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ABSTRACT

Most well-known blind image quality assessment (BIQA) models usuallow.a two-stage framework
whereby various types of features are first extracted and used apunto ., regressor. The regression
algorithm is used to model human perceptual measures based on a tretirohglistorted images. However,
this approach requires an intensive training phase to optimise the regneasaometers. In this paper, we
overcome this limitation by proposing an alternative BIQA model that preidigtge quality using nearest
neighbour methods which have virtually zero training .cdsie modelstermed PATCH based blind Image
Quality assessment (PATCH-IQ), has a learning framework, that.operathe ghatch level. This enables
PATCH-IQ to provide not only a global image quality estimation but al$ocal image quality estimation.
Based on the assumption that the perceived quality of a distorted image hasbpredicted by features drawn
from images with the same distortion class, PATCH-IQ alsorineesl@ distortion identification stage in its
framework. This enables PATCH-IQ to identify the distortion affectirggitnage, a property that can be useful
for further local processing stages. PATCH-IQ is evaluated’ ostt#relard 1QA databases, and the provided
scores are highly correlated to human perception of image quality. Itdels@rs competitive prediction
accuracy and computational performance in relationship to otheroftdte-art BIQA models.

KEYWORDS

Image quality assessment, blind image quality assessment, interestigiction, spatial domain features,
nearest neighbour classification and regression.

1 INTRODUCTION

Image quality assessment (IQA) aims at quantifying the quality ofaldtmages with objective quality
metrics. For multimedia applications which the end user is a human cend@A anticipates through such
metrics the image quality'as perceived by human observers. IQA metrics basethan perception are often
considered as the,gold standard for perceptual assessment of image qua&#g. slibjective metrics are
commonly obtained by _conducting image quality experiments where patitigjphuman observers rate the
quality of images presented to them. The ratings are then averagedafionbsgrvers yielding a mean opinion
score (MOS) ondifferential mean opinion score (DMOS). The MOS/DMOS constitutdgeatste metric of
perceived image quality. However, these subjective metrics must involmanhwbservers makes them
expensivetime-consuming, and unfeasible for deployment in eastvorld applications. An IQA model that
can ‘automatically provide objective image quality measurement consistenhumthn perceptual measures
(MOSIDMQS) is preferred.

Objective IQA models can generally be classified into three categdmgsfiill-reference IQA (FR-
IQA), reduced-reference IQA (RR-IQA) and blind IQA (BIQA). FRA models evaluate the quality of a
natural image by comparing the entire information difference betweemtfige and its reference image. A
reference image refers to a similar image considered distortion-fresf padect quality. The simplest FR-IQA
metrics to be used are mean squared error (MSE) and peaktsigioéde ratio (PSNR). However, they do not
correlate well with human perceptual measures [30]. Several improved FRnlgglals were then proposed
based on various mechanism such as human visual system (HY8hd8¢ structure [9],[32],[40], or image
statistics [5].RR-IQA models do not require full information of the reference imagyeset of parameters
relevant to visual perception of image quality are first selected fromeftience image before being used with
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the test image to estimate its quality. Well-known RR-IQA models includeDRRE], RR-SSIM [23], ad
OSVP [33]. High correlation with human perceptual measures are obtained by thé¢®@& RRd RR-IQA
models. But full or partial reference image information may not béadlaiin some applications. In such cases
a BIQA model that needs no reference information is more favourable.

BIQA models can be further classified into two main categories fil&prtion-specific (DS) models and
general-purpose models. DS BIQA models ggecific distortion model to estimate quality based on an
assumption that the distortion affecting the image is known beforgbiith],[39]. However, these models
can only be employed in specific application domains wherein the spdmifiadation is meaningful but cannot
be used in a more general setting without substantial redesign. Othénesidle, no prior knowledge of the
distortion affecting the image is required in general-purpose Bit@dels. Instead, image quality is derived
solely assuming the image is degraded by the same distortioramigohthat affects a database of image
exemplars. Such image exemplars can be obtained from standard 1QAsdatabch as LIVEE], €SIQ [13]
and TID2008 [22]. Using such exemplars and their provided MDBI®S values, the models are then trained
to predict the MOS / DMOS of the image.

Some readers may notice the terms ‘quality’ and ‘distortion’ being used. They are difficult to specify
unambiguously as there is no universal or formal definitiongmth~or this paper, weuse 'the terms as follows:
‘Image quality’ is the integrated perception of the overall degree of excellence of an image [7] while ‘image
distortion’ refers to any degradation to the appearance of an image that occurs during the image’s acquisition,
communication or processing systems [31]. The perception ofeintpality™and image distortion differ
depending on the application. This work foesisn an image communication system. In this context, the quality
of an image is associated to how well the image is acquired, pedcasd.communicated over the transmission
network. In a typical image communication system, the image usuadsrgesthe processes of acquisition,
compression and transmission before being presented to the.endTheses.processes may introduce many
distortions to the image. For examples, the acquisition step mayuo&ddurring and/or noise artefacts, the
compression step may generate JPEG compression,artefacts while théssiansstep may introduce noise
and/or packet loss artefacts. This work only deals with” distortimsisare normally encountered in a typical
image communication system.

The remainder of the paper is organisedwas ‘follows. In Section 2evieanr previous approaches in
developing BIQA models and explain the motivation behind our propoeei@l. Section 3 then describes the
framework of our model. In Section 4, experimental setup andtseme presented followed by later analysis.
The paper is then concluded in Section,5.

2. PREVIOUS BIQA MODELSAND MOTIVATION

The majority of previous general-purpose BIQA models focus on ¢rfgadeatures that carry
discriminative information aboutjimage quality. Most models employ draftéd features designed based on
the natural scene statistics (NSS) approach. NSS based models assume thastaBstaial properties of
natural images willbe changed with the presence of distortions and theparagetual quality can be inferred
by appropriately*quantifying the changes. The models can be differertiatibé features used. For instance,
BIQI [20] and DIIVINE [21] employ features derived from wavelet transfs while BLIINDS-II [24] uses
DCT features.,Other models, such as BRISQUE [19], GMLOG [34] RESIQUE [41] utilise features
obtained in the, spatial domain while CBIQ [35] uses Gabor features. Featuresohatfed natural colour
statistics (NCS) are also explored in [29]. Recently, NFEQM [38] and NFERM [®kdéeir features based
on freesenergy principle.

Meanwhile, several BIQA models use features learned directly from raw iptegje. The first work
using this approach was proposed by CORNIA [36]. Its prognigerformance leads to other variations such as
supervised CORNIA [37] and CNN 2]. The extracted features are then used as an input to regression
algorithms to learn the mapping between the features’ space and the image quality score space. Kernel-based
learning methods are used usually. Support vector machine (SVMjuppdrt vector regression (SVR) with
linear/radial basis function are frequently used to this effect.

Features employed by these models are generally invariant to distortionprdijbtion performances
correlated with human perceptual measures are reported by these moeeldested on various types of
distortions in standard IQA databases. Our model, however, tackled@#et8sk from an alternative angle.



Rather than designing new quality predictive features, we concentrate onirdgsidearning framework that
needs noexplicit training phase, which is often required by previous BIQA modEl® proposed model,
dubbed PATCH based Image Quality assessment (PATCH-IQ), is basedivanistage framework. Given a
natural image, PATCHQ first samples local patches at the locations of the image’s interest points. At the
second stage, it then extracts spatial domain BIQA features frora gaishes. A distortion identification
process is next performed at the third stage based on assuthptidine perceived quality of a distorted image
will be best predicted by features drawn from images with the sametidistdiass. PATCH-IQ uses a nearest
neighbour classifier to perform such a task. The patches correspahd identified distortion class are then
utilised in the fourth stage to predict local image quality. This is d@na ¥-nearest neighbour regression that
associates the local image quality with the DMOS of the annotated patches constraihedidentifiadl
distortion class. Finally, an overall image quality score is derived by pabknigcal scores of all patches in the
image.

PATCH-IQ brings these key properties to IQA. First, PATCH-IQ predictsrage quality directly from

a set of annotated patches using a nearest neighbour technique. mbisvated by the fact that the cost of
learning for the technique is virtually zero where its training processiviblves storing,the feature vectors
and the labels of the patches. While previous BIQA models require re-yaihien’images with new distortion
types are introduced, these images (viz its patches) types can be ailupt) torthe'set alleviating the need of
explicit training phase. Second, most of the previous models accumulate statestioaés over the entire
image. Therefore, they can only provide a global estimate of imagjéyqg By. first/ operating at patch level,
PATCH-IQ can provide local image quality prediction and a global ®hiedPATCH-IQ can also identify the
distortion affecting the image, a property that is not available in mastegbrevious BIQA models. The last
two properties can be useful for further local processing stages:sfilbériang, restoration or enhancement.

The proposed model is motivated by promising resultssachieved bgrevious BIQA model NPNO
[17]. However, there are two substantial differences. First, PATCH-IQogsjan interest points-based patch
sampling strategy as opposed to the previous non=overlappingisgmstrategy. Second, PATCH-IQ also
utilises different spatial domain features to perform distortion identificatidnBaQA tasks. In addition, the
previous work was tested only on IQA databases with single distevitbdimited results and analysis. Further
experiments and analysis including tests on.multiple distorted imagescardeth in this paper to further
demonstrate the capability of the proposed model.

3. FRAMEWORK FOR DISTORTION IDENTIFICATION AND BLIND IMAGE QUALITY
ASSESSMENT

Figure 1 illustrates the proposed framework for PATCH-IQ. There araib stages: 1) Patch extraction;
2) Feature extraction; 3) Distortion“identification; 4) Local (patch) qualitynation; and 5) Global (image)
quality estimation. These.five stages are described as follows.

L abelled
dataset

Patch Feature Distortion Locgl Glopal
extraction extraction identification quality quality
estimation estimation

Figure 1: Proposed PATCH-IQ framework

3.1 Patch Extraction

A patch sampling strategy based on interest points of an image isaredsithterest points of an image
generally refer to points detected in the image to simplify further pimgesn a vision system. They are
normally at regions of interest, the regions within an image with hifgrmation content [28]. The main
application of interest points in computer vision and image processingdiéidfind points / regions in the
image domain likely to represent objects. Therefore, they are ofteloyadpn processing tasks such as object
recognition and image matching. PATCH-tfes to extend interest points’ application to a BIQA task. It has
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been shown that most of the time human focus on object-like megien the regions around interest points
when looking at an image [11]. In that respect, PATIQHassumes that any distortion applied to those regions
will carry greater impact on how human perceived image quality thagigtartion in any other image regions
such as background. By first finding the location of interest pdm@n image, patches that contain mor
relevant information on perceptual image quality can be identified and selPé&t@@H-IQ achieves this by
using an interest point detector.

A wide variety of interest point detectors exist in the literature. In thi& V&IFT [14] is chosen due to
its simplicity and good performance. SIFT takes an image and transifiomts a large collection of local
feature vectors containing descriptors that are useful to identify objeantsiinage. There are 4 stages involved
in SIFT: 1) Scale-space extrema detection; 2) Keypoint localisation; 3) Orientatiomassigand 4) Keypoint
descriptor. The first two stages aim at identifying the locations of stabjmikgty at which image features /
descriptors will be extracted. The third stage assigns consistent orientatfwséokeypoints based on local
image properties while the last stage uses local gradient information to creagsdtiptdrsThe resulting SIFT
descriptors may not be useful in estimating image quality. PAT@Hibwever, does notirequire the use of
SIFT descriptors. Instead, it only utilises the first two stages of SIFT tdihdlthe locations at'which patches
will be extracted. Based on the above assumption that the regionsnslimgptheé keypoints contain greater
information on image quality, PATCH-IQ samples patches lofx w size using the provided keypoints’
coordinates as centres. One may argue that an image affected by distortyivedats of false keypoints as
edges lose sharpness. These false keypoints obviously are ndt faesefibject/recognition or detection
purposes. For quality assessment, these keypoints are still usedl woially, the whole image is distorted
The extracted image patches still carry information on image qualityexdmple of this process is shown in
Figure 2. Note that PATCH-IQ only extracts patches at the identified ‘keypoitibleaf there is no keypoint
detected at any particular image area, no patch is extracted at that.area.

4 SIFT Detector Patch

Figure 2: Patchsextraction using interest point sargtrategy

3.2 FeatureExtraction

Two main factors affect theChoice of features. First, it is crucial to empldyrdsawith low
computational requirements since they are to be extracted at patch level. RAT@Hses spatial domain
features to avoid expensive computation normally encountered Ilgg itrensform-based features. Second, the
selected features should carry information not only on perceptual goalin the distortion in the image. The
same features as‘implemented in the BRISQUE model [19] are adopted BHP®. Specifically PATCH-IQ
utilises the empiricaldistributions of locally normalised luminance coeffiiantl pairwise products of these
coefficients to design’18 statistical features for both tasks. Given an imagePpdéicHocally normalised
luminance is first”obtained by computing local mean subtraction andivdivisormalisation at each
location(i, j) :

PGi,j) = P(i,/)—u(i.)) ' )

o(i,j)+e
wherethe local mean field(i, j) is defined as:
n(i, ) = Xkeok Dleer Wi P () ()

and the local variance fielsl(i, j) is given by:

0(i) = |3 By ot (Pt ) — i) 3)

In these equationg,€ 1,2, ..., h andj € 1,2, ..., w are spatial indices with andw being the patch height
and width respectively. Here, is a constant to prevent the denominator in Equation (1) fréimgfdo zero
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while w is a Gaussian weighting function sampled with 3 standard deviationsestaled to unit sum and
K =L is the function window size. The empirical distribution of these coefficientheils modelled by a
generalised Gaussian distribution (GGD) with zero mean asn [20

fCua?y) = aexp[—(blx —uD'], (4)

with a=by/2T(1}y), (5)
b= (1/0){yT(3/V)/T(/y) , (6)

and I'(x) = fom t*le7tdt x>0. 7

In Equation (4)u, 02 andy are the mean, the variance and the shape parameter of the distribution &gpectiv
whereasl'(x) is the gamma function. The estimated parametefsandy are then chosen as the first two
features.

Next, the empirical distributions of pairwise products of neighbouring nange coefficients are
computed on four orientations: horizontal, vertical, main-diagonal, and segedidgonal. Instead of GGD, the
distributions are modelled by an asymmetric generalised Gaussian distributiony,(AB@&DAGGD with zero
mode is defined as [19

. 2 2\ — 14 —(— 14
f(xl V; O-Z ,O-r) - (bl+br)F(1/}/) eXp[ ( x/bl) ] xr< 0 ’ (8)

and fGy, 08, 0%) = mexp[—(x/br)y] x=0, ()]

where by = 01/T(1/y)/T(3/y) andbr=:asy/ L (1/y)/T(3/Y) . (10)

In these equationsy, s and g are the shape parameter, the left variance and the right variance of the
distribution respectively. The three parameters and the mean of the befl MGiBe then selected at each
orientation to obtain another 16 features. In agreement with BRISQUE impistioa, PATCH-IQ extracts
these 18 features over two scales. A total«of 36, features are used byHRATG perform both distortion
identification and quality estimation. Table 1 summarises the extracted features.

Table\1: List of extracted features

Feature ID | Scale Orientation Feature Description
1-2 - Shape parameter and variance of GGD model of normalisgdance coefficients
3-6 Horizontal
7-10 1 Vertical Shape parameter, mean, left variance and right \variahAGGD model of pairwise
11-14 Main-diagonal products
1518 Secondary-diagonal
19-20 - Shape parameter and variance of GGD model of normalisgdance coefficients
21-24 Horizontal
2528 2 Vertical Shape parameter, mean, left variance and right \va@iahAGGD model of pairwise
29-32 Main-diagonal products
33-36 Secondary-diagonal

3.3 Labelled Dataset Construction

Since PATCH-IQ employs a nearest-neighbour technique, a labelled dBtasmisisting of BIQA
features extracted from patch exemplars must be constructed. MostAdhRiqels employ the 80:20 train-test
ratios to train their regression models. PATCH-IQ follows the same partéttingsto build the dataset, i.e.
patches from 80% of the randomly selected reference images from a dtipédadatabase and their distorted
versions are used to extract the features for the dataset. Given anpatabes oh x w size are first sampled
at the interest point locations. BIQA features, as in section 3.2, are thaotexton those patches. However,
instead of using all the extracted features, only features Bigiy patches are utilised in each image. This is
done to ensure all images contribute the same number of featuresraddde the computational demands of
the framework. The selected features are then combined over all imdges the dataset. Denote the total of
labelled images b1, the size of feature matrix for the dataset is:

D = [MapeiPiabel X 36] . (11)
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PATCH-IQ assigns the dataset patches with two labels. The first label dsstbrtion class. Each patch
is labelled according to the distortion type in its source image. Thedbéatosl is the subjective score. Each
patchis assigned with its source images’ subjective score, provided in the chosen IQA database. Assigning the
score in this way is acceptable as the distortion levels across the databasedareagniform. An example of a
dataset built from the distorted versions of one reference image is ghdigure 3. There is no need to fix a
priori, the number of distortion classes in the dataset. If the imagesniandistortion classes are provided,
they can be added directly to the dataset.

Distortion Distortion Distortion Distortion
Class 1 Class 2 Class 3 Class 4

Patch sampling@

5 ER W

<>

Feature extraction

Labelled dataset

Figare 3: Example of labelled dataset construction

3.4 Distortion Identification

Our intuition in predictingsimage quality is that the quality of a distomeaige will be best predicted
using the images from‘the same’ distortion class. Therefore, weliot@ distortion identification stage prior
to the quality estimation stage. Note that the BRISQUE features utilishi work were mainly developed to
evaluate the quality, of an image. However, we observed that the feaburldsalso be utilised for distortion
identification. To show,that the utilised features capture image distp#i@rD scatter plot between the shape
and the variance parameters of the GGD model of the normalised luminance cusfiicgenerated. Figure 4
shows the results:for the undistorted reference images and their codiagpdistorted versions from the LIVE
IQA database /[25]. The database consists of 5 distortion types: JPE@af6GBession (JP2K), JPEG
compression<(JPEG), additive white noise (WN), Gaussian blur (GB)jranthted fast fading channel (FF). It
is easy. toyvisualise from Figure 4 that images containing ditféypas of distortions are well separated in the
GGD parameter space showing the suitability of using these two fetdyregform distortion classification.

Meanwhile, in Figure 5, a 3-D scatter plot of the shape, the right variamteha left variance
parameters of the AGGD model of the horizontally paired products is plotteg th& same set of images.
Again, it shows that different distortions occupy different regionthefparameter space. This justifies the use
of these AGGD parameters as the features for distortion classification purposéar Satterns could be
observed for other features extracted from different orientatichseales. We show in sub-section 4.7 how the
classification performance varies when different groups of features are echploy
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JPEG

L wWN

“ GB
FF

log(6?)

s -1 -0.5 0 0.5 1 15 2 25
log(y)

Figure 4: 2-D scatter plot between the shape and #ie garameters of the GGD model of the normalised luminance
coefficients for the | IVF I0A database imanes.

log(y)

log(c7) ’ log(c?)

Figure 5: 3-D scatter plot of the shape, the leftarane and the right variance parameters of the AGGDehuwidhe
pairwise product in horizontal orientation for th&/E 1QA database images

Given a test imagk PATCH-IQ extracts the images’ BIQA features using the same procedure in
Sections 3.1 and 3°2. o further reduce computational time, onlydedtomP,.; patches are chosen to form
the image’s feature matrix’F;. PATCH-IQ then identifies the distortion type associated with the entag
employing a nearest neighbour based classifier. In a nearest neighbdficatesscase, it has been shown that
the optimalkdistance’ measurement is imamgelass (I12C) distance rather than the usually used irt@geage
(121) distance. A popular 12C based classifier, the Naive Bayes nearesbawdNBNN) [1], is utilised here.
PATCH-IQ computes the distance betwdgrand the feature matrix from each of the distortion classes in the
dataseD. The predicted distortion clagsfor the image is then represented by the class with the minimum 12C
distance value:

¢= arg minc”FI - NNC(FI)HZ ’ (12)
whereNN,(F;) is the NN-descriptor df, in the distortion class.
35 Local Quality Estimation

The next stage is to estimate the quality of the image patches. PATCH-I® bas&d on the intuition
that the quality of a patch would be best predicted by patches of the sant@disype. Therefore, it performs
quality estimation utilising only the labelled patches within the distortion classfieérnn the previous stage.
PATCHHQ also assumes that patches with similar features are perceived to have the saméigtmlibetter



quality prediction can be achieved by utilising a set of labelled patches that dee inthe test patch in
feature space. PATCH-IQ performs this through a k-NN regresgjonitaim

For each test patgh,i = 1,2,..., Pes; the Euclidean distances between the patch and the selected
labelled patches from the datad®tis first calculated in the feature space. The labelled patches are then
rearranged in ascending order according to the computed distances. fThéafilled patches are then utilised
to estimate the patch quality. However, instead of using common indistaace weighting scheme, the patch
quality is estimated through a simple linear regression:

o, = @(fo) » (13)
wherew are the optimised weights for the patch feature veftorhe weights can be calculated as:
w=XTX)"1XTs, (14)

where X is the feature matrix of the selected labelled patchessampresents theircorresponding DMOS
scores.

3.6 Global Quality Estimation

The final stage of the framework is basically a pooling stage. The patches’ scores ‘are pooled to yield the
global quality score for the image. Instead of typical average or max poBIKLEH-1Q employs an inverse
weighting rule to pool all the patches’ scores. Each local score is assigned a weight based on their minimum
Euclidean distancd; computed in the previous local quality estimation stage. The image-lali qecore for
the image is given as:

P
Z' test

-1 @idp;
— Zi=1 t4pi 15
q Zlit(lest w; ’ ( )
P
Zi=tellstdi

where D =5,
i

(16)

4, EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Evaluation Protocol

DatabasesPerformance evaluation of BIQA models is usually conducted ugimgah-rated image
databases. Each image in‘these databases is assigned with a DMOS / MO&hietiuean measure correlation
between a quality score predicted by a BIQA model and a quality scom lggv@uman. There are many
subjective image databasés available within the IQA research area. Threenaflély used databases: LIVE
[25], CSIQ [13] and LIVEMD [10] are employed in this workh& LIVE database contains 982 images of
which 779 images are distorted. These distorted images are generate®wbfeneice irages are subjected to
5 types of distortions, at 5 to 6 degradation levels. The 5 distortions in thasatate: JP2K, JPEG, WN, GB,
and FF. Each'image is provided with a DMOS value in the range bet&emard-130. Meanwhile, the CSIQ
database consists of 30 reference images. Each reference image is distoréetypes of distortions at 4 to 5
degradation_levels, yielding 866 distorted images. DMOS values assigribdst images are in the range
between, 0 and 1. All distorted images in the LIVE and CSIQ databasesiieetsd to a single type of
distortion.”The LIVEMD database also provides examples of multiple distorted imaégedetence images are
first blurred at 4 levels. The images are then subjected to oneodfitfgrent distortions at 4 levels: JPEG or
WN. A total of 225 single / multiple distorted images are generated fordatie two cases, GBJPEG and
GBWN. For all three databases, a lower DMOS value indicates a higher quality image.

Framework parameters: The parameters are empirically determined. Thermfhgatches for each
labelled imageP,,,.; and the number of test image patclies, are set at 30 and 100 respectively while the
patch sizeh = w is 256. For the feature extraction stage, the local windowisizd. is 3 and constantis 1 as
in the BRISQUE model. Meanwhile, the number of NN patches for lineaesgign in the local quality
estimation stage is set at 1000.



Performance metrics: Three metrics are commonly used to evaluate thempade of any BIQA
models. They are: the linear correlation coefficient (LCC), the Spearménorder correlation coefficient
(SROCC), and the root mean square (RMSE). The LCC is used to measure a model’s prediction accuracy and
the SROCC is used to measure the prediction monotonicity of the nidaelfinal metric RMSE can also
evaluate the prediction accuracy of the model. A value closer to 1)(for-both LCC and SROCC and a value
closer to 0 for RMSE indicate higher correlation with human subjective score.

Benchmarked models: We compared PATCH-IQ with three FR-IQA moB&BIR, SSIM and FSIM
and four statef-the-art BIQA models: BIQI, BRISQUE, GMLOG and CORNIA, whose sowwodes are
publicly available. Our previous BIQA model, NPNO is also included in the adsgm. Since the four BIQA
models require training, the databases are first divided into two subgeisireg set and a test set. The training
set is generated from 80% randomly selected reference images arabtogiated distorted images while the
remaining 20% reference images and their distorted versions are usestifuy. There is no‘overlap between
the two sets. The same training set is used to construct the labelled datassd ied@ATCH-IQ and NPNO.
LIBSVM [3], [4] is used to perform regression for the trainirgseéd BIQA models where their parameters are
determined through cross validation in accordance to their papers.

4.2  Evaluation on Single Databases

Two experiments were performed to ascertain the overall performandbedistortion-specific (DS)
performance. In the overall performance experiment, the train-test pomdsicted-across all distorted images
regardless of their classes. This is to evaluate how well the modelmesdoross all distortion types. In the DS
performance experiment, the experiment is only carried out ogesnan a.single distortion class. This is to
evaluate how well it performs for one particular distortion.”The medianlts across 1000 runs for both
experiments are tabulated in Tables 2 and 3, respectively. For_simplicittherBROCC results are shown for
the DS performance experiment. Similar patterns can bé observed for thenddRMSE results. Note that for
the CSIQ database, we include results only from four distortions also prastw LIVE database: JP2K,
JPEG, WN and GB. The top BIQA models are in bold,

Table 2: Median values across 1000.runs,of the ovezetpnance experiment

LIVE CSIQ
IQA model LccC SROCC RMSE Lcc SROCC RMSE
PSNR 0.8821 0.8829 12.8983 0.8562 0.9292 0.1444
SSIM 0.9464 0.9486 8.8035 0.9347 0.9362 0.0990
FSIM 0.9612 0.9639 7.5461 0.9675 0.9629 0.0710
BIQI 0.8486 0.8427 15.4068 0.8089 0.7491 0.1867
BRISQUE 0.9431 0.9421 9.3953 0.9304 0.9101 0.1073
GMLOG 0.9505 0.9503 8.8290 0.9394 0.9249 0.0997
CORNIA 0.9394 0.9416 9.9204 0.9110 0.8873 0.1254
NPNO 0.9525 0.9540 8.6407 0.9535 0.9384 0.0876
PATCH-HQ 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813
Table'3: Median SROCC values across 1000 runs of theeB&mance experiment
IQA LIVE CSIQ
model JP2K JPEG WN GB FF JP2K JPEG WN GB
PSNR 0.8954 0.8809 0.9854 0.7823 0.8907 0.9363 0.8882 0.9363 0.9289
SSIM 0:9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609
FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729
BIQI 0.8303 0.9062 0.9328 0.8656 0.6885 0.7635 0.9102 0.5397 0.7826

BRISQUE 0.9164 0.9640 0.9791 0.9446 0.8872 0.8977 0.9212 0.9207 0.9186

GMLOG 0.9268 0.9630 0.9831 0.9288 0.9012 0.9161 0.9364 0.9408 0.9083

CORNIA 0.9205 0.9359 0.9608 0.9519 0.9052 0.8942 0.8820 0.7862 0.9041
NPNO 0.9497 0.9725 0.9853 0.9448 0.8745 0.9395 0.9314 0.9591 0.9230
PATCHIQ 0.9331 0.9732 0.9867 0.9697 0.8821 0.9326 0.9533 0.9654 0.9430

In the overall performance experiment, PATCH-IQ has the best values foreallgbrformance metrics
among the competing BIQA models when tested in the LIVE database. Sesildts are obtained for the CSIQ
database. For the DS performance experiment, PAKZHas the highest SROCC value among the competing
BIQA models for images distorted by JPEG compression artefacts, W»Boit also gives the second best



performance in JP2K cases while giving comparable performance in FE Casagared to FR-IQA models,
PATCH-IQ also achieves better overall performance compared to PSNES#kdwhile approaching FSIM. In
individual distortions, it outperforms PSNR and yields competitive pednos to SSIM and FSIM. It also
outperforms both models for WN imag@®ATCHA{Q’s performance is promising given it requires no reference
image as its input as opposed to the FR-IQA models.

4.3 Evaluation on Multiple Distortion Database

To further investigate the effectiveness of the proposed framewalbtke competing BIQA models are
tested on the LIVEMD database. The database is more challenging as it also containghatagederwent
multiple distortions. A similar experimental procedure is implemented #eisingle distortion database. The
results are presented in Table 4. The first five columns show the resnitshe DS performance experiment
while the last column represents the results from the overall performepedneent. The top two models are in
bold. The results suggest that PATCH-IQ generally has good predietiforrpance in the overall performance
experiment where it consistently produces the top LCC, SROCC Bt8ERsalues. In“the DS performance
experiment, it again performs the best in WN and GB cases while conwesl SecJPEG, cases. For multiple
distortions cases, PATCH-IQ is among the top two BIQA modelsniagés distorted by,GB and WN. For
GBJPEG images, it has the second best SROCC value and gives comparable LCGanhRIEs.

Table 4: Median values across 1000 iterations on the LIVEabase

LCC
GBJPEG GBWN GB JPEG WN ALL
BIQI 0.7417 0.1291 0.8629 0.1005 0.5434 0.3312
BRISQUE 0.8311 0.8359 0.8932 0.6287 0.9353 0.9188
GMLOG 0.8118 0.7803 0.7712 0.6743 0.8451 0.8693
CORNIA 0.8250 0.8658 0.8537 0.5301 0.8026 0.9133
NPNO 0.8458 0.7141 0.8917 0.7619 0.8144 0.8749
PATCH4HQ 0.8205 0.8551 0.8948 0.7264 0.9475 0.9311
SROCC
GBJPEG GBWN GB JPEG WN ALL
BIQI 0.7515 0.0617 0.8585 0.0833 0.5505 0.3570
BRISQUE 0.8172 0.8327 0.8834 0.6667 0.8833 0.9003
GMLOG 0.8107 0.7619 0.7755 0.6667 0.8000 0.8451
CORNIA 0.8089 0.8551 0:8349 0.4833 0.7667 0.9017
NPNO 0.8382 0.6628 0.8797 0.7667 0.8000 0.8459
PATCH-Q 0.8239 0.8640 0.8842 0.7167 0.8833 0.9106
RMSE
GBJPEG GBWN GB JPEG WN ALL
BIQI 8.8770 44,3462 9.4397 10.3556 12.7309 25.8004
BRISQUE 7.9994 8.4818 8.7194 7.2798 6.3376 8.4282
GMLOG 8.3557. 9.9733 12.4358 7.4688 9.7714 10.2195
CORNIA 7.8099 8.0264 10.1168 8.1784 9.3534 8.6813
NPNO 7.9912 10.3441 9.2250 5.2061 13.0281 9.9040
PATCH-Q 8.2604 8.4084 8.5511 5.7410 5.8369 8.1425

44  Satistical Significance and Hypothesis Testing

The differences in median correlations between the competing BIQA modgisiohde statistically
significanty Therefore, a hypothesis test to evaluate the statistical signifiafecende between each model is
conducted. As the SROCC and LCC values follow right-skewed unimodidbdigns, the Wilcoxon rank-sum
test is'employed avoiding the normality assumption required bpieatyt-test [26]. The Wilcoxon rank-sum
test measures the equivalence of the median values of two indepsadgiés. The test is performed on the
SROCC values obtained from the 1000 runs of experiments at dcsignd level of 0.01. The null hypothesis
is that the SROCC values of the two BIQA models are drawn fnenpapulations with equal median while the
alternative hypothesis is that the median of one model is greater thanghe oth

The results are shown in Table A& score of ‘1’ implies there is a statistically significant difference
between both models and the model in row has a larger median thaodkéin column. Ascore of ‘-1’ also
implies there is a statistically significant difference between the models, buotattiel in column now has a
larger median than the model in row. A score of ‘0’ indicates the null hypothesis cannot be rejected; there is no
statistically significant difference between both row and column mo@elshe LIVE database, PATCH-IQ has
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no statistically significant difference to NPNO but differs to the rest. Howevethe CSIQ and the LIVEMD
databases, PATCH-IQ is different to all models.

Table 5: Results of the Wilcoxon rank-sum test using R@GEC values of competing BIQA models

LIVE

BIQI BRISQUE GMLOG CORNIA NPNO PATCH-Q
BIQI 0 -1 -1 -1 -1 -1
BRISQUE 1 0 -1 1 -1 1
GMLOG 1 1 0 1 -1 -1
CORNIA 1 -1 -1 0 -1 -1
NPNO 1 1 1 1 0 0
PATCHAQ 1 1 1 1 0 0

CcSIQ

BIQI BRISQUE GMLOG CORNIA NPNO PATCH-IQ
BIQI 0 -1 -1 -1 -1 -1
BRISQUE 1 0 -1 1 -1 1
GMLOG 1 1 0 1 -1 -1
CORNIA 1 -1 -1 0 -1 -1
NPNO 1 1 1 1 0 -1
PATCHAQ 1 1 1 1 1 0

LIVEMD

BIQI BRISQUE GMLOG CORNIA NPNO PATCHIQ
BIQI 0 -1 -1 -1 -1 -1
BRISQUE 1 0 1 0 1 -1
GMLOG 1 -1 0 -1 0 -1
CORNIA 1 0 1 0 1 -1
NPNO 1 -1 0 -1 0 -1
PATCHHQ 1 1 1 1 1 0

45 Influence of Framework Parameter on Its Perfor mance

To investigate the effect of varying the number, of images in the lalddiadet, all three databases are
patitioned under three train-test ratios: 80:20, 50:50 and 30:70. Theniaméive competing BIQA models are
also evaluated under the same settings. The.number-of selected patches laediechimage and test image
and the patch size are fixed as before. The SROCC results for the peéi@inance experiment are shown in
Table 6. As expected, the performances.of all tested BIQA modelsadecas the number of samples reduces.
On the LIVE database, PATCH-IQ has the second best SROCC values dftér d50% and 30% training
ratios. However, when tested on the CSIQ/and the LIVEMD databases, PAJ @kbdluces the best SROCC
values at all three training ratios. This\shows it has better generalisdtlity than NPNO. Compared to the
remaining four BIQA models; it is"also interesting to note that PATCH-1Qgsti#ls better SROCC values at
50% ratio than the other models? results at 80% ratio on the CSIQ and LIVEMD while slightly lags behind
GMLOG on the LIVE database. This proves that the PATCH-IQ frameworks well when the number of
training samples is small:

Table 6: SROCC comparison for different trainingp@ied) samples ratio

Database LIVE CSIQ LIVEMD
Ratio 80% 50% 30% 80% 50% 30% 80% 50% 30%
BIQI 0.8427 0.8346 0.8147 0.7491 0.7369 0.7182 0.3570 0.3421 0.3218
BRISQUE 0.9421 0.9274 0.9033 0.9101 0.8951 0.8722 0.9003 0.8921 0.8828
GMLOG 0,9503 0.9402 0.9251 0.9249 0.9091 0.8870 0.8451 0.8121 0.7760
CORNIA 0.9416 0.9374 0.9290 0.8873 0.8812 0.8734 0.9017 0.8984 0.8933
NPNO 0.9540 0.9510 0.9452 0.9384 0.9295 0.9143 0.8459 0.8427 0.8331
PATCHIQ 0.9540 0.9471 0.9346 0.9430 0.9320 0.9151 0.9106 0.9056 0.8950

The results of varying the number of patches in each labelled imagieednVE database at 80%
training ratio are shown in Table 7 and Figure 6, respectively. Behigumber of utilised patches will lead to
higher SROCC and LCC values. However, it will lead to longer computtiti@nfor the identification of the
distortion. Here, PATCH-IQ chooses the lowest humber of patches that outpetfe stat@f-the-art BIQA
models while has acceptable processing time.
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Figure 6: LCC and SROCC comparison for different nemdd patches in a labelled image on LIVE database

Table 7: LCC and SROCC comparison for different nunab@atches in a labelled image

Patch No 10 20 30 40 50 75 100 150 200

LCC 0.9483 0.9507 0.9562 0.9562 0.9598 0.9628 09591 09633 0.9632

SROCC 0.9473 0.9500 0.9540 0.9540 0.9572 0.9608 0:9568 0.9616 0.9612

The effect of the number of the nearest neighbour patches usedfar ridgeassion on the model
performance is investigated. All other parameters are again fixed<at thevalities. The performance variation
of PATCH-IQ when tested on the LIVE database is shown in Tableagedon the results, there is a small
variation on the obtained values, indicating that the effect of the numhltelelled patches is not significant.
The number that provides the optimum performance is empiricallyenhétere, the optimum performance is
achieved when the number is set at 1000.

Table 8: Performance variations for different numbersMfadtches used in regression

Patch No. 5 10 50 100 500 1000 2000 3000 ALL
LCC 0.9456 0.9493 0.9280 0:9502 0.9530 0.9562 0.9529 0.9496 0.9450
SROCC 0.9420 0.9458 0.9336 0.9486 0.9516 0.9540 0.9514 0.9487 0.9441
RMSE 9.1137 8.8202 10.3455 8.6313 8.4352 8.1490 8.4401 8.7318 9.0979
1
0.95
0.9 - " IW Rule
0.85 - ___ mAverage
0.8 - . Max
SROCC
LIVE
1
0.95 -
0.9 - = IW Rule
0.85 - —_ mAverage
0.8 - . Max
SROCC
CSIQ

Figure 7: LCC and SROCC comparison for differentlipgomethods on LIVE and CSIQ databases
The quality prediction performance of PATCH-IQ also depends on hewdbres from test patches are

pooled. In Section 3.6, PATCH) pools all the patches’ scores by assigning weight to each score according to
an inverse weighting rule. Two other pooling methods: average poaithgnax pooling are tested and the
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results are shown in Table 9 and Figure 7. Among the three poolithgase we can observe that the inverse-
weighted based pooling method based consistently produces the highest SRBIC&nd RMSE values. It

provides slight improvement to average pooling while better than max pooling

Table 9: Performance comparison for different poofireghods

Database LIVE CsIQ

Metrics LCC SROCC RMSE LCC SROCC RMSE

IW Rule 0.9562 0.9540 8.1490 0.9586 0.9430 0.0813

Average 0.9540 0.9514 8.4809 0.9574 0.9333 0.0850
Max 0.8646 0.8717 19.4673 0.9001 0.8842 0.1790

4.6

Distortion I dentification Accuracy

Another useful property of PATCH-IQ is its ability to identify thistdrtion affecting the image. To
show that the chosen NBNN classifier is capable to provide good classifigegifermance, the median
classification accuracy over 1000 runs of experiments on all three datdabasgmorted. The results are
tabulated in Table 10. The chosen classifier consistently achieves goodnp@ide across many distortions
with the minimum accuracy value of 80%. Since the classifier usesxthacted. spatial domain features as its
input descriptors, the results indicate that the features are not onlylestdalguality estimation but also
suitable for distortion identification purposes.

Table 10: Median classification accuracy across 10@&tites

LIVE JP2K JPEG WN GB FF ALL
Accuracy 88.57 97.22 100 96.67 80 91.98
CsIQ JP2K JPEG WN GB FF ALL
Accuracy 90 86.67 93.33 90 - 89.17
LIVEMD GBJEG GBWN GB JPEG WN ALL
Accuracy 100 99.98 99.99 93.76 91.97 98.56

JP2K
JP2K

JPEG
JPEG

WN
GB

GB

FF 0.00

JPEG WN GB

JP2K JPEG. WN GB FF JP2K

@ (b)

Figure 8: Mean confusion matrix across 1000 runs of exyerts for distortion classification: (a) LIVE and (b) CSIQ

Ta allow/ visualisation of the classification performance, Figure 8 pletdmfusion matrix for each
distortion classes in both the LIVE and the CSIQ databases. We can useftisesooamatrix to see if PATH-
IQ is\confusing two distortion classes. Each column of the magpxesents the instances in the predicted
distortion class while each row represents the instances in the actuadlatisttass. Each row adds up to 1 and
the values represent the mean percentage for the 1000 runs of erferidigher value indicates greate
confusion. In the LIVE database, we can see that WN, GB and JPEG arallgemelt classified by PATCH-
IQ and not confused with other distortion. JP2K and FF are most confiitedlach other whereby about 11%
of FF images are misclassified as JP2K images and about 4% of JBg@&siare predicted as FF images. This
is because FF images in the database are essentially JP2K compressed itoages g packet-loss errors
[25]. In the CSIQ database, good classification performance is achievedlGHI with less than 6% of the
WN images are misclassified. JPEG is the most confused distortiod@iirof the images are misclassified as
JP2K or WN images while another 4% are wrongly predicted as GB images.

13



47  FeatureAnalysis

To visualise the relationship between the extracted features andritam lperception of image quality,
the SROCC values between each feature and DMOS values for thedatsliase images are plotted in Figure
9. We can see that each feature capture quality information differextlyhey vary depending on distortion.
The proposed features correlate well with the human perception of doalityages affected by noise. Most
features are also useful for quality prediction of blurred imagesnages distorted by JP2K compression
artefacts. In each distortion case, we can observe that the variancetpasaoh both the GGD model and the
AGGD model have better correlation with subjective scores compared to the rameters of the models.
Meanwhile, among all the proposed features, the mean parameters of the AGEHS mapture quality
information the least. Another observation we can made is the same featmmetedxn different orientations
generally have similar correlation values.
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Figure 9: Correlation of the extracted features WithDMOS for different distorted images in the LIVE datse

To evaluate the contributions of different.features on both the distorticsificiation and the quality
prediction performances, five groups of feature are tested on daheewvirork; 1) All features (denoted as
PATCH-IQ), 2) The GGD model-based features (denoted as PATCH-IREhe3AGGD model-based features
(denoted as PATCH-1Q3), 4) All features except the mean parameter of the ABGEs (PATCH-1Q4) and
5) The variance parameters of bothythe GGD model and the AGGD modeCHRK)5). PATCH-IQ2 should
study the contribution of featuresiderived directly from the locallynatised luminance coefficients whereas
PATCH-IQ3 is to evaluate‘the effects of features derived fromp#ievise products of these coefficients.
Meanwhile, features for PATCH=1Q4 and PATCH-IQ5 are selected based pretheus discussions.

The median classification accuracy values over 1000 runs of exp&sirfenthe five PATCH-IQ
versions tested on'the’LIVE database are tabulated in Table 11. We can Seelibhat classification results for
both the overall"and the,DS experiments are achieved when all 36 featuréisace ®ATCH-IQ3 has better
classification laccuracy than PATCH-1Q2 showing that the AGGD model-basenefeaontribute more to a
distortion.identification task than the GGD model-based features. We can atseeothat removing the mean
parameters of the AGGD models as in PATCH-IQ4 has little effect to the a#seifi performance. This
indicates that/the mean parameters of the AGGD models have small contributisnsht@a task. The
classification accuracy also drops when only variance parameters are aslisedATCHIQ5.

Table 11: Median classification accuracy values féiedint group of features on the LIVE database

PATCH-Q PATCH-1Q2 PATCH-1Q3 PATCH-1Q4 PATCH-IQ5
JP2K 88.57 82.35 88.57 88.24 79.42
JPEG 97.22 88.57 97.22 96.92 94.29
WN 100 96.67 100 100 100
GB 96.67 96.67 96.67 96.67 93.33
FF 80 66.67 79.42 80 66.67
ALL 91.98 85.80 91.93 91.82 85.80
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Table 12 shows the median SROCC values over 1000 trials obtained bgntieefive PATCH-IQ
versions when tested on the LIVE database. Few similar observatione caadke here. First, the best quality
prediction performances for both experiments are produced whenPAQQitilised all the proposed features.
Second, PATCH-IQS3 has better correlation values in most distortion cases th&mrRA2. This indicates that
the AGGD model-based features have better correlation to human perceptuaeméaasu the GGD model-
based features. Third, PATCH-1Q4 achieves similar prediction performan&&sTioH-1Q for images affected
by noise and compression artefacts while only suffers a slight degradatmsrformance for GB and FF
images. This shows that the mean parameters of the AGGD models cotittibuie a quality prediction task.
Meanwhile, PATCH-1Q5 also achieves close prediction performance to PAQJHR both experiments. This
suggests that, while the variance parameters of both the GGD modeta®@@D models may not be suitable
features for a distortion classification task, they are useful features fog opadjty prediction.

Table 12: Median SROCC values for different groupeetdires on the LIVE database

PATCHA4Q PATCH-1Q2 PATCH-1Q3 PATCH-1Q4 PATCH-1Q5
JP2K 0.9331 0.9090 0.9241 0.9331 0.9187
JPEG 0.9733 0.9591 0.9733 0.9733 0.9720
WN 0.9867 0.9671 0.9867 0.9867 0.9867
GB 0.9697 0.9406 0.9666 0:9671 0.9693
FF 0.8821 0.8665 0.8661 0.8729 0.8732
ALL 0.9540 0.9319 0.9481 0.9534 0.9465

48 Computational Complexity

Having a fast computation speed is always desirable especially for applichtibrexuire online quality
assessment like adaptive coding in video streaming. PATEKprocessing time is analysed in this sub-
section. There are three major stages that consume most of‘theipmptiess (1) patch and feature extraction;
(2) distortion identification; and (3) local quality estimation. Processingstisre based oun-optimised
MATLAB R2011b code on an 8GB RAM computer with anulntel i5 3.20 @Hressor.

Extracting IQA features is the most time ‘consuming part of the maodsiefvork as features are
extracted at the patch level rather than at‘the.image level. A higher nufmpaicloes will lead to longer
extraction time. Additional computation time is also required for interest points’ detection. In addition, the
choice of statistical features to be utilisedalso plays important roles imgemqieptable processing time. On
average, utilising spatial domain features described in sub-section 3s2ttind the number of test patches as
in sub-section 4.1, PATCH-IQ requires)1/03 seconds to extracte#tarés in a typical 51& 768 image.
Processing time of the distortion‘identification stage is determinedebi2@ distance computation. It depends
on the size of the labelled/dataset.)The dataset size is determined by the numbeliedf ilmages and the
number of patches within.thosejimages. A larger dataset will require longeto compute the 12C distance
between the test patches and their nearest neighbour labelled patches. Howeverdatédrgse will lead to
better prediction performance. Therefore, there is a clear trade-off betweeprediction performance and the
I12C distance computation time. Choosing an appropriate dataset size is essemt@ireofast computatisn
while achieving competitive prediction performance. At 80% ratio, PATCH-IQimres| an additional 0.05
second to perform distortion identification.

Finally, the local quality estimation processing time is directly related tothgber of NN patches
selected for linear regression. A higher number of patches will lead terlqoglity estimation time. Setting the
parameters as in sub-section 4.1, an extra 0.08 second perfaiitys egtimation for all test patches. We do not
consider the time to construct the labelled dataset as it is assumed that it is alaflabiiegwior to the testing
stage. The average run-time comparison between PATCH-IQ and thpetaognBIQA models is shown in
Table 13. BIQI is the fastest but has the worst performance among allrtiparenl models. PATCH-IQ is
slower than others except CORNIA. However, given its superior peafurey; PATCH-IQ can be a better
option for IQA applications when real time computation is not a key requiteme

Table 13: Average run-time

BIQA model

BIQI

BRISQUE

GMLOG

CORNIA

NPNO

PATCH-4Q

Run-time (s)

0.08

0.18

0.10

2.43

0.19

1.16
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5. CONCLUSION AND FUTURE WORK

In this paper, a simple but effective BIQA model that estimates image qualityutvihe presence of a
reference image is presented. The model, PATCH-IQ, is based on-stafjee framework that operates in a
spatial domain. In contrast to many previous BIQA models, PATCH-IQ preteuality of an image directly
from a set of annotated patches using nearest neighbour methodgprbach alleviates the need of any prior
training phase. PATCH-IQ can also estimate image quality locally andifydéme distortion affecting the
image, two useful properties that are not available in most of current BlQ#elsa The model is tested
extensively on three subject-rated image databases. The experimeuital demonstrated that the image
quality estimates of PATCH-IQ are highly correlated with human perakptaasures of image quality across
various kinds of image distortions. PATCH-IQ also has grgagormance to all competing BIQA models in
quality prediction accuracy and robustness. PATCH-IQ also generalisksagvoss different databases
including the one with multiple distorted images.

Despite these promising results, several steps could be taken to énipAGCH-1Q.\PATCH-IQ relies
on a labelled dataset and has only being tested on distortions in the st@Watdtdbases. Introducing new
types of distortions will increase the dataset size, leading to higher mamsbyrocessing time requirements.
Here, the use of parallel computing or less computational expensive featurdi@xtraethods could be
explored to speed-up the process. We could also integrate incremental learhimgutes in the dataset
construction to help dealing with an increasing number of new distatésses. In addition, obtaining accurate
image distortion class is essential to provide PATCH-IQ with bettér régmelsguts for quality estimation
stages. While PATCH-IQ uses spatial domain features and a NBNN classifier donpéhne classification,
different features and other nearest neighbour classifiers could also“bettestetdin better classification
accuracy.
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