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ABSTRACT 

The present paper addresses the problem of estimating fatigue strength of welded joints when 

the weld seams are inclined with respect to the direction of the axial cyclic loading being 

applied. From a fatigue design point of view, the main complexity lies in the fact that, with this 

particular welded geometries, although the applied loading is uniaxial, accurate fatigue 

assessment can be performed provided that the degree of multiaxiality of the 

nominal/structural/local stress states at the weld toes/roots is modelled effectively. To this 

end, in the present investigation the Modified Wöhler Curve Method (MWCM) is attempted 

to be used to assess the fatigue strength of steel joints with inclined welds by using this 

multiaxial fatigue criterion in conjunction with nominal stresses, hot-spot stresses, effective 

notch stresses, and the Theory of Critical Distances (TCD). A large number of experimental 

results taken from the literature and generated by testing inclined fillet welds was used to 

check the accuracy and reliability of the MWCM applied along with these different ways of 

determining the relevant stress states. The results obtained from this validation exercise 

demonstrate that the MWCM returns satisfactory estimates when it is used to assess fatigue 

strength in the presence of inclined welds, with this holding true independently of the specific 

stress analysis strategy being adopted. 

 

Keywords: Inclined welds, nominal stress, hot-spot stress, local stress, critical distance. 
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Nomenclature 

a, b, �, � fatigue constants for the MWCM’s calibration curves 

� negative inverse slope of the uniaxial fatigue curve 

�� negative inverse slope of the torsional fatigue curve 

�� negative inverse slope of the modified Wöhler curve 

�� probability of survival 

∆	
 stress range normal to the weld seam  

∆	��
 axial nominal stress range 

∆	� stress range perpendicular to the critical plane 

∆	� stress range of the uniaxial design curve extrapolated at a reference number of 

cycles to failure 

∆	�.��   normal superficial stress range at a distance from the weld toe equal to 0.4t 

∆	� superficial normal stress range at a distance from the weld toe equal to t 

∆	�,� , ∆��,� design resistance stress range for a specific number of cycles and appropriate 

FAT class 

∆�
� shear stress range parallel to the weld seam  

∆� shear stress range relative to the critical plane 

∆��.�� superficial shear stress range at a distance from the weld toe equal to 0.4t 

∆�� superficial shear stress range at a distance from the weld toe equal to t 

∆�� stress range of the torsional design curve extrapolated at a reference number of 

cycles to failure 

�� critical plane stress ratio  

∆���� reference shear stress range extrapolated at  ���� cycles to failure  

���� reference number of cycles to failure  

��  number of cycles to failure  

���� reference radius  

� inclination angle with respect to the applied cyclic loading 

R load ratio  

 

 

1. Introduction 

Failure of metals caused by cyclic loading is a very complex problem that has been investigated 

extensively since the second half of the 19th century. Damage due to fatigue is accumulated 

cycle by cycle until, after a certain number of cycles, materials fail suddenly without any visible 

warning [1-3]. In this general context, a considerable amount of research work has been 

carried out since the beginning of the last century to investigate the effect of welding processes 

on the overall fatigue behaviour of structural components. These studies indicate that the 

fatigue strength of welded components is considerably lower than the one of un-welded 

structural details, with this holding true even though they are made of the same material [1]. 
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This is a consequence of the fact that residual stresses, defects, imperfections and distortions 

are introduced during welding, with this resulting in an intrinsic reduction of the overall 

fatigue strength of welded connections [2, 4, 5]. Further, localised stress concentration 

phenomena resulting in severe stress/strain gradients always occur at the weld toes as well as 

at the weld roots [6]. This is the reason why fatigue cracks in welded joints usually initiate in 

the vicinity of the weld seams rather than in the parent material [2]. This already complex 

situation is further complicated also by the fact that in the heat affected zone the filler material 

alters the metallurgical morphology of the parent material, with this leading to a change in the 

material microstructural features in the vicinity of the welds themselves [2]. 

Owing to the key role that is played by weldments in applications of industrial interest (such 

as, for instance, automotive, offshore structures and railway industry), a considerable amount 

of experimental/theoretical work has been done to formalise and validate specific design 

techniques suitable for performing fatigue assessment of structural welded components [7-9]. 

As a result, the available Standards and Codes of Practice suggest different design strategies 

that include the nominal stress approach, the hot-spot stress approach, and those methods 

making use of local stresses [9-11]. In this context, certainly, the nominal stress approach is 

the most widely used in situations of practical interest. In particular, according to this 

methodology, fatigue strength is directly estimated from ad hoc S-N curves that are provided, 

for specific welded geometries, by the pertinent Standard Codes. To perform fatigue 

assessment according to this approach the stress analysis is done according to the simple 

principles of continuum mechanics [9-12]. Even if it is very effective, the main limitation 

characterising the nominal stress approach is that it cannot be used either when there is no 

univocal nominal cross-section or when a reference design curve is not available for the 

specific welded geometry being designed [13]. As the nominal stress approach is not directly 

applicable, then either hot-spot stresses or local stresses have to be employed to design against 

fatigue complex/non-standard welded geometries. 
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The hot-spot stress approach works by taking into account the stress raising effect by 

extrapolating a reference stress quantity at the weld toes, with the stress gradient effect being 

accounted for via ad hoc design curves [13, 14]. 

Even if hot-spot stresses have proven to be very effective, examination of the state of the art 

shows that the most advanced design approaches available to date are those making use of 

local linear-elastic stresses. In this context, the so-called effective notch stress approach [14-

18] is the most advanced fatigue design method being recommended by the International 

Institute of Welding (IIW) [9]. According to this approach, design stresses are determined by 

rounding weld toes/roots with a fictitious notch radius equal to either 1 mm (when the 

thickness, t, is larger than 5 mm) or to 0.05 mm (for t<5 mm) [16-18]. 

More recently, attention has been focused on extending the use of the Theory of Critical 

Distance (TCD) [19] also to the fatigue assessment of weldments [20]. The TCD takes as a 

starting point the idea that fatigue damage in the presence of stress concentrators of all kinds 

can be estimated by using an effective stress that is representative of the entire linear-elastic 

stress field acting on the material in the vicinity of the assumed crack initiation locations [21]. 

Thanks to its unique features, the TCD is seen to return very accurate estimates of the fatigue 

lifetime of welded components, the key advantage being that the required stress fields can be 

determined directly from simple linear-elastic Finite Element (FE) models [12, 19-21]. 

The available Design Codes [9-11] recommend specific design rules that can be used primarily 

in those situations where the cyclic force being applied is either normal or parallel to the weld 

seams. However, this is not always the case. In fact, in real welded structures, in-service forces 

can be applied also at different angles to the weld seams. To address this type of design 

problem, Eurocode 3 [10] and Eurocode 9 [11] suggest to estimate fatigue damaged by 

considering the effect of the stress ranges that are both normal and parallel to the weld toe. 

Similarly, to address this specific problem, the IIW [9] recommends using a relationship that 

is directly derived from the classic equation due to Gough, i.e.: 
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∆�%,$ &' ≤ *+           (1) 

 

In Eq. (1), ∆	�,,-,� and ∆��,,-,� are equivalent constant amplitude stress ranges, whereas 

∆	�,�  and ∆��,� are design stress ranges for a specific number of cycles estimated from 

appropriate uniaxial and torsional FAT curves. Finally, CV is a reference comparison index 

that is directly provided in Ref. [9]. 

Turning to the research work that has been done to address the problem of designing against 

fatigue uniaxially loaded inclined welds, recently, we have proposed a simple formula that was 

derived by tackling the problem from a multiaxial fatigue angle [22]. In particular, we obtained 

very accurate estimates by simply applying the Modified Wöhler Curve Method (MWCM) [11, 

23-26] along with the nominal stresses approach [27]. In light of the high level of accuracy 

that was obtained by employing this strategy, the ultimate goal of this paper is assessing the 

accuracy of the MWCM in estimating fatigue strength in the presence of uniaxially loaded 

inclined welds when our multiaxial fatigue criterion is applied along with hot-spot and 

effective notch stresses as well as in conjunction with the Point Method (PM) – i.e., the 

simplest formalisation of the TCD [11, 21]. 

 

2. Fundamental features of the MWCM 

Examination of the state of the art shows that the MWCM is one of the most advanced tools 

that can be used to assess the strength of welded components subjected to multiaxial fatigue 

loading. In particular, this method – that can be applied in terms of either nominal, hot-spot 

or local stresses - has proven to be highly accurate and reliable in estimating lifetime of steel 

and aluminium welded joints subjected to in-phase/out-of-phase constant/variable amplitude 

uniaxial/multiaxial fatigue loading [27-36]. 

The procedure to design welded joints against fatigue according to the MWCM is summarised 

in Figs 1 and 2, with this general theoretical framework being valid independently of the type 

of stresses being used (i.e., either nominal, hot-spot, or local stresses). Initially, the hypothesis 
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is formed that the welded component being designed is subjected to a cyclic load history that 

results in a multiaxial stress state, [∆	], at the critical location/section. Stress tensor [∆	] is 

then post-process to calculate the shear stress range, ∆�, and the normal stress range, ∆	�, 

relative to that material plane experiencing the maximum shear stress range (i.e., the so called 

critical plane) [36, 37]. 

The MWCM takes into account the combined effect of ∆� and ∆	� through a stress ratio,  ��, 

which is the defined as follows (Eq.2) [12, 27]: 

 

�� = ∆ /
∆�              (2) 

 

According to the way it is defined, stress ratio �� is sensitive to the degree of multiaxiality and 

non-proportionality of the assessed cyclic load history [12, 36]. In particular, it is 

straightforward to see that �� is invariably equal to unity under fully-reversed axial cyclic 

loading and invariably equal to zero under pure torsional fatigue loading [12]. 

In order to explain how the MWCM works, consider the maximum shear stress range, ∆�, vs. 

number of cycles to failure, N�, diagram that is reported in Fig. 3 (which is usually referred to 

as the “modified Wöhler diagram”). According to this log-log schematisation, welded 

components are designed using a modified Wöhler curve whose position varies as ratio �� 

changes. Any of these design curves is defined unambiguously via its negative inverse slope, 

k�(��), and its endurance limit, ∆τ���(��), extrapolated at N��� cycles to failure. The 

schematic diagram of Fig. 3 makes it evident that fatigue lifetime can be assessed provided 

that the specific modified Wöhler curve is known for the value of �� calculated, according to 

Eq. (2), by post-processing the load history under investigation. Since the S-N curves that are 

available to perform the fatigue assessment are usually those experimentally 

determined/estimated under fully-reversed uniaxial and torsional fatigue loading, the 

modified Wöhler curves for �� ratios different from unity (uniaxial case) and zero (torsional 

case) have to be derived via the following linear relationships [12, 23, 24]: 
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��(��) = � ∙ �� + �           (3) 

∆����(��) = 6 ∙ �� + 7          (4) 

 

In Eqs (3) and (4) �, �, 6 and 7 are fatigue constants to be determined from suitable 

experimental fatigue curves. In particular, by observing that �� = 1 under fully-reversed 

uniaxial cyclic loading and �� = 0 under torsional fatigue loading, Eqs (3) and (4) can directly 

be rewritten as follows [12, 24]: 

 

��(��) = (� − ��) ∙ �� + ��          (5) 

∆����(��) = >∆ ?
' − ∆��@ ∙ �� + ∆��         (6) 

 

where � and �� are the negative inverse slopes of the uniaxial and torsional fatigue curve, 

respectively, whereas ∆	� and ∆�� are the ranges of the corresponding endurance limits 

determined at a number of cycles to failure equal to at ����. 

Turning back to the way the MWCM quantifies fatigue damage, after using Eqs (5) and (6) to 

estimate the modified Wöhler curve associated with the value of �� characterising the load 

history under investigation, the number of cycles to failure can be predicted directly via the 

following standard power law (Fig. 3): 

 

�� = ���� ∙ A∆�%!B(CD)
∆� EFG(CD)

           (7) 

 

To conclude, it is worth recalling here that, according to the way it is defined, ratio �� is not 

sensitive to presence of non-zero mean stress [12, 27, 36]. This implies that the MWCM as 

reviewed in the present section can be used to perform the fatigue assessment of welded joints 

characterised by high tensile residual stresses – i.e., in the as-welded condition. In contrast, 
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the fatigue assessment of stress-relieved welded connections is recommended to be performed 

by adopting appropriate enhancement factors as extensively discussed in Ref. [36]. 

 

3. Experimental data taken from the technical literature 

To assess the accuracy of the MWCM in estimating the fatigue strength of inclined welds, a 

number of experimental data sets were selected from the technical literature. These results 

were generated by testing under zero-tension (i.e., R=0) uniaxial cyclic loading steel 

specimens manufactured by making the weld inclination angle, θ, vary in the range 0°-45°. In 

particular, we considered the welded specimens tested by Booth and Maddox (Fig. 4a) [38], 

the load-carrying fillet welded joints tested by Kim and Kainuma (Fig .4b) [39] and the out-

of-plane gusset geometry (Fig. 5a) as well as the non-load carrying fillet welded joint (Fig. 5b) 

tested by Kim and Yamada [40]. 

These welded specimens were all in the as-welded condition, i.e., no heat treatment was used 

to relieve the internal residual stresses arising from the welding process. 

After welding, all the samples were mechanically treated to force the fatigue cracks to initiate 

at the middle section of the weld seams (either at the weld toes or at the weld roots). In 

particular, the out-of-plane gusset specimens (specimen type KY-G in Fig. 5a [40]) were either 

grounded with a disc grinder or needle peened to ensure that the fatigue cracking process did 

not occur at the weld edges. The length of the gusset was fixed so that the distance between 

the end of the gusset and the edge of the specimen was 20 mm. Accordingly, the gusset length 

varied with inclination angle θ. For the non-load carrying fillet (specimen type KY-N in Fig. 5b 

[40]), the two stiffeners and the area in between were widened with a fillet radius equal to 15 

mm to reduce the stress concentration effect and ensure no fatigue cracks initiated at the 

edges. For the load-carrying fillet welded joints (specimen type KK in Fig. 4b [39]), the root 

gap was less than 0.1 mm and the specimens were grounded with a disc grinder at the weld 

toe to prevent fatigue failures to occur in these locations.  

Finally, it is worth observing that the welded geometries sketched in Figs 4 and 5 were used to 

check the accuracy of the MWCM when this approach is applied in terms of nominal and 
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effective notch stress as well as in conjunction with the TCD. The hot-spot stress approach was 

used instead solely to post-process the results generated by testing the welded specimens 

shown in Figs. 4a, 5a and 5b. This is due to the fact that in the load-carrying fillet welded joints 

tested by Kim and Kainuma (Fig .4b) [39] fatigue cracks were seen to initiate from the weld 

roots and the hot-spot stress approach cannot be used to assess this type of failure [13, 14]. 

 

4. Inclined welds, nominal Stresses and the MWCM: a brief review 

The nominal stress approach is the simplest design technique that is suggested both by the 

European Standard Codes [10, 11] and by the IIW [9]. According to this approach, design 

stresses are calculated using classic continuum mechanics by considering, where necessary, 

the macroscopic stress gradients resulting from the macro-geometrical features characterising 

the weld regions [9, 12]. In contrast, local stress concentration phenomena due to the weld 

seams are neglected since their detrimental effect is directly taken into account via the specific 

design fatigue curve that is recommended for each welded geometry being classified [9-11]. 

Back in 2004 the MWCM applied in terms of nominal stresses was seen to be highly accurate 

in estimating fatigue lifetime of aluminium and steel welded joints when the loads are applied 

parallel and perpendicular to the weld seams [12, 27, 32, 36]. Recently, the combined use of 

the MWCM and the nominal stress approach was extended also to the fatigue assessment of 

uniaxially loaded inclined welds [22]. For these welded geometries, although the global load 

history is uniaxial, the nominal stress state in the vicinity of the weld is not only multiaxial, 

but also varies proportionally, with the degree of proportionality changing as the weld 

inclination angle increases [22]. 

According to the sketch reported in Fig. 6a, the nominal stresses perpendicular, ∆	
, and 

parallel, ∆�
�, to the weld seam can easily be determined as follows [41]: 

 

∆	
 = ∆	��
 ∙  HIJ'�           (8) 

∆�
� = ∆	��
  ∙  HIJ� ∙  JKL�          (9) 
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where θ is the angle between the weld seam and the straight line normal to the direction along 

which the cyclic uniaxial force is applied (Fig. 6a). The use of the nominal stresses determined 

according to Eqs (8) and (9) to estimate the fatigue strength of welded joints can be justified 

by advocating the Notch-Stress Intensity Factor (N-SIF) approach [42, 43]. In particular, for 

a notch opening angle larger than 100°, Mode II stresses are no longer singular, so that they 

can be neglected with little loss of accuracy. In contrast, the overall fatigue strength of welded 

joints is seen to depend predominantly on the Mode I and Mode III stress components, with 

the corresponding linear-elastic stress fields being still singular also for weld opening angles 

equal to 135° [43, 44]. Since, Mode I and Mode III stresses are proportional to nominal 

stresses ∆	
 and ∆�
�, respectively, the stress quantities determined according to Eqs (8) and 

(9) can directly be used to assess fatigue strength when the weld seams are subjected to a 

multiaxial system of normal and shear forces [22, 44]. 

Having clarified this important aspect, as per the schematic Mohr circle reported in Fig.6b, 

the ranges of the normal and shear nominal stress relative to the critical plane can then be 

determined as [22]: 

 

∆	� = ∆ M
' = ∆ /NO

' ∙ HIJ'�                     (10) 

∆� = P∆ MQ
� + ∆�
�' = ∆ /NO

' ∙ HIJ'�√1 + 4T6L'�  for � ≠ V
'                  (11) 

 

If q is used to define the following trigonometric quantity: 

 

W = X
√XY��Z�Q[                        (12) 

 

then the critical plane stress ratio, Eq. (2), can directly be determined as: 

 

�� = ∆ /
∆� = X

√XY��Z�Q[ = W         (13) 
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Eq. (13) makes it evident that, as far as uniaxially loaded inclined welds are concerned, �� 

depends solely on the inclination angle, �. Since �� = W, then the MWCM’s calibration 

equations – i.e., Eqs (5) and (6), can then be rewritten as [22]: 

 

��(��) = ��(W) = (� − ��) ∙ W +  ��        (14) 

∆����(��) = ∆����(W) = >∆ ?
' − ∆��@ ∙ W +  ∆��      (15) 

 

Finally, according to Eq. (7), the number of cycles to failure can be estimated via the following 

relationship: 

 

�� =  ���� ∙ AW ∙ ,∆ ?Y'∆�?(X\,)
∆ /NO∙ ]�^Q[ E(F\F_)∙,Y F_

       (16) 

 

To check the overall level of accuracy that is obtained by applying the MWCM along with the 

nominal stress approach, Eqs (14) and (15) were calibrated as described in what follows. 

As far as non-loading transverse fillet-welded joints are concerned, the IIW [9] recommends 

using uniaxial and torsional fatigue curves having endurance limits ∆	� and ∆�� (extrapolated 

at ���� =2·106 cycles to failure and determined for a probability of survival, PS, of 97.7%) equal 

to 71 MPa (with k=3) and 80 MPa (with k0=5), respectively. The ∆	��
  vs. ��  log-log diagram 

of Fig. 7a confirms that the FAT 71 curve was capable of accurately modelling the fatigue 

behaviour of the θ=0° configurations for specimens BM (Fig. 4a), KY-G (Fig. 5a), and KY-N 

(Fig. 5b). 

When cracks emanate from the weld roots - as it was observed in the KK specimens (Fig. 4b) 

[39], the IIW suggests using instead a uniaxial fatigue curve having ∆	� =36 MPa (at 

���� =2·106 cycles to failure) with k=3 and a torsional design curve having ∆�� =80 MPa (at 

���� =2·106 cycles to failure) and k0=5. As expected, the chart of Fig. 7b fully confirms that the 

FAT 36 design curve was suitable for modelling the fatigue strength of the KK specimens (Fig. 
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4b), i.e., for assessing those situations where final breakage took place as a result of weld root 

cracking. 

It is possible to conclude by observing that the modified Wöhler diagrams of Fig. 8 (see also 

Table 1) confirm that the MWCM applied in conjunction with the nominal stress approach is 

highly accurate in assessing the extent of fatigue damage in the presence of uniaxially loaded 

inclined welds, with this holding true independently of the type of failure (i.e., either toe or 

root cracking). In particular, the obtained level of accuracy is certainly satisfactory because the 

experimental results are seen to fall within error bands being characterised by a scatter ratio 

of the reference stress range for PS=97.7%/2.3% equal to 1.85 [34]. This value for the scatter 

ratio was recalculated from the reference value of 1.5 suggested by Haibach [45] for 

PS=90%/10% and determined by reanalysing a large number of experimental results obtained 

under uniaxial fatigue loading from different welded geometries. We recalculated the scatter 

ratio for PS=97.7%/2.3% because Eurocode 3 recommends to perform the fatigue assessment 

of welded joints by always referring to design fatigue curves determined for a probability of 

survival, PS, equal to at least 97.7% [10]. The fact that our estimates fall within Haibach’s 

normalised scatter bands (Fig. 8) fully confirms the statistical significance of the obtained 

results. This strategy based on Haibach’s reference scatter ratio will be used in what follows 

also to assess the accuracy of the MWCM applied along with hot-spot and local stresses. 

 

5. Accuracy of the MWCM applied along with the hot-spot stress approach 

The hot-spot stress approach takes as its starting point the idea that fatigue design stresses 

can be extrapolated directly at the weld toe from a linear stress distribution obtained by 

interpolating the stress states at two or three superficial reference points (see also Fig. 1b). 

These reference stress states are usually determined either by using strain gauges or by solving 

linear-elastic FE models with mesh size set according to specific geometrical rules [9, 14]. 

When the FE method is used, hot-spot stresses can be determined either via surface stress 

extrapolation or via through-thickness stress linearization [9, 46]. 
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To check the accuracy of the MWCM applied along with the hot-spot stress approach in 

estimating fatigue lifetime of uniaxially loaded inclined welds, the hot-spot stress components 

parallel, ∆�`�, and perpendicular, ∆	`�, to the weld seam (Fig. 1b) [12, 28] were determined 

using the surface extrapolation method [9] as follows: 

 

∆	`� = 1.67∆	�.�� − 0.67∆	�         (17) 

∆�`� = 1.67∆��.�� − 0.67∆��                      (18) 

 

In more detail, according to Fig. 1, stress components ∆	�.�� and ∆��.�� were determined at a 

distance from the weld toe equal to 0.4t (with t being the thickness), whereas stress 

components ∆	� and ∆�� at a distance from the weld toe equal to t. This was done by using 

commercial FE code ANSYS® to solve three-dimensional linear-elastic FE models where the 

mesh density was set according to the IIW recommendations [9, 34] (see the example shown 

in Fig. 9). 

The MWCM’s governing equations, Eqs (5) and (6), were calibrated using the FAT 100 uniaxial 

fatigue curve (∆	� =100 MPa at ���� = 2·106 cycles to failure for PS=97.7% and k=3) and the 

FAT 80 torsional fatigue curve (∆�� =80 MPa at ���� = 2·106 cycles to failure for PS=97.7% and 

k0=5) [9], obtaining: 

 

��(��) = −2 ∙ �� + 5           (19) 

∆����(��) = −47.5 ∙ �� + 80 [MPa]                   (20) 

 

As far as weld toe failures are concerned, the ∆	`�  vs. ��  log-log diagram of Fig. 7c makes it 

evident that the use of the FAT 100 uniaxial fatigue curve recommended by the IIW [9] to 

assess (in terms of hot-spot stresses) the fatigue strength of the considered θ=0° welded 

specimens resulted in slightly non-conservative estimates. 
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The overall accuracy we obtained by applying the MWCM in conjunction with the hot-spot 

stress approach to estimate the fatigue strength of welded geometries BM (Fig. 4a), KY-N (Fig. 

5a), and KY-G (Fig. 5b) is shown in the modified Wöhler diagrams of Fig. 10 (see also Table 

1). These charts make it evident that the MWCM returns accurate predictions also when it is 

applied along with the hot-spot approach, the obtained level of conservatism slightly 

increasing as the inclination angle, θ, increases. 

 

6. Accuracy of the MWCM applied along with the effective notch stress approach 

By taking full advantage of Neuber’s micro-support theory [13, 47], the effective notch stress 

approach [13, 15] estimates the fatigue strength of welded components via the local linear-

elastic stresses that are determined by rounding weld toes and roots (Fig. 2a). When the 

thickness of the welded connections being designed is larger than 5 mm, then design stresses 

are recommended to be determined by using a weld toe/root fictitious radius, �f��, equal to 1 

mm [9, 18]. In contrast, when the main plate thickness is lower than 5 mm, weld toes and roots 

have to be rounded by using a fictitious radius of 0.05 mm [18]. 

Since all the welded joints considered in the present investigation had thickness larger than 5 

mm, notch stresses were determined using FE code ANSYS® by rounding the weld toes of 

specimens BM (Fig. 4a), KY-G (Fig. 5a), and KY-N (Fig. 5b) and the weld roots of specimens 

KK (Fig. 4b) by setting �f�� invariably equal to 1 mm. The stress analysis was performed via 

three-dimensional FE models solved by following a conventional solid-to-solid sub-modelling 

procedure, with the mesh density being gradually increased until convergence occurred (see 

the example shown in Fig. 9). 

The MWCM was applied along with the reference radius concept [34] by calibrating its 

governing equations, Eqs (5) and (6), using the FAT 225 uniaxial fatigue curve [9, 18] and the 

FAT 160 torsional fatigue curve [18]. In more detail, the uniaxial calibration curve had 

endurance limit, ∆	�, extrapolated at ���� = 2·106 cycles to failure for PS=97.7% equal to 225 

MPa, the negative inverse slope, k, being equal to 3. The torsional calibration curve had instead 

∆��=160 MPa (again at ���� = 2·106 cycles to failure for PS=97.7%) and k0=5. By using these 
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two pieces of calibration information, fatigue constants �, �, 6 and 7 in Eqs (3) and (4) were 

calculated to be as follows: 

 

��(��) = −2 ∙ �� + 5          (21) 

∆����(��) = −47.5�� + 160                     (22) 

 

Independently of the crack initiation location (i.e., either at toes or at roots), the log-log 

diagram of Fig. 7d confirms that, as expected, the FAT 225 uniaxial fatigue curves was capable 

of modelling the fatigue behaviour of the θ=0° welded specimens being considering not only 

with a remarkable level of accuracy, but also with a suitable level of conservatism. 

The results obtained by applying the MWCM along with the effective notch stress approach to 

estimate the fatigue lifetime of the welded specimens with θ>0° are summarised in the 

modified Wöhler diagrams reported in Fig. 11 (see also Table 2). These charts demonstrate 

that the use of the MWCM along with the rref concept resulted in a very high level of accuracy, 

with the estimates falling within the corresponding scatter bands calculated for PS equal to 

2.3% and 97.7%. The only exception is represented by geometry BM with θ=43º (Fig. 4a) [38] 

for which the estimates being obtained were seen to be slightly conservative. 

To conclude, it is worth observing that such a remarkable level of accuracy was reached when 

reanalysing not only the results characterised by weld toe failures, but also those tests where 

fatigue cracks were seen to initiate at the weld roots. 

 

7. Accuracy of the MWCM applied along with the Point Method 

The Theory of Critical Distances (TCD) is a theoretical framework which groups together a 

number of different approaches that all make use of a length scale parameter to assess fatigue 

strength of notched/cracked engineering materials [12, 19, 21]. The fundamental concept on 

which the TCD is based can be formalised in different ways that include the Point Method 

(PM), the Line Method (LM), the Area Method (AM), and the Volume Method (VM) [19]. 
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Amongst these different formalisations of the same idea, certainly the PM represents the 

simplest way to use the TCD in situations of practical interest: this is the reason why in the 

present investigation the PM was preferred over the LM, the AM, and the VM. In more detail, 

the PM postulates that the effective stress to be used to perform fatigue assessment has to be 

determined at a given distance from the assumed crack initiation location. In this context, the 

required critical distance is seen to be a material property. In other words, for a given material, 

the critical distance value is not affected by the sharpness of the geometrical feature being 

assessed. Further, as soon as the required length scale parameter is known, the effective 

stresses can be determined by using a simple linear-elastic constitutive law to model the stress-

strain behaviour of the material under investigation, with this holding true independently of 

the actual level of ductility/non-linearity that characterises the material itself [12, 21, 48]. 

As far as steel welded joints are concerned, to apply the MWCM along with the PM, the local-

linear elastic stress components relative to the critical plane have to be determined, along the 

weld toe/root bisector, at a distance from the assumed crack initiation point equal to 0.5 mm 

[12, 29, 36] (Fig. 2b). As to this value for the PM critical distance, it is worth recalling here that 

it was obtained by following a fairly articulated procedure based on the use of a large amount 

of experimental results [29]. In particular, initially the MWCM was calibrated via the curves 

recommended by Eurocode 3 to design ground butt welded joints against uniaxial fatigue 

loading as well as against cyclic torsion. Subsequently, a unifying value for the multiaxial 

critical distance of 0.5 mm was estimated [12, 29] by taking full advantage of the Notch-Stress 

Intensity Factor (N-SIF) approach [43]. In this context, a value of 0.5 mm represents then a 

recommended average length that can be used without the need for calibrating the PM. 

However, a specific critical distance value for the particular welded metal being design can be 

obtained by simply following the experimental procedure as described in Ref. [12]. 

Turning back to the in-field usage of the MWCM applied along with the PM, as soon as the 

time-variable stress tensor at a distance equal to 0.5 mm from the assumed crack initiation 

location is known, the range of the normal stress, ∆σ�, as well as the range of the shear stress, 

∆τ, are used to calculate stress ratio �� according to definition (2). The negative inverse 
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slope, ��(��), of the corresponding modified Wöhler curve is directly derived from the 

following relationships [29, 36]: 

 

��(��) = −2�� + 5     for �� ≤ 1                    (23) 

 ��(��) = 3    for �� > 1                     (24) 

 

The reference shear stress range, ∆����(��), extrapolated at 5·106 cycles to failure is instead 

estimated for PS=50% from [29]: 

 

∆����(��) = −32�� + 96 nMPaq     for �� ≤ 2                    (25) 

∆����(��) = 32 nMPaq     for �� > 2                      (26) 

 

and for PS equal to 97.7% from [36]: 

 

∆����(��) = −24�� + 67 nMPaq     for �� ≤ 2                    (27) 

∆����(��) = 19 nMPaq     for �� > 2                     (28) 

 

In order to check the accuracy of the MWCM applied along with the PM in estimating fatigue 

strength in the presence of inclined welds, the relevant linear-elastic stress states were 

determined, along the weld toe/root bisectors and at a distance from the crack initiation points 

equal to 0.5 mm, by solving three-dimensional models with FE code ANSYS®. In particular, 

the solutions for the different welded geometries being investigated were obtained by 

following a standard solid-to-solid sub-modelling procedure, with the mesh density being 

increased gradually until convergence occurred (see the example reported in Fig. 9). 

The results obtained by applying the MWCM along with the PM are summarised in the 

modified Wöhler diagrams of Fig. 12 (see also Table 2). These charts demonstrate that this 

local stress based multiaxial fatigue assessment technique is capable of estimating the fatigue 
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strength of connections containing inclined welds with a remarkable level of accuracy, the 

advantage being that the required stress analysis can be performed by solving simple linear 

elastic FE models. 

 

8. Conclusions 

In the present paper the MWCM is applied along with nominal, hot-spot, and local stresses to 

estimate the fatigue strength of uniaxially loaded steel welded joints containing inclined welds. 

The accuracy and reliability of these different ways of using the MWCM to address this specific 

design problem were checked systematically by post-processing a large number of data taken 

from the technical literature. These experimental results were generated by initiating fatigue 

cracks not only at the weld toes, but also at the weld roots. According to the outcomes from 

the present research work, the most important conclusions are summarised in what follows. 

• Fatigue strength of uniaxially loaded inclined welds can be assessed effectively by 

tackling the problem from a multiaxial fatigue angle. In particular, for this particular 

geometry/loading configuration, weald seams are damage by proportional multiaxial 

load histories, with this holding true independently of the strategy that is adopted to 

perform the stress analysis. 

• As far as steel connections are concerned, the MWCM applied in conjunction with 

nominal, hot-spot, and notch stresses as well as with the TCD is seen to be highly 

accurate in estimating fatigue strength in the presence of uniaxially loaded inclined 

welds. 

• Irrespective of the type of stress analysis being adopted, the MWCM’s governing 

equations can be calibrated accurately by taking full advantage of those uniaxial and 

torsional reference design curves that are provided by the pertinent Standard Codes 

and Recommendations. 

• More work needs to be done in this area to check whether this multiaxial fatigue based 

idea can be extended also to the fatigue assessment of uniaxially loaded aluminium 

joints containing inclined welds. 
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Tables 
 

Table 1 (continued on the next page). Experimental data and stress components relative to the 
critical plane calculated in terms of nominal stresses and hot-spot stresses. 

 

Code � ∆�nom Nf (·103) 
Nominal Stress Hot-spot stress Comment 

∆�  ∆�� �� ∆�  ∆�� ��  

   [Cycles to Failure] [MPa] [MPa]  [MPa] [MPa]   

BM0-01 0 240 134 119.6 119.6 

1.
0

0
0

 

129.0 126.8 

0
.9

8
3

 

 

BM0-02 0 200 240 99.8 99.8 107.6 105.8  

BM0-03 0 160 281 79.6 79.6 85.8 84.4  

BM0-04 0 140 787 69.9 69.9 75.4 74.2  

BM0-05 0 120 1667 59.8 59.8 64.6 63.4  

BM0-06 0 100 2728 49.9 49.9 53.8 53.0  

BM31-01 31 260 181 149.1 95.4 

0
.6

4
0

 

216.4 173.2 

0
.8

0
0

 

 

BM31-02 31 200 554 114.6 73.3 166.4 133.2  

BM31-03 31 160 950 91.7 58.6 133.0 106.4  

BM31-04 31 120 1848 68.9 44.0 100.0 80.0  

BM31-05 31 110 2872 63.3 40.5 91.8 73.6  

BM31-06 31 90 6170 51.2 32.7 74.2 59.4 Run Out 

BM43-01 43 260 268 147.4 69.6 

0
.4

7
3

 

244.2 155.4 

0
.6

3
7

 

 

BM43-02 43 200 684 113.6 53.7 188.2 119.8  

BM43-03 43 160 1306 90.6 42.8 150.0 95.4  

BM43-04 43 130 2040 73.5 34.7 121.6 77.4  

BM43-05 43 115 3806 65.2 30.8 108.0 68.8  

BM43-06 43 100 5887 56.9 26.9 94.4 60.0 Run Out 

KK-0-01 0 111 158 55.4 55.4 

1.
0

0
0

 

- - -  

KK-0-02 0 77 466 38.6 38.6 - - -  

KK-0-03 0 56 1740 28.2 28.2 - - -  

KK-0-04 0 55 2250 27.7 27.7 - - -  

KK-0-05 0 36 3100 18.2 18.2 - - -  

KK-0-06 0 26 19200 13.1 13.1 - - -  

KK-15-01 15 103 270 58.2 51.3 

0
.8

8
1 

- - -  

KK-15-02 15 72 756 41.1 36.2 - - -  

KK-15-03 15 54 2060 30.7 27.1 - - -  

KK-15-04 15 33 10900 18.7 16.5 - - -  

KK-15-05 15 29 15700 16.3 14.4 - - -  

KK-30-01 30 83 664 63.0 41.3 

0
.6

5
5

 

- - -  

KK-30-02 30 55 1980 41.9 27.4 - - -  

KK-30-03 30 42 6010 32.3 21.1 - - -  

KK-30-04 30 30 19000 23.2 15.2 - - -  

KK-45-01 45 60 2160 66.5 29.8 

0
.4

4
7

 

- - -  

KK-45-02 45 54 2360 60.4 27.0 - - -  

KK-45-03 45 48 3030 53.3 23.9 - - -  

KK-45-04 45 28 18200 30.6 13.7 - - -  



KY-G-0-01 0 190 216 95.0 95.0 

1.
0

0
0

 102.3 101.9 

0
.9

9
6

 

 

KY-G-0-02 0 190 237 95.0 95.0 102.3 101.9  

KY-G-0-03 0 120 1564 60.0 60.0 64.6 64.3  

KY-G-0-04 0 98 3428 49.0 49.0 52.8 52.6  

KY-G-45-01 45 190 394 106.2 47.5 

0
.4

4
7

 

135.1 62.7 

0
.4

6
4

 

 

KY-G-45-02 45 190 702 106.2 47.5 135.1 62.7  

KY-G-45-03 45 152 623 85.0 38.0 108.1 50.2  

KY-G-45-04 45 152 1200 85.0 38.0 108.1 50.2  

KY-G-45-05 45 190 1447 106.2 47.5 135.1 62.7  

KY-G-45-06 45 204 735 114.0 51.0 145.0 67.3  

KY-G-45-07 45 190 1278 106.2 47.5 135.1 62.7  

KY-G-45-08 45 190 982 106.2 47.5 135.1 62.7  

KY-G-45-09 45 152 2270 85.0 38.0 108.1 50.2 Run Out 

KY-N-0-01 0 206 198 103.0 103.0 

1.
0

0
0

 

120.2 120.2 

1.
0

0
0

 

 

KY-N-0-02 0 203 170 101.5 101.5 118.5 118.5  

KY-N-0-03 0 160 470 80.0 80.0 93.4 93.4  

KY-N-0-04 0 160 556 80.0 80.0 93.4 93.4  

KY-N-0-05 0 136 1415 68.0 68.0 79.4 79.4  

KY-N-0-06 0 136 630 68.0 68.0 79.4 79.4  

KY-N-0-07 0 136 990 68.0 68.0 79.4 79.4  

KY-N-0-08 0 113 2788 56.5 56.5 66.0 66.0  

KY-N-0-09 0 113 6764 56.5 56.5 66.0 66.0 Run Out 

KY-N-15-01 15 206 360 109.0 96.1 

0
.8

8
1 

127.1 105.3 

0
.8

2
8

 

 

KY-N-15-02 15 203 324 107.4 94.7 125.3 103.7  

KY-N-15-03 15 161 479 85.2 75.1 99.3 82.3  

KY-N-15-04 15 160 867 84.7 74.6 98.7 81.8  

KY-N-15-05 15 160 760 84.7 74.6 98.7 81.8  

KY-N-15-06 15 136 1577 72.0 63.4 83.9 69.5  

KY-N-15-07 15 136 1739 72.0 63.4 83.9 69.5  

KY-N-15-08 15 136 984 72.0 63.4 83.9 69.5  

KY-N-15-09 15 123 2366 65.1 57.4 75.9 62.8  

KY-N-15-10 15 123 4860 65.1 57.4 75.9 62.8 Run Out 

KY-N-30-01 30 206 502 118.0 77.3 

0
.6

5
5

 

116.4 76.2 

0
.6

5
5

 
 

 

KY-N-30-02 30 203 389 116.3 76.1 118.2 77.4  

KY-N-30-03 30 174 1264 99.7 65.3 108.8 71.2  

KY-N-30-04 30 159 2053 91.1 59.6 99.4 65.2  

KY-N-30-05 30 159 1620 91.1 59.6 91.2 59.8  

KY-N-30-06 30 138 6449 79.0 51.8 91.2 59.8  

KY-N-30-07 30 138 10000 79.0 51.8 79.0 51.8 Run Out 

KY-N-30-08 30 123 10000 70.5 46.1 79.0 51.8 Run Out 

 
  



 
Table 2 (continued on the next page). Experimental data and stress components relative to the 

critical plane calculated in terms of effective notch stresses and the Point Method. 
 
 
 

Code � ∆�nom Nf (·103) 
Effective notch stress Point Method Comment 

∆�  ∆�� �� ∆�  ∆�� ��  

   [cycles to failure] [MPa] [MPa]  [MPa] [MPa]   

BM0-01 0 240 134 410.0 409.6 

0
.9

9
9

 

204.4 235.8 

1.
15

4
 

 

BM0-02 0 200 240 342.2 341.8 170.5 196.7  

BM0-03 0 160 281 273.0 272.6 136.0 156.9  

BM0-04 0 140 787 239.6 239.4 119.4 137.7  

BM0-05 0 120 1667 205.0 204.8 102.2 117.9  

BM0-06 0 100 2728 171.0 170.8 85.2 98.3  

BM31-01 31 260 181 523.6 482.2 

0
.9

2
1 

233.8 238.8 

1.
0

2
1 

 

BM31-02 31 200 554 402.6 370.6 179.8 183.6  

BM31-03 31 160 950 321.8 296.4 143.8 146.8  

BM31-04 31 120 1848 242.0 222.8 108.0 110.4  

BM31-05 31 110 2872 222.2 204.6 99.2 101.4  

BM31-06 31 90 6170 179.4 165.2 80.2 81.8 Run Out 

BM43-01 43 260 268 663.0 604.2 

0
.9

12
 

257.2 258.6 

1.
0

0
6

 

 

BM43-02 43 200 684 511.2 466.0 198.2 199.4  

BM43-03 43 160 1306 407.5 371.4 158.0 158.8  

BM43-04 43 130 2040 330.4 301.2 128.2 129.0  

BM43-05 43 115 3806 293.2 267.4 113.8 114.4  

BM43-06 43 100 5887 256.2 233.4 99.4 100.0 Run Out 

KK-0-01 0 111 158 302.0 654.2 

2
.1

6
6

 

84.0 176.7 
2

.1
0

3
 

 

KK-0-02 0 77 466 209.5 453.8 58.5 123.1  

KK-0-03 0 56 1740 152.4 330.1 42.8 90.0  

KK-0-04 0 55 2250 149.6 324.2 42.1 88.4  

KK-0-05 0 36 3100 98.0 212.2 27.6 58.0  

KK-0-06 0 26 19200 70.7 153.2 19.9 41.9 Run Out 

KK-15-01 15 103 270 305.4 316.3 

1.
0

3
6

 

107.3 142.6 

1.
3

2
8

 

 

KK-15-02 15 72 756 213.5 221.1 75.7 100.5  

KK-15-03 15 54 2060 160.1 165.8 56.6 75.2  

KK-15-04 15 33 10900 97.9 101.3 34.4 45.8  

KK-15-05 15 29 15700 86.0 89.1 30.1 39.9  

KK-30-01 30 83 664 212.5 219.7 

1.
0

3
4

 96.6 99.9 

1.
0

3
4

 

 

KK-30-02 30 55 1980 140.8 145.6 64.2 66.4  

KK-30-03 30 42 6010 107.5 111.2 49.5 51.2  

KK-30-04 30 30 19000 76.8 79.4 35.6 36.8 Run Out 

KK-45-01 45 60 2160 121.6 128.9 

1.
0

6
0

 105.4 105.8 

1.
0

0
4

 

 

KK-45-02 45 54 2360 109.5 116.0 95.7 96.0  

KK-45-03 45 48 3030 97.3 103.1 84.5 84.8  

KK-45-04 45 28 18200 56.8 60.1 48.4 48.6 Run Out 



KY-G-0-01 0 190 216 258.7 256.7 

0
.9

9
2

 221.8 305.3 

1.
3

7
6

 

 

KY-G-0-02 0 190 237 258.7 256.7 221.8 305.3  

KY-G-0-03 0 120 1564 163.4 162.1 140.1 192.8  

KY-G-0-04 0 98 3428 133.4 132.4 114.4 157.5  

KY-G-45-01 45 190 394 253.1 254.0 

1.
0

0
4

 

296.5 387.1 

1.
3

0
5

 

 

KY-G-45-02 45 190 702 253.1 254.0 296.5 387.1  

KY-G-45-03 45 152 623 202.5 203.2 237.2 309.6  

KY-G-45-04 45 152 1200 202.5 203.2 237.2 309.6  

KY-G-45-05 45 190 1447 253.1 254.0 296.5 387.1  

KY-G-45-06 45 204 735 271.7 272.7 318.4 415.6  

KY-G-45-07 45 190 1278 253.1 254.0 296.5 387.1  

KY-G-45-08 45 190 982 253.1 254.0 296.5 387.1  

KY-G-45-09 45 152 2270 253.1 254.0 237.2 309.6 Run Out 

KY-N-0-01 0 206 198 265.4 325.4 

1.
2

2
6

 

227.1 310.1 

1.
3

6
6

 

 

KY-N-0-02 0 203 170 269.5 330.5 223.8 305.6  

KY-N-0-03 0 160 470 248.0 304.1 176.4 240.9  

KY-N-0-04 0 160 556 248.0 304.1 176.4 240.9  

KY-N-0-05 0 136 1415 208.7 255.9 149.9 204.7  

KY-N-0-06 0 136 630 209.4 256.7 149.9 204.7  

KY-N-0-07 0 136 990 177.3 217.4 149.9 204.7  

KY-N-0-08 0 113 2788 177.9 218.1 124.6 170.1  

KY-N-0-09 0 113 6764 157.3 192.8 124.6 170.1 Run Out 

KY-N-15-01 15 206 360 244.6 245.0 

1.
0

0
2

 

249.8 299.2 

1.
19

9
 

 

KY-N-15-02 15 203 324 248.4 248.8 246.1 294.8  

KY-N-15-03 15 161 479 228.6 229.0 195.2 233.8  

KY-N-15-04 15 160 867 228.6 229.0 194.0 232.4  

KY-N-15-05 15 160 760 192.4 192.7 194.0 232.4  

KY-N-15-06 15 136 1577 193.0 193.3 164.9 197.5  

KY-N-15-07 15 136 1739 163.4 163.7 164.9 197.5  

KY-N-15-08 15 136 984 163.9 164.2 164.9 197.5  

KY-N-15-09 15 123 2366 144.9 145.2 149.1 178.6  

KY-N-15-10 15 123 4860 136.3 136.5 149.1 178.6 Run Out 

KY-N-30-01 30 206 502 274.4 273.0 

0
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9
5

 

262.7 252.6 

0
.9

6
5

 

 

KY-N-30-02 30 203 389 278.7 277.2 258.9 248.9  

KY-N-30-03 30 174 1264 256.4 255.1 221.9 213.4  

KY-N-30-04 30 159 2053 256.4 255.1 202.8 195.0  

KY-N-30-05 30 159 1620 215.8 214.7 202.8 195.0  

KY-N-30-06 30 138 6449 216.5 215.4 176.0 169.2  

KY-N-30-07 30 138 10000 183.3 182.4 176.0 169.2 Run Out 

KY-N-30-08 30 123 10000 183.9 183.0 156.9 150.8 Run Out 

 



Figures 
 

 
Figure 1. The MWCM to estimate fatigue lifetime of welded components applied in terms of nominal and hot-spot stresses. 



 

 
Figure 2. The MWCM to estimate fatigue lifetime of welded components applied in terms of 

effective notch stress as well as along with the PM. 
  



 

 
Figure 3. Modified Wöhler diagram. 

  



 

 
(a) Welded Specimen BM 

 

 
(b) Welded Specimen KK 

 
 

Figure 4. Fatigue specimens tested by Booth and Maddox [38] (a) and load carrying cruciform 
specimens tested by Kim and Kainuma [39] (b). 

 
  



 
(a) Welded Specimen KY-G 

 
 

 
 (b) Welded Specimen KY-N 

 
Figure 5. Out-of-plane gusset specimens (a) and non-load carrying cruciform specimens (b) 

tested by Kim and Yamada [40]. 



(a) 
 

 
(b) 

 
Figure 6. Nominal and hot-spot stresses in inclined welded joints subjected to uniaxial cyclic 
loading (a); Mohr’s circle to calculate the stress components relative to the critical plane (b). 



 

 
(a) 

 
(b) 

 

 
(c) (d) 

 
 

Figure 7. Accuracy of the recommended reference design curves in estimating the fatigue 
strength of the investigated welded joints in terms of nominal stresses. 

 
  



  

  

  

  

  
Figure 8. Accuracy of the MWCM applied along with nominal stresses in estimating fatigue 

strength in the presence of inclined welds. 
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Figure 9. Examples of the linear-elastic FE models solved by following 
a solid-to-solid sub-modelling procedure. 

 



  

  

  

  
 

Figure 10. Accuracy of the MWCM applied along with hot-spot stresses in estimating fatigue 
strength in the presence of inclined welds. 
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Figure 11. Accuracy of the MWCM applied along with effective notch stresses in estimating 

fatigue strength in the presence of inclined welds. 
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Figure 12. Accuracy of the MWCM applied along with the PM in estimating fatigue strength in 

the presence of inclined welds. 
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