matched across the figures.

The results show that most participants had their strength of preference almost exclusively be

determined by probability, rather than amount (the transition among colors goes predominantly

along the vertical axis). There are still a few exceptions to this rule, for instance P12 who seems to

weigh amount and probability almost evenly. The other stand–out observation here is that people

are very risk–averse: across the board, we see a lot more blue than we see yellow.

Discussion

Experiment 1 showed that in an inter–temporal choice setting, people prefer high payouts

and short delays. In a risky choice setting, they prefer high payouts and high payout probabilities.

We have showed how RT data can augment the information provided by choice responses: in con-

junction with choice responses they give a measure of strength of preference. In our experiment,

decisions were made quicker on average for risky than for inter–temporal choices. In addition, the
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Figure 5 . Absolute difference between the drift rates for the certain and risky options (νC − νR)
across choices and participants (i.e., “P” panels) for the risky choice trials in Experiment 1. Positive
drift rates reflect a preference for the certain option and are displayed in colors that are closer to
blue on the color spectrum. Negative drift rates reflect a preference for the risky option and are
displayed in colors that are closer to yellow on the color spectrum.

formal comparison between the three model accounts of the LBA (“invariant”, “proportional”, and

“symmetrical”) revealed that the absolute attractiveness of the now/certain choice option changes

with different alternatives for the delayed/risky options as implemented by the “proportional”

model. The LBA produced almost identical predictions when compared to standard modeling ap-

proaches in risky and inter–temporal choice (such as Prospect Theory and Hyperbolic Discounting),

suggesting that accounting for RT data does not invalidate good predictions for the choice data: our

cognitive process model can account for both streams of behavioral data (choice and RT) equally

well.

Experiment 2

Experiment 1 suggested that our instantiation of LBA can provide a good fit to the choice

and RT data from inter–temporal and risky choices based on a simple concept of accumulated

preferential strength. In Experiment 2 we examine whether our cognitive process model can provide
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a good explanation for choice and RT data when probability and delay combine in a single option.

We also test the three different accounts of the relationship between now/certain and delayed/risky

options (“invariant”, “symmetrical”, and “proportional”) and put LBA to the test by fitting a

standard discounted expected utility model to inter–temporal risky choice data. Thus, the main

objective of Experiment 2 is twofold: first, to extend the LBA to account for the combined effect of

probability and delay, and second, to examine whether the “proportional” model will be the best

fitting model.

On each trial of the experiment participants faced a choice between an option that was

available now with certainty and one that differed from the fixed option in terms of probability,

time of play, and amount of money. The full factorial combination of all the amounts, delays and

probabilities for which we wished to elicit preferences resulted in a very large number of trials (i.e.,

7,220; see Method). For this reason, in Experiment 2 we decided to collect a large amount of data

from a small number (4) of participants.

Method

Participants. Four graduate students (2 female; Mage = 23) at the University of New

South Wales participated in return for a $15 participation fee. In addition, they were paid $2 (i.e.,

outcome of the sure option) in each of 10 experimental sessions10.

Material. The experiment consisted of a total of 7,220 inter–temporal and risky choice

trials. For all choices, participants had to indicate what they preferred: $100 now for sure or $X

in D months with P% certainty, with $X varying from $120 to $500 in $20 increments (for a total

of 20 amounts), D varying from 2 months to 38 months in 2 month increments (for a total of 19

delays), and P varying from 5% to 95% in 5% increments (for a total of 19 probabilities). Thus,

every combination of amount, delay, and probability was presented to the participant once as an

alternative to $100 now for sure.

Procedure. Participants completed the experiment in 10 separate experimental sessions,

each comprising of 722 choice trials. Experimental sessions were again separated by a minimum of

three hours for each participant. Presentation of the sure option, and the inter–temporal and risky

option on the screen was counterbalanced across participants.

Implementation of the Model

Fitting the model to the inter–temporal and risky choice data in Experiment 1 revealed that

the linear–4A model was the best fitting variant within each model account, indicating that linear

drift rates and separate starting points for each choice option improves model fits and predictive

accuracy. We assumed the same model variant in Experiment 2, with linear drift rates and as many

parameters for the upper starting point A as the number of choice options (i.e., two: ANC for the

now/certain option and ADR for the delayed/risky option). Thus, in Experiment 2, we fit the

10As in Experiment 1, participants were told that one trial from the experiment would be selected and the gamble
would be played for real.
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same three model accounts (proportional, invariant, and symmetrical), but focusing on the linear–

2A variants of these model accounts. The linear–2A variant is identical to the linear–4A variant

in Experiment 1, with the only difference being that there were twice as many choice options

in Experiment 1 (four, hence four starting parameters A) compared to only two in Experiment 2

(hence the 2A). As in the implementation of the model in Experiment 1, we assumed one parameter

for threshold B, and one non–decision time parameter t0.

In Experiment 1 we observed that the same evidence accumulation (or strength of preference)

process provided a good fit to both risky and inter–temporal choices. This allowed us to assume that

expanding the drift rates to account for the combination of probability and delay in the same choice

option would provide a good account for the risky inter–temporal choice data. The definition of the

drift rates of the linear–2A “proportional” model for the risky inter–temporal choice task follows

the same principles as for the drift rates when the two dimensions are examined in isolation, that

is, a weighted sum of the attribute values of each option. Hence, we extended the model presented

in Experiment 1 to account for the joint effect of delay and probability as follows:

νNC = νNC0
− αNCX

× (X/20 − 6) − αNCD
× (19 − D/2) − αNCP

× (P/5 − 1)

νDR = νDR0
− αDRX

× (25 − X/20) − αDRD
× (D/2 − 1) − αDRP

× (19 − P/5)
(9)

where X, D, and P denote the amount in dollars, delay in months, and payout probability, re-

spectively, for the delayed/risky option, νNC and νDR denote drift rates for the now/certain and

the delayed/risky choice options, νNC0
and νDR0

denote offset parameters for the now/certain

and the delayed/risky choice options, αNCX
and αDRX

denote amount scale parameters for the

now/certain and the delayed/risky choice options, αNCD
and αDRD

denote delay scale parameters

for the now/certain and the delayed/risky choice options, and αNCP
and αDRP

denote risk scale

parameters for the now/certain and the delayed/risky choice options. νNC = νNC0
if X = 120, D

= 38, and P% = 5 (the option that most favors the “now/certain” choice). νDR = νDR0
if X =

500, D = 2, and P% = 95 (the option that most favors the “delayed/risky” choice).

This results in a total of 12 parameters to be estimated: ANC , ADR, B, t0, νNC0
, αNCX

,

αNCD
, αNCP

, νDR0
, αDRX

, αDRD
, and αDRP

. Together, these parameters should account for the

distribution of response times and choice proportions for the combined inter–temporal and risky

choice data.

Just as for Experiment 1, we fit two other models that test specific assumptions about the

underlying choice process. The “invariant” model estimates a single νNC parameter (drift rate for

the now/certain option) for all inter–temporal risky choice trials. Thus, it replaces the four free

parameters (νNC0
, αNCX

, αNCD
, and αNCP

) from the definition of νNC under the “proportional”

model (see Equation 9) with one free parameter. Conceptually, this simpler model assumes that

the absolute value of the now/certain option does not change with different alternatives for the

delayed/risky option (i.e., same absolute value for the now/certain option across all trials). The

“invariant” model has nine free parameters to be estimated. The “symmetrical” model assumes

that drift rates for the now/certain option vary symmetrically (in the opposite direction) with drift
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rates for the delayed/risky option (i.e., αNCX
= αDRX

, αNCD
= αDRD

, and αNCP
= αDRP

). This

model has nine free parameters to be estimated.

For Experiment 1, the “proportional” model fit the data better than both the “invariant” and

the “symmetrical” models. Here, we examine if the same result holds when the inter–temporal and

risky elements are combined in a single choice. Due to the small number of participants, we fit the

models to individual data (as opposed to hierarchical models in Experiment 1). We used formal

model comparison to find the account best supported by the data. Details on starting values, prior

distributions, and number of iterations may be found in the Appendix.

Discounted Expected utility model. As in Experiment 1, we also fit a discounted ex-

pected utility model for the inter–temporal risky choice data. The model combines (in a multi-

plicative way) a hyperbolic discounting of time and probabilities (see Vanderveldt et al., 2015):

D(t, θ) =
1

[(1 + kt)sd × (1 + hθ)sp ]
(10)

The first term in the denominator is identical to the two–parameter hyperbolic discounting model

used in Experiment 1 (see Equation 7). The second term is the probability discounting part,

where θ represents the odds against receiving a reward. It can be expressed in terms of actual

probabilities as θ = (1 − p)/p. This form of probability discounting can be understood as reflecting

similar properties of the probability weighting function (Equation 5) used in Experiment 1 (see also

Vanderveldt et al., 2015). As in Experiment 1, the value of a delayed risky prospect is defined as

V =
∑

D(ti, θi)u(Xi). We used the same power utility function (Equation 4) and the softmax rule

(Equation 8) for probabilistic choice. The parameter estimation procedure was identical to that in

Experiment 1, apart from the fact that we used 500 starting points for each set of parameters.

Behavioral Results

Choice and response times. All participants completed the experiment. As in Experi-

ment 1 we excluded responses that were slower than 7s and faster than 250ms (0.47% of all trials).

Preference data for Experiment 2 can be found in Figure 6. The figure shows group average pro-

portion data. Proportions close to 1, displayed in yellow, indicate a uniform preference for the

delayed/risky choice. Proportions close to 0, displayed in blue, indicate a uniform preference for

the $100 now/certain choice. The results show that participants prefer the now/certain option

when the delayed/risky option does not pay very well (i.e., amounts not much higher than $120),

when the delay is long (i.e., close to 38 months), or when the payout probability is low (i.e., close

to 5%). In contrast, participants prefer the delayed/risky option when it pays well (i.e., amounts

close to $500), when the delay is short (i.e., close to now), or when the payout probability is high

(i.e., close to 95%).

We analyzed the data using a generalized linear mixed-effects model (Binomial distribution

and logit transformation) with amount, payout probability, and delay in months of the delayed/risky

option as fixed-effects predicting selection of the delayed/risky option, and random intercepts and
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slopes (amount, probability, and delay) for each participant. The results indicated a positive

relationship between amount (b = 1.75, z = 7.87, p < .001) and payout probability (b = 3.72, z =

10.61, p. < 001) and selection of the delayed/risky option on one hand, and a negative relationship

between delay (b = −2.27, z = −2.23, p = .026) and selection of the delayed/risky option on the

other hand.
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Figure 6 . Aggregate choice preference data of Experiment 2. Panels represent different probability
levels. A proportion of 0 (blue) indicates exclusive preference for the $100 now/certain option, a
proportion of 1 (yellow) indicates exclusive preference for the delayed/risky option.

Analogous to Experiment 1, the choice data indicate that people prefer high payouts, short

delays, and high probabilities. RT data for Experiment 2 can be found in Figure 7. The figure

shows group average RT data, binned in five equal groups. Low RTs are closer to blue on the color

spectrum and high RTs are closer to yellow on the color spectrum. The results show a clear pattern:

as the probability of the delayed/risky option increases, participants tend to slow down (especially

once the probability exceeds .5).

Modeling Results

Parameter convergence was satisfactory. DIC values for the three models can be found

in Table 4. We obtained the same results as in Experiment 1, with the “proportional” model

being the best–fitting model and the “invariant” being the worst–fitting model. Consequently, this

suggests that decision makers’ absolute valuation of the now/certain option changes with different

alternatives for the delayed/risky option.

Moving to the estimated parameters, we examined posterior predictive data for the linear–2A
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Figure 7 . RT data of Experiment 2. Panels represent different probability levels. Low RTs are
closer to blue on the color spectrum.

Table 4
DIC values summed over participants for all three models fit to the Experiment 2 data set. The best
model for these data is the proportional model (in bold).

Model P Deviance pD DIC

Proportional 12 37,028 41 37,110

Invariant 9 47,944 30 48,003
Symmetrical 9 38,033 31 38,096

Note: P = Number of free parameters per par-
ticipant; Deviance = -2 times the likelihood of
the mean parameter estimate; pD = -2 times the
mean likelihood of the overall model + 2 times the
likelihood of the mean parameter estimate; DIC
= Deviance+2pD.

“proportional” model, which are compared against the behavioral empirical data. The model fit the

data well (i.e., choice proportions and RTs; see Figure 8), only slightly underestimating response

times for the delayed/risky responses. Thus, extending the LBA to account for the combined effect

of time and probability and implementing the same principle of accumulated preference for inter–

temporal risky choices provides a parsimonious and psychologically plausible account of choice

behavior in this context. Figure 8 also plots simulated choice predictions of a discounted expected

utility model (multiplicative hyperboloid model; red triangle marker): compared to a discounted

expected utility model that has been found to provide good fits to inter–temporal risky choice
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data (see Vanderveldt et al., 2015), the LBA performs well with the additional benefit of providing

predictions for RT data too.11
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Figure 8 . Posterior predictives of the linear–2A proportional model for RTs (Now/Certain and
Delayed/Risky options) and choice data (Proportion of Now/Certain choices) in Experiment 2
(individuals 1-4 and group results). For all panels, white-filled points represent mean posterior
predictive data (error bars indicate 95% credible intervals of the posterior) and black-filled points
represent experimental data. The gray triangle marker (only for the Choice panel) indicates simu-
lated predictive data for the multiplicative hyperboloid model.

Table 5 contains median parameter values of the aggregate and individual participant param-

eters of the linear–2A “proportional” model. One aspect that clearly stands out is that probability

has a much stronger influence on the decision than either amount or delay, as evidenced by the fact

that the risk scale parameters (αCNR
and αDRR

) are substantially larger than the amount (αCNX
,

αRDX
) and delay scale parameters (αCND

, αDRD
). It is important to note that as in Experiment 1,

the larger effect of probability on participants’ choices is predicated on the range of amounts and

delays we used in this study.

In order to delve more deeply into this pattern, we examined individual drift rates for two

representative participants (i.e., based on their model parameter values) by entering the appropriate

parameters into Equation 9. Inspection of the individual parameter values (columns labelled 1 to 4

in Table 5) suggests that 2 out of 4 participants (i.e., P1 and P2) weigh probability more than delay

in their decisions, whereas the remaining two participants seem to equally weigh both dimensions

to make choices. The difference between the resulting drift rates for representatives of these two

types of participants’ (P2 and P3) risky inter–temporal choice data, νCN − νRD, can be found in

Figure 9. A highly positive difference between the now/certain drift rate and the delayed/risky

drift rate, displayed in blue, indicates a strong preference for the now/certain choice. A highly

negative difference between the now/certain drift rate and the delayed/risky drift rate, displayed

in yellow, indicates a strong preference for the delayed/risky choice. As expected based on the

individual parameter values, Figure 9 shows that the two participants have quite distinct choice

11The corresponding MSEs are: LBA = 0.134; Multiplicative Hyperboloid = 0.104
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Table 5
Estimated parameters of the proportional model in Experiment 2. Displayed are the median param-
eter values of the group (Group column) and individual (1 to 4 columns) parameters, with a 50%
credible interval of the posterior presented in parentheses.

Parameter Group 1 2 3 4

ANC 0.98 (0.01, 1.74) 0.00 (0.00, 0.01) 0.01 (0.00, 0.02) 2.41 (2.35, 2.47) 1.24 (1.17, 1.31)
ADR 2.39 (1.74, 4.27) 1.99 (1.92, 2.08) 1.40 (1.32, 1.49) 4.73 (4.16, 5.28) 3.86 (3.43, 4.37)
B 1.89 (1.28, 2.06) 1.04 (1.01, 1.07) 1.90 (1.87, 1.92) 1.87 (1.80, 1.95) 2.13 (2.11, 2.16)
νNC0

3.66 (3.53, 4.92) 3.45 (3.40, 3.50) 3.72 (3.68, 3.76) 5.43 (5.37, 5.49) 3.60 (3.56, 3.65)
νDR0

3.72 (3.15, 3.85) 3.77 (3.68, 3.85) 3.79 (3.72, 3.85) 3.81 (3.58, 4.05) 2.64 (2.48, 2.82)
αNCX

0.03 (0.01, 0.06) 0.01 (0.01, 0.01) 0.07 (0.07, 0.07) 0.05 (0.05, 0.06) 0.00 (0.00, 0.01)
αNCD

0.02 (0.01, 0.04) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.05 (0.05, 0.06) 0.03 (0.03, 0.04)
αNCP

0.15 (0.11, 0.17) 0.17 (0.17, 0.18) 0.17 (0.17, 0.17) 0.13 (0.13, 0.14) 0.07 (0.07, 0.07)
αDRX

0.13 (0.10, 0.16) 0.09 (0.09, 0.09) 0.14 (0.13, 0.14) 0.20 (0.19, 0.22) 0.13 (0.11, 0.14)
αDRD

0.12 (0.01, 0.36) 0.01 (0.00, 0.01) 0.02 (0.01, 0.02) 0.45 (0.43, 0.48) 0.29 (0.27, 0.31)
αDRP

0.28 (0.19, 0.35) 0.28 (0.28, 0.29) 0.17 (0.17, 0.18) 0.50 (0.47, 0.53) 0.25 (0.23, 0.27)
t0 0.01 (0.00, 0.09) 0.11 (0.11, 0.12) 0.00 (0.00, 0.01) 0.04 (0.02, 0.05) 0.00 (0.00, 0.01)

profiles (see also individual parameter values in Table 5): P2’s choices are almost exclusively driven

by amount and payout probability as indicated by the vertical transitions in colors within and

across probability levels. P3 is considerably more risk averse than P2 as there is a lot more blue

than yellow in their panel. In addition, it appears that P3’s choices are also impacted by delay

(in addition to probability and amount) as shown by the mostly horizontal transitions in colors for

probability levels greater than 55% (see Supplemental Materials for individual differences in the

drift rates of the remaining two participants).

General Discussion

The search for understanding the principles that underlie choice in inter–temporal and risky

settings has been dominated by descriptive explanations of observed behavior. Choice anoma-

lies and deviations from EUT and DUT have led to the development of a vast number of util-

ity/subjective value-based models which propose different functional forms and additional param-

eters to account for observed behavioral effects. However, in recent years, decision scientists have

started to adopt cognitive processing models of choice behavior, suggesting a possible paradigm

shift within judgment and decision–making research (Bhatia & Mullett, 2016; Oppenheimer &

Kelso, 2015). Information processing models have been applied in many areas of decision–making

and have provided psychological explanations and insights into the dynamics underlying preferen-

tial choice (see e.g., Busemeyer & Townsend, 1993; Krajbich, Armel, & Rangel, 2010; Newell &

Bröder, 2008; Rodriguez et al., 2014; Trueblood et al., 2014; Usher & McClelland, 2001).

In this work, we followed a similar approach using an evidence accumulation model (LBA)

to account for inter–temporal and risky choices. The novelty of our approach rests on the fact

that the same modeling framework can be applied to two seemingly different types of choices,
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Figure 9 . Absolute difference between the drift rates for the now/certain and delayed/risky options
(νCN − νRD) for each choice in Experiment 2 for two participants (P2 and P3). Panels represent
different probability levels. Positive drift rates reflect a preference for the now/certain option and
are displayed in colors that are closer to blue on the color spectrum. Negative drift rates reflect a
preference for the delayed/risky option and are displayed in colors that are closer to yellow on the
color spectrum.
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without relying on assumptions derived from either EU or DU models. In addition, the current

work presents the first attempt to model the combined effect of probability and delay assuming

an evidence accumulation framework and relying on a simple specification (weighted sum) of how

preference is accumulated: drift rates provide a parsimonious and elegant measure for strength of

preference, combining the information provided by choice responses and RTs.

Choice behavior in inter–temporal and risky settings

In Experiment 1, we observed that people prefer larger, sooner to later, and certain to

risky payouts. A closer inspection of the results revealed that delay and payout probability had a

larger effect on choice for inter–temporal and risky options, respectively, as compared to amount.

Comparing inter–temporal and risky choices, amount appears to matter more in an inter–temporal

setting. This pattern is consistent with observations from previous research on delay and probability

discounting showing that changes in amount magnitude have a larger effect in an inter-temporal

than a risky choice setting (see Greenhow, Hunt, Macaskill, & Harper, 2015; Myerson, Green, Scott

Hanson, Holt, & Estle, 2003; Yi et al., 2006). For the particular set of delays, probabilities, and

amounts we used, a comparison of the relative importance of probability and delay across choice

settings (i.e., logit regression coefficients and model parameters) indicates that probability may

have a larger effect on choice compared to delay. Vanderveldt et al. (2015) found in a task where

both dimensions were combined that increasing the payout probability eliminated the effect of

delay, whereas when delay was increased, the effect of probability was reduced but not completely

eliminated. Nonetheless, they mentioned that the superior effect of probability may be an artifact

of the amounts and the range of delays and probabilities used in their study. This could also be

the case in our experiment: the larger effect of probability may have been the result of the range

in which we manipulated amount and delay (probability is naturally constrained between 0 and 1).

With longer delays (longer than 38 months that we used in this experiment) and different starting

and ending points for the range of amounts (smaller than $120 and larger than $500 that we

used in this experiment), the relative importance of delay could have been different. Alternatively

and consistent with our results, probability may be generally more salient than delay (see also

Konstantinidis, van Ravenzwaaij, & Newell, 2017).

RT data showed that risky choices were made on average faster than inter–temporal choices.

Participants’ responses were slower when risky or delayed options were more attractive than the

default option of $100 now or with certainty. In addition, clear preferences in terms of proportion

produced shorter RTs. These results are suggestive of the dynamic nature of inter–temporal and

risky choice, indicating that the use of static and descriptive models of choice may hinder our

understanding of how preferences and choices are formed (see Dai & Busemeyer, 2014).

The purpose of Experiment 2 was to elicit preferences for the factorial combination of a wide

range of amounts, payout probabilities, and delays. This resulted in a very large amount of delayed

risky options being offered as choice alternatives to a fixed amount now-certain choice option. While

this design allowed us to provide more accurate individual model parameter estimates, the small
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sample size in this experiment (i.e., 4) does not allow strong conclusions to be drawn regarding

the generalizability of the behavioral patterns found in the data. Figure 9 shows that there is

considerable variation in participants’ choice patterns. However, the cognitive modeling analyses

and the way that drift rates are defined (weighted sums and scaling parameters) allowed us to

quantify and explain individual differences, and the extent to which participants weighed each

dimension in their decision-making behavior.

Perspectives on modeling probability and delay

We used formal model comparison to pit three different variants of LBA against each other

that differed in the assumptions they make about the absolute evaluation of the now/certain choice

option.12 In both experiments, the “proportional” model (with as many starting point parameters

as the available choice options and linear drift rates) fit the data best, suggesting that the absolute

attractiveness of the now/certain choice option cannot be judged in a vacuum. This goes against

classic expected and discounted utility models which assume that the subjective value of an option

is fixed and the product of a utility function paired with a discounting function (inter–temporal

choice) or a probability weighting function (risky choice). Our cognitive process model makes

no such assumptions; instead the definition of the drift rates suggests that preference for each

option is formed through a weighted sum of its attributes (money, delay, and probability) and it

is dependent on the numerical value of the attributes of the alternative option. However, one can

assume different functional forms for the definition of drift rates and the way amount, probability,

and delay combine. We tested this assumption by allowing the drift rates to have nonlinear forms,

but this led to poorer fits compared to the linear forms of the drift rates. A complementary approach

is to assume that drift rates incorporate the functional forms from existing models (such as those

used in PT and HD) in determining preferences for choice alternatives (e.g., Dai & Busemeyer,

2014). In this sense, accumulated preference over time is governed by discounted or subjective

utility valuations of delayed risky prospects (e.g., Rodriguez et al., 2014). Future research can

determine the practical and theoretical advantages of implementing and testing such models. The

objective of the present work was to present a process model which takes into account response

times and assumes the same modeling and processing framework for both types of preferential

choice.

We also compared the performance of our cognitive process model against standard ap-

proaches, such as Prospect Theory in risky choice and Hyperbolic Discounting in inter–temporal

choice. We also attempted a combination of these two models (i.e., the multiplicative hyperboloid

model) when probability and delay appear in the same choice option (Vanderveldt et al., 2015). In

both Experiments 1 and 2, we observed that predictions from these models were almost identical

to those of the LBA, indicating that assuming a modeling framework akin to attribute-wise models

and accounting for choice response times provide an equally plausible account of choice behavior.

12Our model also assesses “relative” attractiveness and preferences since the numerical value of the now/certain
option is also dependent on the numerical value of the delayed/risky option.
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The additional benefits from using our cognitive process model are that the LBA provides predic-

tions on two streams of behavioral data, choice proportions and RTs (while standard approaches

are only concerned with the former, and in most cases at the aggregate level) and it also provides an

economic way (weighted sum of attribute values) to model the effect of probability and delay when

they are treated independently from each other, but also when combined. Glöckner and Herbold

(2011) showed that Cumulative Prospect Theory can provide adequate (“reasonably good”, p. 94)

descriptions of aggregate choice behavior in risky choice tasks, but they suggested that accounting

for individual choice behavior and the underlying choice process, models such as DFT (an evidence

accumulation model; see Busemeyer & Townsend, 1993) are more appropriate.

The fact that our instantiation of the LBA assumes weighted comparisons between choice

options makes it analogous to attribute–based models of inter–temporal and risky choice. These

models assume that preferential choice between options is not necessarily based on underlying

delay or probability discounting functions, but it is rather driven by direct comparisons between

the attributes of each option (see e.g., Brandstätter et al., 2006; Cheng & González-Vallejo, 2016;

González-Vallejo, 2002; Read, Frederick, & Scholten, 2013; Scholten & Read, 2010). Attentional

focus or importance placed on each attribute is instantiated by weights. The scaling parameters

for amount, delay, and probability in the drift rates of the LBA can be conceived as serving the

same purpose (for similar ideas see, Dai & Busemeyer, 2014; Read et al., 2013).

Our modeling analysis also adds to recent attempts that employed evidence accumulation

models to account for effects in risky and inter–temporal choice. For example, Dai and Busemeyer

(2014) found that an attribute–wise diffusion model, based on absolute comparisons between the

dimensions of money and time, could account for three inter–temporal choice effects. Rodriguez et

al. (2014) used the LBA in an inter–temporal choice setting and concluded that delayed decision–

making can be also explained by sequential sampling mechanisms. Our current work extends these

theoretical and practical observations and presents LBA as a model which accounts for inter–

temporal and risky decision–making independently but also when the two dimensions combine in

a singe choice option. The model fits the combined choice data well (see Figures 3 and 8) without

incorporating trade–offs between probability and time (as is required in the probability and time

trade–off model Baucells & Heukamp, 2010, 2012), and without assuming any particular functional

form for probability and delay discounting (as is required in the multiplicative hyperboloid model;

Vanderveldt et al., 2015). In addition, the LBA naturally accounts for response times and imple-

ments them in the decision process as an important component of developing a preferential strength

for each option. Taking all these facets together, our work presents the first attempt to model the

combined effect of probability and delay through an evidence accumulation process, and to provide

psychological explanations about preferential choice that rely on the simultaneous examination of

choice and RT data.
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Appendix

Distributional Choices

Experiment 1

Starting values for the MCMC chains for individual parameters were drawn from the follow-

ing distributions: BI ∼ N(1.2, 0.12)|(0, ∞), BR ∼ N(1, 0.1)|(0, ∞), AD ∼ N(2, 0.2)|(0, ∞), AR ∼

N(1.75, 0.175)|(0, ∞), νN0
∼ N(3, 0.3)|(0, ∞), νD0

∼ N(3, 0.3)|(0, ∞), νC0
∼ N(3.5, 0.35)|(0, ∞),

νR0
∼ N(3, 0.3)|(0, ∞), αNX

∼ N(0.11, 0.311)|(−3, ∞), αND
∼ N(0.15, 0.315)|(−3, ∞), αDX

∼

N(0.15, 0.315)|(−3, ∞), αDD
∼ N(0.3, 0.33)|(−3, ∞), αCX

∼ N(0.06, 0.036)|(−3, ∞), αCR
∼

N(0.16, 0.316)|(−3, ∞), αRX
∼ N(0.1, 0.31)|(−3, ∞), αRR

∼ N(0.4, 0.34)|(−3, ∞), and t0 ∼

N(0.15, 0.015)|(0, ∞). In case of any of the 4-A models, starting values for both the now/delayed

and the certain/risky starting points were drawn from the same distribution as indicated above. In

case of the non-linear models, βNX
, βND

, βDX
, βDD

∼ N(−0.3, 0.27)|(−3, ∞) and βCX
, βCR

, βRX
,

βRR
∼ N(0, 0.3)|(−3, ∞). The notation ∼ N(, ) indicates that values were drawn from a normal

distribution with mean and standard deviation parameters given by the first and second number

between parentheses, respectively. The notation |(, ) indicates that the values sampled from the

normal distribution were truncated between the first and second numbers in parentheses.

The hierarchical set–up prescribes that all individual parameters come from a truncated

Gaussian group–level distribution (truncated to positive values only). Thus, for each parameter

to be estimated, we are estimating a group level mean parameter and a group level standard

deviation parameter. All group level mean parameters are normally distributed, both Bµs ∼

N(1, 0.3)|(0, ∞), ADµ ∼ N(2, 1)|(0, ∞), ARµ ∼ N(1.75, 1)|(0, ∞), all νµs ∼ N(3, 1.5)|(0, ∞), all

αµs ∼ N(0, 1)|(0, ∞), and t0µ ∼ N(0.15, 0.07)|(0, ∞). In case of any of the 4-A models, both

the now/delayed and the certain/risky options had the same prior for starting point as indicated

above. In case of the nonlinear models, all βµs ∼ N(0, 1)|(−3, ∞). All group level standard

deviation parameters are gamma distributed, with a shape and a scale parameter of 1. Starting

values for the MCMC chains for group level µ parameters were drawn from the same distributions

as those for the individual parameters, and starting values for group level σ parameters were derived

from starting value distributions for the individual parameters by dividing the mean by 10 and the

standard deviation by 2. These prior settings are quite uninformative, and are based on previous

experience with parameter estimation for the LBA model. As a result, the specific settings will not

have a large influence on the shape of the posterior. For more details on distributional choices for

the priors, we refer the reader to Turner et al. (2013).

For sampling, we used 32 interacting Markov chains and ran each for 1,000 burn-in iterations

followed by 1,000 iterations after convergence. The two tuning parameters of the differential evolu-

tion proposal algorithm were set to standard values used in previous work: random perturbations

were added to all proposals drawn uniformly from the interval [-.001, .001]; and the scale of the

difference added for proposal generation was set to γ = 2.38 × (2K)−0.5, where K is the number of

parameters per participant. The MCMC chains blocked proposals separately for each participant’s

parameters, and also blocked the group–level parameters in {µ, σ} pairs.
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Experiment 2

Starting values for the MCMC chains for individual parameters were drawn from the fol-

lowing distributions: B ∼ N(2, 0.2)|(0, ∞), both As ∼ N(2, 0.2)|(0, ∞), νNC0
∼ N(6, 0.6)|(0, ∞),

νDR0
∼ N(6, 0.6)|(0, ∞), αNCX

∼ N(0.1, 0.01)|(0, ∞), αNCD
∼ N(0.15, 0.015)|(0, ∞), αNCR

∼

N(0.2, 0.02)|(0, ∞), αDRX
∼ N(0.1, 0.01)|(0, ∞), αDRD

∼ N(0.15, 0.015)|(0, ∞), αDRR
∼

N(0.2, 0.02)|(0, ∞), and t0 ∼ N(0.2, 0.02)|(0, ∞).

Priors for all individual parameters are normally distributed, B ∼ N(2, 2)|(0, ∞), both As

∼ N(2, 2)|(0, ∞), νNC0
∼ N(6, 6)|(0, ∞), νDR0

∼ N(6, 6)|(0, ∞), αNCX
∼ N(0.1, 0.1)|(0, ∞),

αNCD
∼ N(0.15, 0.15)|(0, ∞), αNCR

∼ N(0.2, 0.2)|(0, ∞), αDRX
∼ N(0.1, 0.1)|(0, ∞), αDRD

∼

N(0.15, 0.15)|(0, ∞), αDRR
∼ N(0.2, 0.2)|(0, ∞), and t0 ∼ N(0.2, 0.2)|(0, ∞).

For sampling, we used 32 interacting Markov chains and ran each for 1,000 burn-in iterations

followed by 1,000 iterations after convergence. The two tuning parameters of the differential evolu-

tion proposal algorithm were set to standard values used in previous work: random perturbations

were added to all proposals drawn uniformly from the interval [-.001, .001]; and the scale of the

difference added for proposal generation was set to γ = 2.38 × (2K)−0.5, where K is the number of

parameters per participant. The MCMC chains blocked proposals separately for each participant’s

parameters, and also blocked the group–level parameters in {µ, σ} pairs.


